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ABSTRACT 

The dispersion relation for the Parker instability in a self-gravitating, exponential gas layer is 
derived and solved explicitly to give the growth time of a perturbation as a function of its dimensions 
and initial density. Our solution is a general result, expressed in dimensionless form, and valid for 
arbitrary gas density, magnetic field strength and cosmic ray pressure. 

Self-gravity is important as an additional driving force for the Parker instability when a dimension- 
less density, defined here, becomes comparable to the ratios of the magnetic and cosmic ray pressures 
to the thermal gas pressure. For the observed scale height and sound speed in the interstellar 
medium, the dimensionless density equals 1.8 times the ambient density in cm-3. Self-gravity is 
marginally important for instabilities in the ambient medium. Self-gravity becomes more important 
than magnetic fields or cosmic rays in regions of higher gas density. For example, in a spiral density 
wave shock, where the gas density may be 5 cm-3, the initial growth time of the combined instability 
is only 12 million years. The instability is dominated by self-gravitational forces at these densities, so 
this growth time is relatively independent of magnetic field strength and cosmic ray pressure. Cloud 
formation by this Parker-Jeans instability can be so fast that star formation may occur in a 
moderately compressed interstellar medium within only 20 million years. 

Subject headings: hydrodynamics — instabilities — interstellar: matter— stars: formation 

I. INTRODUCTION 

The interstellar medium is subject to the magnetic 
Rayleigh-Taylor instability and to the self-gravitational 
instability. The pure Rayleigh-Taylor instability oper- 
ates with a characteristic wavelength of about 1 kpc and 
a growth time comparable to the Alfvén propagation 
time over one scale height (Parker 1966). Since the 
pressures from magnetic fields, cosmic rays and rms 
cloud motions are all comparable, the Parker instability 
operates with a time scale comparable to the free fall 
time perpendicular to the galactic plane. The pure self- 
gravitational instability in the ambient medium would 
operate with a similar length and time scale except that 
differential rotation can prevent it. According to 
Safronov (1960) and Toomre (1964), gravitational insta- 
bility occurs only when ttGo > wwep for gravitational 
constant G, gas column density a, one-dimensional 
sound speed u, and epicyclic frequency <oep. The local 
interstellar medium barely falls short of this instability 
criterion, by a factor of 1.5 to 2, so a small decrease in u 
after a period of cooling (Goldreich and Lynden-Bell 
1965), or a small increase in o (Elmegreen 1979), as may 
occur in a spiral density wave (Fujimoto 1968; Roberts 
1969), could possibly trigger the self-gravitational insta- 
bility. 

The stability of the interstellar medium should be 
analyzed with all possible forces included at the same 
time. Here we consider a partial solution to this problem 

by combining the self-gravitational instability with the 
Parker instability. The effects of rotation are not in- 
cluded yet. Rotational forces will be minor for the 
interesting cases of moderate-to-high densities, as in 
mildly compressed media. For example, rotation changes 
the pure self-gravitational instability by subtracting the 
square of the epicyclic frequency from the square of the 
growth rate derived without rotation (Safronov 1960). 
The inverse of the epicyclic frequency is about 30 
million years locally. Thus rotation affects the pure 
Parker instability (Lerche 1967a; Shu 1974; Zweibel and 
Kulsrud 1975) and the pure self-gravitational instability, 
which have growth times comparable to the epicyclic 
time. Rotation should not affect the combined instabil- 
ity as much as it does each separate instability. The 
growth times for the combined instability (Table 1) are 
between 15 and 8 million years for midplane gas densi- 
ties between 5 and 10 cm-3. If rotation influences the 
combined instability in the same way as it does the pure 
self-gravitational instability, then the local rotational 
forces will decrease the growth times calculated here by 
only 12% to 3% for these two densities, respectively. 

The goal of this work is to understand the formation 
of giant cloud complexes. These clouds have virial theo- 
rem or free fall line widths, so they are strongly self- 
gravitating at the present time. They cannot be in the 
process of forming by the pure Parker instability, be- 
cause that instability is driven only by ambient pressure, 
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which is much less than the internal pressure inside the 
clouds. The pure Parker instability produces density 
enhancements that are only a factor of 3 to 5 above the 
ambient density (Lerche 1967a; Mouschovias 1974). If 
giant molecular clouds are formed by large scale insta- 
bilities, then self-gravitational forces must be important 
at some stage. Our results suggest that self-gravitational 
forces could have been important from the beginning of 
the instability if the interstellar medium was slightly 
compressed when these clouds formed. 

Section II describes our procedure for determining 
the growth rate of the combined instability. Section III 
derives the dispersion relation for arbitrary self- 
gravitational accelerations, and § IV determines the 
self-gravitational forces for our model. Then in §§ V and 
VI, we consider each separate instability for comparison 
and the final results for the combined instabihty. A 
summary of our results is in § VII. 

ii. model: an exponential, self-gravitating 
GAS LAYER WITHOUT ROTATION 

a) Modeling the Forces in the Parker Instability 

The Parker instability may be analyzed most easily 
for a gas field layer that has a constant gravitational 
acceleration perpendicular to the layer, g0. A more 
realistic layer has an acceleration that increases with 
height, similar to the tanh z/H dependence for an 
isothermal layer with scale height H. Parker (1966) gives 
a solution for the growth rate when g œ z. Most previous 
studies use constant g because the layer is unstable 
whether or not g is constant, and the mathematics is 
much simpler when g is constant. We use a constant g 
for this analysis. An appropriate choice for g0 is the 
observed value of the galactic acceleration at one scale 
height, which is 3.5 X10“9 cm s-2 in the solar neighbor- 
hood (Oort 1965) for 77 = 160 pc (Falgarone and 
Lequeux 1973). 

The equilibrium layer with constant g has a density 
and pressure distribution that is exponential: 

P =^ = ^L = il = e-z/H 

Po A) ^CRO Bq 
(1) 

where the scale height is 

H_ Pq + Bo/^ + ^CRO _ u2(\ + a + ß) 
PoSo go 

and 

P = pu2, (3) 

a = B2/($*P0), (4) 

P = Pcr/Po-, (5) 

u is the one-dimensional rms velocity in the interstellar 
medium, which we take to be w =7 km s-1 (Falgarone 
and Lequeux 1973). The unperturbed magnetic field, 2?, 
is taken to He in the plane of the layer and in the y 
direction. 

The ratios of pressures, a and ß, are assumed to be 
constant throughout the layer. The local cosmic ray 
pressure, PCR, is observed to be 4X10“13 dyn (Meyer 
1969; Shu 1974), the local, average magnetic field 
strength, B, determined from Faraday rotation is 2.2 ± 
0.4 microgauss (Manchester 1974), and p, the density, 
equals the mean atomic weight, 2.2 X 10~24 g, times the 
mean interstellar density of n =0.1 to 1* cm~3. For « = 1 
cm-3 (Jenkins and Savage 1974; BohUn, Savage, and 
Drake 1978), we obtain a«*0.18 and ß«*0.37. These 
values are too low to give the observed scale height if 
g0=3.5X10-9 cm s-1. Values of a~ß 1 or larger 
have been used by others to model the Parker instabil- 
ity, and these will be used in the examples here as well. 
The values of a and ß are not precisely known from 
observations; a = 1 corresponds to B =5.2 microgauss if 
« = 1 cm-3 and u=7 km s~K This field strength is 
significantly larger than that determined by Faraday 
rotation. Values of n =0.18 cm-3 would give a = l if 
B =2.2 microgauss, but this does not explain the ~160 
pc scale height of the diffuse cloud population, which 
has a larger mean density (Baker and Burton 1975). We 
shall use both (a, jß) = (0.2,0.2) and (a,ß) = (1.0,1.0) to 
bracket the numerical results within a likely range. Val- 
ues of (a,ß) much larger than these may occur in 
compressed regions (see Elmegreen 1982). 

