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Summary. In search of reliable computational methods for cosmic
flow problems, we apply several commonly used algorithms and
one new algorithm, to a representative problem in galactic gas
dynamics. A careful choice of the algorithm used in a calculation is
found to be of the utmost importance in obtaining reliable results.
Two methods most commonly employed in astronomy (the Beam
scheme and FCT methods) prove to be highly unsuitable for our
test problem. The penalty in programming effort and computer
time per grid point required for the best second-order accurate
codes tested is more than offset by the improvement in accuracy
obtained and the possibility to reduce the number of points in a
grid.
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1. Introduction

Many theoretical investigations of astrophysical fluid flows re-
quire extensive numerical calculations. The techniques of com-
putational fluid dynamics have been employed in virtually every
area from stellar structure to cosmology. The use of numerical
calculations in astrophysics can only increase as the capacity to
perform substantial calculations becomes more widespread.
Indeed, the computation of two-dimensional flows may be con-
sidered almost routine. Thus, increasing numbers of astronomers
will be asking that basic question of scientific computing: What
reliable, accurate, efficient, and easy-to-program method should
be used for this calculation?

The average astronomer with only a casual knowledge of
numerical methods is likely to confine his choices to methods that
have been used before on problems in his particular field of
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research and to methods described in standard textbooks on
numerical analysis. In the former case he is likely to be exposed to a
one-sided defense of a single method. In the latter case he is
unlikely to encounter any comparison between methods on a
physical problem that embodies some of the special difficulties
posed by astrophysical flows.

The objective of this article is to supply a comparison of a
variety of numerical methods on a representative astrophysical
flow problem. The methods considered include some that are
widely used in astronomy, some that are widely used in other fields
such as aerodynamics, and one that is rather new. All the methods
are explicit and are especially suited for transonic and supersonic
flows. This comparison aims to acquaint astronomers with the
virtues and failings of typical numerical methods.

II. The Problem

A simple, one-dimensional model of the gas flow in a spiral galaxy
will serve as the test problem. Numerical calculations of the
nonlinear response of the gas to a mild spiral structure in the more
massive stellar component of a disk galaxy have played a major
role in establishing the density-wave theory of Lin and Shu (1964,
1966) as a viable explanation for the coherent, large-scale spiral
patterns observed in many galaxies. [Recent reviews of this topic
have been given by Toomre (1977) and by Lin and Lau (1979).]
Although the dynamics of spiral galaxies are dominated by the far
more massive (and much hotter) stellar component, their ap-
pearance is largely a result of the fierce response of the (cold) gas to
the stellar gravitational field. The ease with which a mild stellar
spiral structure can induce shock waves in the gas, and its
implications for the observed features of spiral structure, was
demonstrated by Roberts (1969) using one-dimensional, steady-
state gas equations which included a forcing term due to the spiral
field of the stars. The actual evolution of such flows was studied by
Woodward (1975) using a simplified time-dependent version of
Roberts’ equations. We use Woodward’s equations and also a set
of his parameter values.

The nonlinear response of the gas to an imposed spiral
gravitational field has several of the distinguishing characteristics
of astrophysical