The equilibrium state is taken to be isothermal, be- 
cause the large scale heating and coohng rates will be 
nearly uniform in an unperturbed galactic gas layer. The 
perturbations, however, are assumed to be adiabatic 
with index y(= d\n P/d\n p). There is no inconsistency 
with our use of adiabatic perturbations in a background 
gas layer that is isothermal (e.g., sound waves in the air 
have this property). A local increase in the interstellar 
gas density, n, causes the local coohng rate to increase, 
initially as w2, but the heating rate from the unperturbed 
background of stars and random (Type I) supemovae 
will not change; thus the temperature in the higher 
density gas can be less than it is in the unperturbed 
background. Generally y<l for small changes in the 
interstellar density. Observations of the variation of gas 
temperature with density were compiled by Myers 
(1978). The mean value of y from Figure 1 in Myers 
(1978) is 0.25, obtained by solving for y = 1 + 
d\n (T)/d\n (n). Here we are interested in the total gas 
pressure, including macroscopic motions. The total 
gas pressure is pu2 instead of nkT. The change in total 
pressure with density is not easily determined from 
observations. A theoretical study by Cowie (1980) 
showed that the macroscopic energy density in a large 
region decreases during compression because of an in- 
crease in the cloud-cloud colhsion rate. This energy is 
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radiated away at the shock fronts between the colliding 
clouds; some of the energy may heat the gas elsewhere, 
as in the intercloud medium, but most of it will leave the 
galaxy altogether because the optical depth to such 
infrared cooling radiation is low. Cowie’s study implies 
that y < 1 for macroscopic motions. We can estimate the 
macroscopic y from observations by comparing the ratio 
between the rms velocity in the interstellar medium and 
that in giant molecular clouds, w/A tv to the ratio of 
densities between the interstellar medium and such 
clouds, n0/nc. Thus y = 1+2 ln (w/Aü)/ln (h0/«c). 
Taking u — 1 km s-1, At>=4 km s-1, n0 = \ cm-3 and 
«c =250 cm-3 for typical values, we obtain y =0.8. We 
shall use y =0.8 for most of the numerical examples in 
this paper. The equations will be written in general form 
so any other value of y may be used at a later time. 

We analyze the growth of perturbations that are 
strictly two-dimensional. The gas is allowed to move 
parallel to the mean field, in the y-direction, and per- 
pendicular to the plane, in the z-direction, but not in the 
orthogonal or x-direction. The density perturbations are 
like sheets or tubes (see Lerche 1967a) with infinite 
extent in the x-direction. Parker (1967) and Lerche 
(1967/?) have shown that the gas field layer is unstable 
in both the y- and x-directions, and we expect this to be 
true in the self-gravitating case as well. The instability in 
the x-direction has a short wavelength; it may lead to a 
chaotic cloud structure in this direction (Parker 1967; 
Lerche 1967/?; Asséo étal 1978). The self-gravitational 
instability alone has a long wavelength in both the x- 
and ^-directions (i.e., the Jeans length); its wavelength is 
comparable to the unstable wavelength along the y- 
direction of the pure Parker instability, namely IvH for 
scale height H (e.g., compare Ledoux 1951 and Parker 
1966). Thus the full, three-dimensional instability will 
grow by the Parker effect and by self-gravity in the 
y-direction (parallel to the unperturbed field), but it will 
fragment by the Parker instability alone in the x- 
direction. We are interested in how large clouds form by 
long-range instabilities, and we are not concerned with 
how these clouds may fragment as they form or after 
they form. For this reason, we need to investigate only 
the growth of perturbations parallel to B. This simplifies 
the problem greatly. Short wavelength growth per- 
pendicular to B and in the galactic plane will not differ 
significantly from Parker’s (1967) analysis when self- 
gravity is included. 

Z?) Modeling the Self-Gravitational Force 

The component of the self-gravitational acceleration 
of the perturbed gas layer that is directed toward the 
midplane increases with height above the plane, as does 
the acceleration from the stars. The component of this 
perturbed self-gravitational acceleration that is parallel 
to the plane decreases with height. To make a normal 
mode analysis of the instability, we integrate the equa- 

tion of motion and the continuity equations over the 
height of a perturbation. This integration is also useful 
for two other reasons: (1) The equilibrium layer is 
exponential, so it has a density cusp at the midplane. 
The singularity resulting from this density cusp is re- 
moved by integration over the height of the perturba- 
tion. (2) The Parker type forces are largest away from 
the midplane, where the curvature of the magnetic field 
is largest (for a symmetric mode), whereas the self- 
gravitational forces are largest near the midplane, where 
the density perturbation is largest. These two different 
forces act in the same direction, and they both lead to 
the growth of a cloud in the midplane, but they differ in 
the height at which they are most effective. Integrating 
over the height of the perturbation gives an exact aver- 
age of the combined forces for cloud formation. 

III. THE DISPERSION EQUATION FOR THE 
PARKER-JEANS INSTABILITY WITH A GENERALIZED 

SELF-GRAVITATIONAL ACCELERATION 

We first derive an equation for the Parker-Jeans insta- 
bility in terms of generalized, perturbed self-gravitational 
accelerations from the gas, ôggas. Exact accelerations are 
introduced in § IV. The y and z axes are parallel and 
perpendicular to the galactic plane, respectively, and 
parallel and perpendicular to the unperturbed magnetic 
field, which is in the y-direction. The unperturbed self- 
gravitational acceleration of the gas in a direction per- 
pendicular to the plane is taken as part of the total 
unperturbed acceleration in this direction, g0; there is 
no need to separate out the gas and stellar contributions 
to this unperturbed acceleration. 

The equation of motion for the gas in a layer with 
total gravitational acceleration g, magnetic field BT and 
pressures PT and PCrt i

s (Parker 1966) 

dv ( BÍ\ 
Pr97 = -v(Pr + />CRT+8^) 

+ -~^BT-V BT + pTg, (6) 

and the continuity equation is 

^ = -VpTt>. (7) 

The cosmic rays move freely and quickly along the field, 
so (Shu 1974) 

Bt-^ PCRT=0. (8) 

The equilibrium solution to these equations is given by 
equations (1) and (2). 
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We introduce perturbations denoted by 8 of the form 

Bt — B -\- 8B pT — p + ôp 

PT = P + 8P Pqrt ~ Pcr + SPcr’ (^) 

and ü is a perturbation. We assume as in Parker (1966) 
that the perturbed pressure varies as ôP =(yP/p)ôp, so 

8P 
— = — vvP-ypu2vv. (10) 

Recall from § II that y will be set equal to 0.8 for the 
numerical calculations in this paper. Also as in Parker 
(1966), we convert ÔP to a vector potential 

8B = VX8A. (11) 

+ 
B B 

SttH Att y dy2 
d2-8A + KsA 

-8p 
u2(\ + a + ß) 

H + Pôggas,z 

8* - P 
YtSp-^H~p 

Id ,9 

a ^ p n( d , a \ 
dtSP~VzH yP\dyVy+dzVz) 

9z2 

(17) 

(18) 

(19) 

The coefficients are independent of t and y, so we 
assume generalized perturbations of the form 

Since the interstellar gas is usually highly conductive, 
the magnetic field will follow the gas: 

~^~ = VX(vXB). (12) 

We analyze only the growth of perturbations that are 
uniform along the x-direction, which is orthogonal to 
the y- and z-directions (see § lia). Then SB is in the y-z 
plane, and 8A is in the x-direction. From equations (11) 
and (12), 

dt 
dA = — Bv7 . (13) 

It now follows from equation (8) that (Parker 1966): 

9 ^ SA Pcrû 
áPcR_ B dzPc™~ B H 

(14) 

8p—txp(iu>t + iky)8p'(z), (20) 

and so on, for the other perturbed quantities. Thus 9/0i 
is replaced by /co and 0/8y is replaced by ik. 

There is no need to write all of the steps in the 
reduction of these equations here. It is evident that we 
can substitute 8p and 8P from equations (18) and (19) 
into equation (16) to solve for vy. Then 8p and 8P can 
be put into equation (17), along with the newly derived 
vy, and vz and 0PCR can be eliminated using equations 
(13) and (14). The result of these operations is a single 
equation for 8A and 8 g and their z-derivatives. This 
procedure was discussed by Parker (1966), and we fol- 
low through it again in Appendix B. 

It is convenient to introduce the dimensionless growth 
rate and wavenumber, 

Ü = ii 
H 

(21) 

We isolate the gravitational terms that arise from the 
self-gravity of the gas and write 

v — kH. (22) 

g — ~ g(stars+unperturbed gas) êz + ôggas 

M2(l + CL + ß) 
H ez ^8gas (15) 

The equation of motion and the continuity equations 
are now written in terms of the perturbed quantities; the 
corresponding equilibrium equations are subtracted to 
give perturbation equations, and these perturbation 
equations are linearized for small perturbations. The 
resulting linearized perturbation equations are: 

0 
pdiVy -■^(SP + SPcr) 

+ 
B 

ZttH Sgas, y (16) 

Thus the perturbation grows like exp (Ütu/H), and the 
wavelength parallel to the field is IttH/v. 

The differential equation for 8A(z) now becomes, 
after dropping the primes, 

HP¡ 92 

B 9z2 8 A + 
HB 

8A 

HSgg^z 
í(yv2 + Ü2) + ^2 uôgas, y 

ËlÉl±8g 
u2 0z

ü5gas^‘ (23) 

The term exp ( / co ¿ -f iky ) has been dropped from 
both sides of the equation. Hereafter, 8A and 8 ggas are 
functions of only z, as is B. The quantities P¡, P2, q, and 
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Px =2ayv2 + fí2(2a-f y) 

perturbed density that we use to derive ôggas. The scale 
height of the density perturbation is 277, which we 

(24) define to be L in what follows. 

P2 = rv2 — Œ4 — ti2(la + y)(v2 + 1 /4)—2ay*'4 

(25) 

q = \ + a + ß — y (26) 

r = (\ + a + ß)q — ay/2. (27) 

Since the gravitational acceleration is the gradient of a 
potential, it has no curl, 

#= H^Sg^z = ivSggas z. (28) 

Thus equation (23) becomes 

H2P,^1dA + P2dA = ^-(Sggàs ß
2 + ipqdgg^y). 

oz u 

(29) 

IV. SELF-GRAVITATIONAL FORCES IN THE MODEL 
INTERSTELLAR MEDIUM 

The gravitational acceleration for an infinitely thin 
layer with mass column density 28pL is 

Sggas,r
=4,r*<jSpL (z~0) (36) 

Sggas,z = ±4wG«pL (z$0) 

Sggas,z=0 (z =0). (37) 

With 8p given by equation (35), however, the exact 
gravitational acceleration for our problem is a solution 
to the equation 

V-8ggas = -4wGSp(j>,z). (38) 

This exact acceleration is written in a form analogous to 
equations (36) and (37) in Appendix A: 

This is the desired equation. In § IV and Appendices A 
and B, we derive £ggas as a function of ôp, and then 
convert equation (29) to one written entirely in terms of 
SA and its derivatives. 

The equation derived by Parker (1966) is the same as 
equation (29) except the right-hand side is equal to zero. 
The coefficients in his equation are independent of z so 
symmetric solutions are of the form 

= sin (^±z) (30) 

for perturbations of wavenumber k± and for constant 
8A0. For dimensionless wavenumber 

S = k±H, (31) 

àgl,as,y(y>Z’t)=4'*iGSP(y’Z’t)Lry(z,k,k±) 

(39) 

8gi:>s,z(y>z’t)=±4'ïïGôp(y,z,t)Lr:;(z,k,k±) 

(zïîO). (40) 

The T functions are given by equations (A10) and (Al 1). 
At z =0, 5ggas ^ is nonzero and ôggas z =0. Also, as z 
goes to infinity, and for & = =0, 8ggas z —47rG 8p0L, 
as expected for the acceleration toward the plane. Tz is 
always less than 0. 

Equation (29) now reduces to 

the dispersion relation for the pure Parker instabihty is 

-i2P] + P2=0. (32) 

Solutions to this equation are discussed in § V and 
Appendix C. We note that from equations (16), (17), 
and (18), and for symmetric perturbations, 

vy = - ivy0e^/2H cos {U/H) (33) 

vz = vz0e^/2H sin (?z/tf ) (34) 

8p = Sp0<rM/2i,cos(£z/77), (35) 

for constants vy0, vz0 and 8p0. Equation (35) gives the 

<4,) 

where the dimensionless midplane density is defined to 
be 

_ AttGpqHL _ SttGpqH2 

*0 2 2 ' (42) 

To obtain the final dispersion relation, the quantity 
8p/p0 has to be written in terms of 8A/HB0. The 
procedure for this conversion involves an integration 
over the height of the perturbation and is discussed in 
Appendix B. We write the integrated gravitational force 
in terms of G functions, which are given explicitly by 
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equation (B18). By definition, 

_ Po OPo 
c-= 

J0 OpQ 

(43) 

The result of our reduction is the dispersion relation for 
the Parker-Jeans instability: 

■r 2jP'+P2=^lGz ~vqGv ) ■ (44) 

The gravitational growth rate, is defined by the 
equation 

Q,l = s0vGy-yv2. (45) 

V. GROWTH RATES FOR THE PURE PARKER 
INSTABILITY, THE PURE SELF-GRAVITATIONAL 

INSTABILITY, AND THE PURE CONVECTIVE 
INSTABILITY 

The change introduced by self-gravity to the pure 
Parker instability is best illustrated by analyzing each 
separate instability in turn. Figures 1-5 show the disper- 
sion relation for each part of the instability. Such illus- 
trations do not appear elsewhere in the literature, nor do 
the simple analytic expressions for these growth rates 
that are derived here and in the Appendices. A special 
hmiting case to the Parker-Jeans instability (a = ß ^0) 
is also shown in this section as a further illustration of 
the physical processes involved. We discuss the full 
solution to equation (44) in § VI. 

a) The Pure Parker Instability (sQ =0) 

The dispersion relation for the Parker instability 
without self-gravity is 

-S2P\ + p2=o, 

where Px and P2 were given by equations (24) and (25). 
The left-hand side is a second-order polynomial in £22, 
and the coefficient of fí4 is —1, so we can write this 
dispersion relation as 

-(ü2-ß|)(ß2-ß3) = 0. (46) 

The solutions for ñ2, namely, ßf> and Qq> are written 
explicitly in terms of a, ß, y, v, and f in Appendix C. 
The unstable mode corresponds to Œp, which is positive 
for instability (c.f. eq. [21]). The second solution, is 
always negative, and it corresponds to stable oscillations 
of the gas field layer around the galactic midplane. 

Fig. 1.—The square of the normalized growth rate of the pure 
Parker instabihty, fip, is shown as a function of the normalized 
horizontal wavenumber, p. The growth rates in this and in the 
following figures are normalized to u/H for sound speed u and 
scale height H, and the wavenumbers are normalized to \/H. 
Vertical wavenumbers of £ = 0 and 0.5 correspond to perturbation 
half-heights of oo and 500 pc, respectively, for 77 = 160 pc. The 
ratios of magnetic and cosmic ray pressures to gas pressure are a 
and ß, and the effective ratio of specific heats is y. 

Figure 1 shows fíp versus p for £ = 0 (hold lines) and 
f=0.5. These values of f correspond to perturbations 
extending to infinite distances from the midplane, and 
extending to ±3.1 scale heights (±500 pc if 77 = 160 
pc), respectively. The solid Unes correspond to the 
parameters (a,ß, y) = (l, 1,0.8), and the dashed lines 
correspond to (a,)ß,y) = (0.2,0.2,0.8). 

For constant f, the squared growth rate of the Parker 
instabihty, £2p shown in Figure 1, goes to 0 as ^ ^ 0, it 
reaches a peak, 121 (MAX.GROWTH), at wavenumber 
p (MAX.GROWTH), and it crosses zero and goes nega- 
tive (corresponding to stable wave motions) at critical 
wavenumber vcút. Perturbations with wavelengths shorter 
than 27rH/vCTit are stable. 

The peak growth rates and corresponding wavenum- 
bers, and the critical wavenumbers, are plotted as func- 
tions of f in Figure 2. Explicit formulae for these 
quantities are given in Appendix C. 

The fastest growth of the Parker instabihty occurs for 
f =0. Such an infinitely extended perturbation is not 
always relevant for an investigation of cloud formation 
because the growth consists of purely lateral motions, 
parallel to the plane (uz=0). The concept that giant 
clouds form in magnetic valleys corresponds to the case 
f >0. Furthermore, the layer of gas that can form clouds 
may not extend much higher than 500 pc to 1000 pc 
because most of the mass of the interstellar medium at 
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640 ELMEGREEN Vol. 253 

Fig. 2.—The square of the normalized growth rate of the pure 
Parker instability, ßp {left-hand axis), maximized over horizontal 
wavenumber, v, and plotted as a function of vertical wavenumber, 

The horizontal wavenumber at maximum growth, v, and the 
critical wavenumber for instability, vcrit, are plotted on the right- 
hand axis. See Fig. 1 for normalization factors and definitions of a, 
ß, and y. 

these heights may be in the form of hot, low density 
coronal gas (Savage and deBoer 1979). A reasonable 
height for a perturbation may be ±500 pc, correspond- 
ing to f ^O.S. The maximum growth rates of the pure 
Parker instability for f =0.5 are (MAX.GROWTH) = 
0.44, 0.63, and 0.91 for (a,ß, y) = (0.2,0.2,0.8), (0.5,0.5, 
0.8), and (1,1,0.8), respectively. These growth rates cor- 
respond to e-folding times of 51, 36, and 25 million 
years, respectively, for 77=160 pc and m=7 km s-1. 
The fastest-growing wavelengths are 1.20, 1.12, and 0.97 
kpc respectively, for these three cases and for f =0.5, 
and the critical wavelengths are 0.69, 0.64, and 0.53 kpc. 
Similar solutions with f =0 are given in Table 1 (for the 
.So =0 case). 

b) The Pure Jeans Instability (oc — ß =0) 

For a = ß=0, equation (44) reduces to a dispersion 
relation for the Jeans instability in an exponential gas 
layer. This is discussed in some detail in Appendix D. If 
Y<1, the convective instability is still present, as 
discussed in § Vc. We note here that for y = l, the 
convective instability is suppressed, and the purely self- 
gravitational dispersion relation becomes 

[o2 + (p2 + f2 +1/4)] =0. (47) 

There are three modes in this case: there is a steady-state 

solution with fi2=0 (which is a remnant of the pure 
Parker instability), a second mode which is a gravita- 
tional instability with squared growth rate 

Ü2 = ü^ = s0vGy — v2, (48) 

and there is a stable mode that consists of oscillations 
around the midplane with frequency (v2 + f2 +1 /4)1/2. 
The oscillation is a density-symmetric wave running 
through the equilibrium gas layer. The restoring forces 
for the wave are gas pressure, P, and the gravitational 
force from stars, g0. 

The gravitational instability, Q2 = is analogous to 
the Jeans instability in a thin layer. The dispersion 
relation for the three-dimensional Jeans instability is, of 
course, (e.g., Spitzer 1978), 

o)2 = k2u2 —4ttGp, (49) 

but for an infinitely thin, self-gravitating sheet, this 
equation takes a different form, 

oí2 — k2u2 —iTtGak (50) 

for mass column density through the sheet, a. This latter 
equation is derived in Elmegreen (1981). 

The similarity between equations (50) and (48) be- 
comes obvious if we convert the latter back into the 
physical units used in § III: 

o)2— k2u2—47rGp0LkGy. (51) 

The mass column density of the exponential layer here is 
o =2p0H= p0L. Thus the self-gravitating term here is 
2Gy times as large as that in equation (50). The two 
equations become identical in the limit of f 0, p 0 
because then = 1 /2. In this limit of infinite wave- 
lengths, the exponential plane acts like an infinitesimally 
thin plane, so the dispersion relations (50) and (51) 
become identical, as expected intuitively. 

Figure 3 shows the squared growth rate of the purely 
self-gravitational mode, as a function of v for f =0.0 
{bold lines) and f =0.5, and for y =0.8. The two solu- 
tions are for different densities, = 1 and 50 = 10. We 
use y =0.8 to facihtate comparisons between Q.% and the 
growth rate of the full Parker-Jeans instability. Note 
that Üq is less for f =0 than it is for f =0.5 because the 
self-gravitational forces peak near the midplane. This is 
opposite to the situation for Œp, which is largest at f =0. 

Figure 4 shows the peak growth rate (maximized over 
v), and the horizontal wavenumber {v) at peak growth 
as functions of the log of the vertical wavenumber, f. 
Again the tendency for to peak at f >0 is evident. 
For f^0, the peak of £2^ over v approaches a value 
independent of f; this case is for perturbations that 
extend for infinite heights above and below the plane. 
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Fig. 3 Fig. 4 

Fig. 3.—The square of the normalized growth rate of the pure self-gravitational instability, plotted as a function of horizontal 
wavenumber v. Values of vertical wavenumber, f, are indicated. The normalized density parameter, s0, equals 1.8 times the midplane density, 
H0(cm~3), for a scale height of 160 pc and a sound speed of 7 km s-1. The ratio of specific heats, y, equals 0.8. 

Fig. 4.—The square of the normalized growth rate of the pure self-gravitational instabihty, (left-hand axis), maximized over 
horizontal wavenumber, v, is shown plotted as a function of the log of the vertical wavenumber, f. The horizontal wavenumber at maximum 
growth is shown on the right-hand axis. The dimensionless density parameter, s0, equals 1.8 times the midplane density (in cm-3), as in Fig. 
3. 

When f increases from 0, the mean self-gravitational 
force averaged over the height of the perturbation in- 
creases because the mean density averaged over that 
height increases, until f ~ 1. Further increases in f de- 
crease the self-gravitational force because the total mass 
of the perturbation begins to decrease rapidly for large 
f. The peak in is around f — 1, which shows that only 
the lowest one or two scale heights of the gas are likely 
to condense by self-gravitational forces. We shall return 
to this point in our discussion of Figure 8 in § VIZ?. 

c) The Pure Convective Instability 
(a = /? = s0=0; y<l) 

When a = ß — equation (44) reduces to a dis- 
persion relation for pure convection. This reduction is 
discussed in Appendix D. The result is the squared 
growth rate for convective instabilities, Qlonw(v), written 
as equation (D12); this is shown in Figure 5 for f =0.0 
(bold line) and f = 0.5, and for y =0.8. 

The maximum growth rate occurs at v = co, and it is 
independent of f, H, and L: 

a2
œm (MAX.GROWTH) = . (52) 

The instabihty criterion for convection is that y must be 
less than 1. 

A stratified interstellar medium without the Parker 
type destabilization from magnetic fields and cosmic 
rays (a = ß=ö), and without self-gravity (sq =0) is still 

Fig. 5.—The square of the normalized growth rate of the pure 
convective instability, ^conv» plotted as a function of vertical 
wavenumber, v, for two values of the horizontal wavenumber, £. 
For this instability, a — ß — s0 =0, and y =0.8. 
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convectively unstable iî y<1. The Schwarzschild crite- 
rion for local convective instability is that the back- 
ground (equilibrium) temperature, T, and pressure, P, 
satisfy the inequality 

dlnT >Uzl 
dlnP Eq. y (53) 

The equilibrium interstellar medium modeled here has a 
constant temperature with height, so 

dlnT 
dlnP (54) 

Thus y < 1 leads to convective instability in the usual 
sense. 

The Parker criterion for instability also may be writ- 
ten as an upper limit for y, as shown by equation (Cl6). 
When a = ß=0, this Parker criterion is again y < 1 for 
instability. Thus the Parker instability is closely related 
to convection, and the Parker instability criterion is 
similar in some respects to the Schwarzschild criterion 
for convection. 

We note that an interstellar medium with y < 1 need 
not be thermally unstable. For example, if the cooling 
and heating functions for interstellar gas are of the usual 
form 

A = A0n2Ta 

T = T0n, (55) 

then in thermal equilibrium, A = T, so Ta oc n~l. But if 
P ccny, then Tccny~l for an ideal gas, so y — 1— 1 /«; 
then y < 1 if «>0. Thermal instability requires (Parker 
1953; Field 1965): 

è<r~A>-fÀ<r-A>>0 <*> 

which corresponds to «< 1 or y<0. Thus a between 0 
and 1 (or y<0) corresponds to thermal instability and 
convective instability together (Dufouw 1970), while a > 
1 (0< y < 1) corresponds to convective instability alone. 
For the value of y used in this paper, y—0.8, the 
interstellar medium will be thermally stable and convec- 
tively unstable. 

d) Growth Rates for Small a and ß and y = 0.8 

Solutions to the Parker-Jeans dispersion relation (44) 
for small but nonzero a and ß and for y =0.8 are shown 
in Figure 6. This figure should be compared with Fig- 
ures 3 and 5. Values of a —ß =0.01 were chosen. The 
density parameter, s0, equals 0.1, 1 and 10, and f =0.5. 

We point out three aspects of these solutions. First of 
all, for large s0 and for v less than or equal to the 

Fig. 6.—The square of the normalized growth rate for the 
combined Parker-Jeans instability, fipj, is shown as a function of 
the horizontal wavenumber, v, for very small magnetic and cosmic 
ray pressures, and for three values of dimensionless midplane 
density, s0. This figure shows the importance of convection in the 
combined instability, as discussed in § Vd. 

wavenumber at peak growth, the growth rate is 
dominated by self-gravity; that is, equation (48) is valid 
and Figures 6 and 3 are identical. Thus the peak growth 
rate is determined by self-gravity for small a and ß and 
large 50, as expected. 

A second feature of Figure 6 is that Q2 stays positive 
for very large v. Thus, very short wavelengths are still 
unstable by the Parker-convection mode. This instability 
occurs at short wavelengths for small («, ß) for two 
reasons: (1) convection is most rapid at short wave- 
lengths (cf. § Vc), and (2) the Parker instability is 
essentially a Rayleigh-Taylor instability, which of course 
grows fastest at short wavelengths. The Parker instabil- 
ity (not the convective instability) is stabilized at small 
enough wavelengths (corresponding to vcrit) because the 
tension in the field Unes exerts a large force for small 
field curvature. That is, the B B term in Equation (6) 
leads to the existence of a critical wavenumber. (Using 
the notation of Appendix C, we note that this curvature 
force appears in the r and d terms, which exclusively 
determine vcrit and fcrit.) When B0 gets small, the field 
Unes bend easily at small wavelength, and the gas is 
unstable at large v. Thus, the gas can be unstable at 
wavelengths parallel to the field that are much smaller 
than a Jeans length if B0 is small. Incidentally, this 
curvature force also is absent for perturbations per- 
pendicular to the field and in the galactic plane (i.e., in 
the x-direction), so such perturbations can have very 
short wavelengths as well. This was mentioned in § II. 
Both short wavelength instabilities can create chaotic 
cloud structure inside the large perturbations. 
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The third interesting aspect about Figure 6 is that the 
peak growth rate goes to a minimum but nonzero value 
of ~0.2 as Sq —* 0. This is essentially the convective 
instability, since ficonv

2 (MAX.GROWTH) = (1 — y)/y 
=0.25 for y =0.8. Thus the self-gravitational and Parker 
type forces become dominated by the convective insta- 
bility at small s0, a, and ß, except at very short wave- 
lengths, where magnetic curvature forces eventually 
stabilize the gas. 

VI. GROWTH RATES FOR THE PARKER-JEANS 
INSTABILITY 

At very long wavelengths, v ->0 while Gy and Gz 

remain finite and nonzero. Then R ->0 as p2, and ß ^0 
as v. The squared gravitational growth rate, goes to 
zero as v, but, from equation (C3) or Figure 1, the 
squared Parker growth rate, 12p, goes to zero as v2, and 
the squared Parker wave frequency, —12 q, stays finite as 
p -*0. Thus, equation (60) shows that 122 must go to zero 
as v. In that case, the term (122 —12|)(122 — 12o)/(122 + 
Q) goes to a constant as p ^0. Thus 122 —12^ must go to 
zero in proportion to R for long wavelengths, or 

122 12¿ +constant* y2 s0vGy 

a) Limiting Cases 

Combining equations (44) and (C2), we write the 
dispersion relation for the Parker-Jeans instability as 

This shows that long wavelength perturbations are 
dominated by self-gravity no matter what the gas density is 
(as long as s0 is not exactly zero). 

(ú2-fí|)(S22-Ú^)(fí2-í2á) 

VqGy 
Gz 

s0qv2Gz. 

We define the positive quantities 

Q(v,n= 
VjGy 
Gz 

b) Calculated Growth Rates 

The dispersion relation (60) for the Parker-Jeans in- 
stability is cubic in 122. Except for very low v (see 

G*') below), there is only one real positive solution. The 
positive solution is the square of the growth rate of the 
Parker-Jeans instability. It may be written explicitly in 
terms of the constant parameters in the problem, a, ß, 
y, and sQ, and in terms of the wavenumbers, v and f0. 

(58) This explicit solution is: 

R{v,$,s0)=-SQqv1Gz. (59) fi|J=2C,cosö-Z)l/3, (62) 

The functions Gy >0 and Gz <0 are written in equation 
(B18), and q is from equation (26); 50 is the dimension- 
less midplane density, and v and f are dimensionless 
wavenumbers parallel and perpendicular to the plane (as 
defined previously). The growth rates, 12c, 12P, and 120 

are defined by equations (45) and (C3). Thus the disper- 
sion relation becomes 

(fl2 - ß!)(Q2 - ñíO(fl2 - ñ¿) 

(fî2 + <2) 
(60) 

First consider the interesting limits to this equation. 
For s0 =0, self-gravity is unimportant; then R equals 0 
and 12^ = —yp2. The modes of oscillation in this case 
are the pure Parker instability, 122 = 12 P >0, the Parker 
wave, !22 = 12q <0, and a pure sound wave, 122 = — yv2. 

For large density, ,s0^oo, so R and 12^ increase in 
proportion to s0. Thus the right-hand side of equation 
(60) increases with s0, so the left-hand side must in- 
crease with Sq also. This can happen only if 

where 

0 = ~\ arctan ( q ) + f > (63) 

and 

cHc^ + c2)176 

_/ D¡ | D¡D2 | D,D2D, D[ D,D}\'/2 

2 \ 27 108 6 4 21 j 

C, = \{-DxD2+W,)+^ (64) 

D^ — — (l2ç + !2P + 12q ) 

D2 = 12^12P + 12^12o + 12P12o - R 

122 ^ 12^+constant (i0^oo) 

-^* (61) 
Thus the instability becomes purely gravitational at large 
gas density. 

Z>3 = — RQ —12^12 P12o- 

We have used the usual formula for solving cubic poly- 
nomials (e.g., see Abramowitz and Stegun 1970). 
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At very low 10 2), there are two real solutions to 
equation (60): 

and 

— — A, 

where 

A R oc v3. 

(65) 

(66) 

(67) 

As p -*0, the first solution goes to and the second 
solution goes to zero; the second solution is always 
much smaller than Thus the long wavelength limit 
has a very slow instability that is a remnant of the pure 
Parker instabihty, and a much faster instability that is 
purely self-gravitational. In what follows we consider 
only the fastest instabihty (£2pj ~ Œ^) at very small v 
where there are two unstable solutions, and for larger v, 
we discuss the only unstable mode there is, whose 
growth rate is given by equation (62). 

Fig. 7.—The square of the normalized growth rate for the 
combined Parker-Jeans instability, fipj, is plotted as a function of 
horizontal wavenumber, v, for two values of the vertical wavenum- 
ber, f. The dimensionless midplane density is s0, and the normal- 
ized magnetic and cosmic ray pressures are a and ß. The increase 
in growth rate with increasing s0, a, and ß is evident. Self-gravity is 
too weak to affect the growth rate of the instability when s0 =0.1, 
but self-gravity begins to be important when s0 is greater than or 
equal to 1. 

Fig. 8.—The square of the normalized growth rate for the 
combined Parker-Jeans instability, fipj, maximized over horizontal 
wavenumber, is plotted as a function of the log of the vertical 
wavenumber, f. Each curve corresponds to a different density; 
(a, ß, y) = (1, 1, 0.8) for this figure. This shows the tendency for 
the fastest-growing mode of the instability (where fípj peaks) to 
change from one having an infinite extent in the vertical direction 
(£=0) to one having only a finite extent (?>0) when self- 
gravitational forces become important. 

The results are shown in Figures 7, 8, and 9. Figure 7 
shows Qpj versus v for s0 =0.1, 1, and 10, and for 
f =0.5. As in the rest of this paper, solid curves are for 
(a,ß, y) = (l, 1,0.8) and dashed curves are for (a9ß,y) 
= (0.2,0.2,0.8). Figure 8 shows the peak values of 
maximized over v, as functions of the log of the vertical 
wavenumber, f, for (a,ß, y)^!, 1,0.8) and for s0 =0.1, 
1, 2, 3, 4, and 10. The curve for so=0.1 in Figure 7 is 
nearly identical to the curve for Œp at the same a, /?, y, 
and f in Figure 1, as expected in the low density limit. 
(Figs. 2 and 8 show similar results for low s0 as well, but 
the comparison is not straightforward in this case be- 
cause of the different axes.) As s0 increases, S2pj in- 
creases, approaching the pure gravitational solutions 
shown in Figures 3 and 4. 

Figure 9 shows Œpj maximized over both wavenum- 
bers v and f and plotted as a function of the interstellar 
density parameter, s0. We take the same two cases, 
(a,ß, y) = (1,1,0.8) and (0.2,0.2,0.8). The two limiting 
cases for small and large s0 are clear: the growth rate 
approaches the pure Parker solution for small s0 (fípj = 
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Fig. 9.—The log of the square of the normalized growth rate of 
the combined, Parker-Jeans instability, fípj, maximized over both 
vertical and horizontal wavenumbers (left-hand axis), is plotted as 
a function of the log of the normalized midplane density, s0. The 
log of the normalized horizontal wavenumber at peak growth is 
shown on the right-hand axis. With the normalization assumed in 
this paper, the physical midplane density, n0, equals O.55s0 cm-3, 
the growth time equals 22.4/ñPj million years, and the wavelength 
equals 1.01/^ kpc. This figure shows the effect of self-gravity on 
the combined instability. For small s0, fípj and v equal the 
corresponding constant values at peak growth of the pure Parker 
instability. For large s0, fípj and v approach the pure self- 
gravitational values, which increase linearly with s0. Self-gravity 
becomes important for these a and ß when s0 is between 3 and 6, 
corresponding to space densities between 1.6 cm-3 and 3 cm-3. 
For n0 between 5 cm-3 and 10 cm-3, the peak growth rate of the 
instability is between 15 and 7 million years for a wide range in 
parameters (a,ß, y); see also Table 1. 

Œp = const.), and it approaches the pure gravitational 
sohition for large Sq (fipj = ^ So^G^). 

The density at which fípj begins to deviate signifi- 
cantly from fíp is around s0 — 1. This shows that s0 plays 
a role that is just as significant as a and ß in driving the 
instability, since a — 1 and ß — 1 correspond to similar 
thresholds for the importance of magnetic fields and 
cosmic rays. 

Here we define a critical value of the density parame- 
ter to be the value of s0 where the squared Parker-Jeans 
growth rate equals twice the pure Parker growth rate: 

^pj(5crit):=:^^pj(‘so (68) 

For s0>scrit, self-gravity nearly dominates the instabil- 
ity, while for s0<sCTit, the convective and magnetic- 
Rayleigh-Taylor forces are most important. From Fig- 

ure 9, we obtain 

Scrit = { s'o }• for (“’P’ Y-)= {o/o/o.s} ' ^ 

When y = 1, the corresponding values of scrit are 5.7 and 
2.2, which are not very different from the y —0.8 case. 

The horizontal wavenumbers, v, at peak growth (max- 
imized over v and f) are also shown in Figure 9 as 
functions of s0. The wavenumber gets larger as s0 in- 
creases (just as the Jeans length gets shorter as density 
increases). The dip in v (MAX.GROWTH) for (a, ß, y) 
= (0.2,0.2,0.8) occurs because for small a, ß, and 50, the 
convective instability is relatively important, and this 
instability (as well as the Parker instability for small a 
and ß) peaks at large v (see Fig. 6). When gravity 
becomes influential, the wavenumber at maximum 
growth decreases to the self-gravitational value (i.e., 
self-gravity makes a long wavelength instability grow 
faster than the shorter wavelength instabilities driven by 
convection or weak Parker type forces). This self- 
gravitational value of v increases with s0, so the initial 
decrease in v at small (a, ß) eventually turns around and 
gives an increase in v for larger s0. 

c) Numerical Examples 

The dimensionless parameters Œ, and s0 are nor- 
malized in terms of the scale height for the gas, 77, and 
the one-dimensional rms velocity dispersion in the inter- 
stellar medium, u. We choose 77=160 pc and u —1 
km s_1. Then the growth time is 

77 _ 2.24X 107 yr 
uQ Í2 

(70) 

the horizontal and vertical wavelengths are, respectively, 

x,= 
IwH 

V 
(71) 

, 2itH 1.01 , 
*, = — = —tpc. (72) 

and the physical mass density in the midplane is 

u2s 
p0 = - = 1.20X10 24s0gmcm 3. (73) 0 SitGH2 

Dividing this mass density by a mean atomic weight of 
2.2 X10“24 gm, the corresponding space density at the 
galactic midplane is 

n0 —0.55s0 cm-3. (74) 

Since self-gravity becomes important compared to the 
Parker effect when s0 is around 2 to 6 (eq. [69]), an 
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TABLE 1 
Growth Times and Wavelengths of the Dominant Modes in the 

Parker-Jeans Instability 

nQ (cm~3)= 0 1 2 5 10 20 

(<x, ß,y)= Growth Times (X 106 yr) 

(0,0, 1.0)   oo 62 34 16 9.6 5.9 
(0.05,0.05,0.8)... 53 49 29 15 8.8 5.5 
(0.2,0.2,0.8)  43 39 27 14 8.6 5.4 
(1.0, 1.0,0.8)...... 22 21 19 12 8.0 5.2 
(0.2, 1.0,0.8)....:. 30 20 18 12 7.9 5.1 
(1.0,0.2,0.8)  36 32 25 14 8.5 5.3 
(1.0,1.0, 1.0)  25 23 22 13 8.6 5.4 

(a, ß, y)= Horizontal Wavelengths (kpc) 

(0,0, 1.0)  3.18 1.84 0.98 0.63 0.43 
(0.05,0.05,0.8)... 1.03 2.00 1.39 0.79 0.53 0.37 
(0.2,0.2,0.8)  1.21 1.26 1.26 0.77 0.52 0.36 
(1.0, 1.0,0.8)  0.99 0.98 0.93 0.70 0.50 0.35 
(0.2, 1.0,0.8)  0.65 0.66 0.69 0.62 0.46 0.33 
(1.0,0.2,0.8)  1.41 1.40 1.22 0.77 0.53 0.37 
(1.0, 1.0, 1.0)  1.14 1.13 1.11 0.82 0.58 0.40 

(a, ß, y)= Vertical Wavelengths (kpc) 

(0,0, 1.0)  1.24 0.97 0.84 0.56 0.45 
(0.05,0.05,0.8) ... oo 1.23 0.87 0.62 0.49 0.40 
(0.2,0.2,0.8)  oo oo 0.90 0.61 0.48 0.38 
(1.0, 1.0,0.8)  oo oo 1.50 0.65 0.48 0.38 
(0.2,1.0,0.8)  oo oo 1.14 0.56 0.43 0.34 
(1.0,0.2,0.8)  oo oo 1.08 0.64 0.50 0.39 
(1.0, 1.0, 1.0)  oo oo 1.86 0.71 0.52 0.41 

interstellar gas layer with a density larger than 1 to 3 
cm-3 (depending on a, ß, and y) will become unstable 
much faster than what would be determined by the 
Parker instability alone. This is the range of the mid- 
plane density when self-gravitational forces begin to 
dominate over magnetic and cosmic-ray forces during 
cloud formation (for the assumed range of a and ß). 

Table 1 lists the unstable growth times of the fastest- 
growing modes, and the wavelengths of these modes, for 
various w0, a, ß, and y. 

The free fall time over one scale height perpendicular 
to the galactic plane is (7r/2)[H/g(H)]l/2 = \SJ mil- 
lion years. Table 1 shows that the self-gravity of the gas 
makes the perturbation growth time less than the free-fall 
time for « >2 to 5 cm“3, a result that is almost indepen- 
dent of a, ß, and y. 

The classical Jeans growth time has the maximum 
value of (47rGp)~l/2 =233/n\/2 milhon years for den- 
sity n0. Our maximum growth times approach this value 
for large n0 because, of course, self-gravity begins to 
dominate the other forces, but also because Xz becomes 
comparable to or less than 2H for large n0. Thus, the 
perturbation is nearly homogeneous for large h0, so the 
classical Jeans analysis begins to apply. This conver- 

gence of our results to the classical Jeans result at large 
«o is a welcome sign that our procedures are valid for 
evaluating the exact, self-gravitational force in an ex- 
ponential layer and for applying this force to obtain a 
dispersion relation. 

VII. SUMMARY 

The purpose of this paper was to include self- 
gravitational, magnetic, and cosmic-ray forces in a single 
theory for the large-scale stability of the interstellar 
medium. The result was a dispersion relation (eq. [60]) 
for small amplitude waves having the combined restor- 
ing forces. Explicit solutions to this equation were pre- 
sented in both analytical (eqs. [62]-[64]) and graphical 
(Figures 7, 8 and 9) form. 

The results showed that the relative importance of 
self-gravitational forces on the Parker (1966) instability 
can be measured by the dimensionless density parame- 
ter, s0. For a scale height of 160 pc, and an unperturbed 
sound speed of 7 km s“1, the physical space density in 
the midplane, nQ, equals 0.55s0. The dimensionless den- 
sity parameter measures the effect of self-gravitational 
forces in about the same way as the dimensionless 
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magnetic field strength, a, and cosmic ray pressure, ß, 
measure the dimensionless driving forces in the pure 
Parker instability. When s0 approximately equals or 
exceeds a + ß for «~ß, the self-gravitational forces 
become important or dominant compared to the mag- 
netic and cosmic ray forces. 

The growth times for the Parker-Jeans instability can 
be much less than the free fall time perpendicular to the 
galactic plane if n0 exceeds ~5 cm-3 for typical values 
of a~ß~ 1. This rapid growth signifies the importance 
of the Parker-Jeans instability as a mechanism for form- 
ing giant cloud complexes. 

APPENDIX A 

THE GRAVITATIONAL ACCELERATION FROM A PERTURBATION IN DENSITY 

Here we determine the gravitational acceleration directed toward a density perturbation in an exponential gas layer. 
Consider a generalized density perturbation of the form 

8p(y,z) = 8p0elk(<y~yo)e~\z\/Lcosk±z. (Al) 

This is symmetric around the midplane, and it corresponds to the density perturbation in the Parker instability if 
L—2H (see § III). The acceleration in they- or z-directions resulting from this perturbation, and measured at a point 
y — Y and z = Z, may be obtained by integrating over infinitesimally thin strips that he in the x-direction. The 
acceleration directed toward each strip is 

2G8p dydz 

[(y-Yf+iz-Z)1] 
211/2 

(A2) 

The fraction of this total acceleration that is in the y-direction is (y — Y)/[(y — Y)2+(z — Z)2]1/2. Thus the 
acceleration at ( Y, Z) in the y-direction is 

✓ x z*00 wr , f00 cos/:(y — y0)(y — Y) dy 

^ z*00 , z*00 cos/c(y — y0)(y — Y) 
+ 2G8p0( e /L cos k±zdz I j    z=r 

J0 J-oo[(y-Y)2+(z + Z)2] 
dy. (A3) 

These integrals may be solved by substitution of £ =(z — Z)/L in the first one and £ =(z + Z)/L in the second one, 
and by substituting x—{y — Y)/L in both of them. The resulting term in cos k(xL -f Y— y0) can be expanded into 

cos k(Y — yo) cos kxL —sin k(Y — yo) sin kxL, (A4) 

and the integral containing cos (kxL)dx goes to zero. The remaining term in sin kxL integrates to 

/: 

oo x sin (kxL) 

x2+e 
dx = ire-kLM. 

The acceleration becomes 

8giaSty(Y, Z)=-2vG8p0Lsink(Y-y0)<Sl{ly) 

where <31 (/v,) is the real part of the integrals: 

(A5) 

(A6) 

/ .,= 
/•oo CZ/L 
i exp (— £ + ik±Li + ik ±Z— kL£ — Z/L) dí;+ I exp ($-ikxL$ +ik±Z-kL£-Z/L) 

fOO 
+ exp(- JZ/L 

£ + i/C j. U-ikxZ- kL£ + Z/L) di. (A7) 
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This equation may be simplified by direct integration of the exponentials, and by selection of the real part. 
The result is 

5ggas,r(y,z)=4^GôPLrv. 

Similarly, for the z component of the acceleration, 

Sggas>z(y,z)=4ffGôpLr2. 

The T terms are 

Ty 

rz 

+ A_ 
e-\z\(kL-l)/L 

COS (k±z) 
— B_k±L tan (k±\z\) 

e~\z\(kL— 1)/L 

~A~ cos(/c±z) -5+^x^tan(fc±|z|) , 

where 

A kL + \ ^ kL-\ 
± _ (kL + 1)2+(/cx-L)2 ~ (kL-\)2 + (k±L)2 

B = I ± ^  
Æ (kL + \f+(k±L)2 {kL-\)2 + {k±L)2 

(A8) 

(A9) 

(A10) 

(All) 

(A12) 

(A13) 

APPENDIX B 

REDUCTION OF THE PERTURBED, SELF-GRAVITATIONAL ACCELERATION FROM THE 
GAS, ôggas, TO TERMS INVOLVING ONLY SA 

We begin with the equations of motion and the continuity equations, integrate these equations over the height of a 
perturbation, and then solve for the perturbed density parameter, öp, as a function of the perturbed magnetic vector 
potential, SA. We show in detail how the dispersion relation for the Parker-Jeans instability, equation (44), may be 
derived. 

Consider the equation of mass continuity (18): 

!«p = »4-p(1a + ^üz). (bi) 

Now, introduce explicit variations of the form (cf. eqs [20], [34], and [35]): 

dp = 8p0 exp (Ütu/ff+ivy/ff-lzl/L) cos (Çz/ff) (B2) 

vy = — ivy0 exp (titu/ff-h ivy/If+ lz¡/L) cos (Çz/If) (B3) 

vz = vz0 exp (&tu/H+ivy/H + \z\/L) sin (fz/H), (B4) 

where ôp0, vy0, and vz0 are constants. These perturbations give a symmetric density and flow pattern around the 
midplane. When substituted into the pure Parker instability, they give a magnetic vector potential that is sinusoidal in 
the z-direction (cf. eq. [31]): 

8A = 8A0 exp (titu/H + ivy/H) sin (fz/tf). (B5) 
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We introduce the dimensionless vector potential 

a = Ü = 7nr exP (+ ivy/H +1z l/L) sin (fz/ff ). 
IIIJ IIIJQ 

(B6) 

Then, using equation (13), which is conveniently written as 

u 
(B7) 

the mass continuity equation becomes 

Û dp0E cos (Sz/H) = - vpo^-E cos ($z/H)-®p0aE sin (fz/77) + ?p0a£ cos (Çz/H). (B8) 

Here we have used the fact that L =2H and p = p0e~z/H. The term E is an abbreviation for the exponential, 

E=zx?(Sltu/H+ivy/H-\z\/L). (B9) 

Now we integrate equation (B8) over z from z = 0 to z -■ 77/' k , . which is one-half of a wavelength from the plane. The 
result is simply 

' (BIO) 
Pq i£l u 

This result states that the mass column density in the perturbed layer near the midplane increases only because of the 
convergent flow along the v-direction. , , , ,,,,, 

Now consider the perturbed equation of motion in they-direction; i.e., parallel to the plane (eq. [loj): 

p|^ur = -^;(Sp + 5pCR)+(-^;S^) g^ + p«gg
a

S,r (B11) 

We eliminate SP and SPCR using equations (19) and (14), set 

Sggzs,y=4,*iGSPLTy (B12) 

from equation (A8), and then use equations (3) and (4) to eliminate P and B in favor of p and u. Then we use 
variations of the form (B2) to (B4) to obtain 

P(,:V (1 + £ cos =Po^ + 21£ sin 

_P^Ecosiçz/H)+
SJ^Ee-WHcos(t;z/H), (B13) 

iti v / itipo 

where the dimensionless density is 

4tirGp0LH (B14) 

This equation preserves all the z dependence of the original perturbed equation of motion in the y-direction. Now we 
integrate equation (B13) over the height of the perturbation to obtain, after some cancellation, 

V fl ! yf2) 2fa»(? | SpSpffiy ^B15^ 
u\ & J iß ¿ñpo 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
82

A
pJ

. 
. .

25
3.

 .
63

4E
 

650 ELMEGREEN Vol. 253 

We digress for a moment to define the G functions. Integrating equation (B13) over z leads to a useful function 

r/k%e-\zWHEcos, (Çz/H) dz Jo   

r/kxE cos (U/H) dz Jo 

(B16) 

Later we shall use the equivalent function for the z-component of the equation of motion, so we introduce it here: 

f / \z\/hE cos (fz/H) dz 
A)  

r/kxE cos (U/H)dz Jo 

(B17) 

These G functions are solved to be 

(B18) 

where A ± and B ± were defined in equations (A12) and (A13). Here the y component of G is evaluated using the top 
symbol of a ± or += combination, and the Gz component uses the bottom symbol. 

Now we return to equation (B15). We substitute into this equation the value for 8p0/p0 found in equation (BIO) to 
obtain 

/ - yv2 _ \ _ IÇavq 
«l a2 a2 J «ß 

(B 19) 

Thus 

?£° = 2^2  (B20) 
Po Q2 -h yp2 — s0pGy 

This value of 8p0/p0 shall be used momentarily to convert 8g to 8A in the Parker-Jeans equation (29). 
Finally we consider the z-component of the perturbed equation of motion; this component was used to obtain 

equation (29). Again, vz in the z-component equation of motion is replaced by — ico8A /B0, using equation (13), 8p is 
replaced by its expression from the continuity equation before integration over z (i.e., eq. [B8]), and vy is replaced by its 
expression from the equation of motion in the y-direction before integrating over z. After some reduction, we obtain 
equation (29) again 

p[^Px^8A + iwSA^ = ^j/(8sx*'zQ‘2 + ivq88&sy)' (B21^ 

This time we have preserved all of the z dependences of the original equation of motion; i.e., p has not been cancelled 
from each side, nor have we multiplied each side by B to obtain the form given earlier (eq. [29]), which was useful then 
because its left-hand side was equivalent to Parker’s (1966) equation. Equation (B21) is the normalized equation of 
motion in the z-direction with time derivatives replaced by tiu/H, and d/dy replaced by iv/H, and with 8p, vy, etc. 
substituted from other equations, preserving their explicit z-dependences. 

Now we substitute spatial variations of the form given by equations (B2)-(B4) to obtain: 

(~^2Pi + P2)poaEsin (^z/H) = s08p0(ü
2Tz - vqYy)e~^/HEcos (Çz/H). (B22) 
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One of the reasons for our integration over z becomes evident from this expression (B22): the Parker type forces (on 
the left-hand side) peak where the field curvature is greatest, and this occurs at z = 7r/(lk±). The self-gravitational 
forces (on the right) peak where the mass density is largest, and this occurs at z =0. The mean driving force over the 
entire height of the perturbation is of greatest interest in determining the growth rate for the perturbation. Our 
integration over height gives just this mean force. 

We integrate equation (B22) over z from z to z = 7r/k± and substitute 8p0/p0 from equation (B20) to obtain 

-{2P, + P2 = 
s0t'

2‘¡(ü2Gz-i’íjG},) 

i22 + yv2-s0yGy 

(B23) 

This is the result stated earher (eq. [44]). 

APPENDIX C 

GROWTH RATES FOR THE PARKER INSTABILITY WITHOUT SELF-GRAVITY (s0 =0) 

Here we write an exphcit form for the two solutions of the equation 

-^Pl + P2=0, (Cl) 

originally derived by Parker (1966). The polynomials P] and P2 were given previously in equations (24) and (25); since 
they are second order in fi2, we write 

-f2P,-l-P2 = -(fí2-ñ|)(fí2-^). (C2) 

There are two solutions to equation (Cl), 12f, and 0(
2,. We find after some algebraic reduction that these solutions are 

given by the equations 

al0=-a(v
2 + !;2 + i/4)±b[(v2-v

2)(v2-vj)]'/2, 

a a+ 2' 

(C3) 

(C4) 

(C5) 

and where 12 p corresponds to the + sign and 12(
2 to the — sign. The wavenumbers and v2 depend only on a, ß, y, 

and f, and are given by 

Hi + ‘'+«2c- o] *[({• -SKS1 ; 
(C6) 

the subscripts 1 and 2 correspond to the + and — signs. The wavenumbers f, and depend only on a, ß, and y and 
are given by 

Sl2 = d-^(\+4d)±^(l+4d)[c(c-l)]'/2. (Cl) 

The constants are 

c = (C8) 

d = 
r 

lay ’ 
(C9) 
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where r was defined in equation (27); d is the only term that contains the cosmic ray pressure, ß. The constants a, b,c, 
d, and r depend only on a, /?, and y. 

For constant the growth rate peaks at a value of v found by setting dü\/dv =0 in equation (C3), solving for v, 
and then using this v back in the equation to obtain Ü2. The result is 

ßp(MAX. GROWTH) =-a (CIO) 

and the corresponding wavenumber squared is 

p^MAX. GROWTH) = 1 + ^) +a(- k2
2)/(8«y)1/2. 

The critical wavenumber for instability is found by setting ßp =0 in equation (€3) and solving for v. It is 

v^Hd-x2)x/1. 

(Cll) 

(€12) 

The perturbation is unstable it v< vcúi, as shown in Figure 1. Instability also requires 

(€13) 

Perturbations that are too small in the z-direction are stable. 
The usual criterion for the Parker instability, as given by Parker (1966), for example, is that the interstellar medium 

is unstable if 

¿>0. (€14) 

Since d = r/(2ay), this is the same as 

r = (l + a + ß)(l + a + ß-Y)-aY/2>0 (C15) 

(the term r defined here is the same as the Y term in Parker 1966, Appendix III). Parker and others write this 
instability criterion as an upper limit to y- 

(\ + a + ß) 
y< (1 + 1.5« + /?) ' 

Equation C16 is the same as requiring d>0 or fc
2
rit >0. 

(C16) 

APPENDIX D 

GROWTH RATES FOR THE PURE GRAVITATIONAL INSTABILITY (a = ß=0) AND PURE 
CONVECTIVE INSTABILITY (<* = ß = ^ =0, y < 1) 

I. GRAVITATIONAL INSTABILITY 

The equations of motion and continuity from § HI can be reduced to a single equation for vz and its z-derivatives in 
the same manner as it was reduced to an equation for 8A and its derivatives. When B0 7^0, these two reductions give 
identical dispersion relations for perturbations of the assumed form. When B0 =0, 8A is undefined so the equations 
must be written in terms of vz. In this way, we obtain the following z-integrated dispersion relation for a model 
interstellar medium with no magnetic fields or cosmic ray pressure (a = ß=0): 

-Í2p;+P' = ^2(i-y) 
ß2 + yp2 — ioPG. 

[Q2Gz-v(l-y)Gy]. (Dl) 

This result is identical to the limit of the Parker-Jeans equation (44) at a = ß =0. The coefficients P{ and Pi are the 
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same as the limits of our previously defined Px and P2 (eqs. [24] and [25]) except that the fraction 1 /4 in P2 should be 
replaced by (H/L)2 for perturbation scale height L and unperturbed scale height H. The ratio L/H need not be 2 
when Bq =0; it can be 1, for example. Thus we write 

P{ — Q2y (D2) 

Pi = -a4-Q2y[v2+(H/L)2] + v2(l-y). (D3) 

The left-hand side of equation (Dl) may be reduced to the same form as before, 

-f2P1 + P2 = -(fí2-fí|)(fí2-S2g), (D4) 

and o is given again by equation (C3), but now a = y/2 and b~ — y/2, as in the limit of equations (C4) and (C5) 
for a=0. With a -> 0, however, c and d from equations (C8) and (C9) diverge. The appropriate expression for v\ 2 when 
«=0 is 

v\a = ' (f) 2 + Tc + r (f)i(f) 
2 + -f+$2 

1/2 

instead of equation (C6). The ratio d/c has the same value it did before in the limit oí a = ß=0, namely 

d-4n \ 
c 

(D5) 

(D6) 

Now that and til are defined for the case a = ß =0, we can rewrite equation (Dl) in the form of equation (60) 
and then solve it for Œ2 by equations (62) through (64). 

II. PURE CONVECTIVE INSTABILITY 

Without magnetic fields, cosmic ray pressure, or self-gravity, the linearized perturbation equations of motion become 

A --JLxp 
p9r5 dySP 

p¥tv* = -^sp-8f>H- 

(D7) 

(D8) 

The continuity equations (18)-(19) remain unchanged. With perturbations of the form assumed elsewhere in this 
paper, 

8p = 8p0exp(tiut/H+ivy/H+iÇz/H-z/L) (D9) 

v = v0 exp (tiut/H+ ivy/H + tfz/H + z/H-z/L), (D10) 

these perturbation equations can be reduced to the single dispersion equation: 

-f2Pi+P2'=0, (Dll) 

where P{ and P2 are given by equations (D2) and (D3). 
Equation (Dll) also may be obtained simply as the limit of equation (44) for a = ß = so=0. The solution for 

^(»sOis 

®CONV~ I (p2 + ?2 + l/^O^ I ( v1 + Ç2 +1/4)2 + — -- -Y -- 
1/2 

(D12) 

if L = 2 H. The unstable mode corresponds to the + sign. This unstable solution is plotted in Figure 3. The maximum 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
82

A
pJ

. 
. .

25
3.

 .
63

4E
 

654 

of ßcoNv occurs at p = oo ; it has the value 

ELMEGREEN 

Q£onv (MAX.GROWTH) = , (D13) 

as obtained previously by Dufouw (1970). 
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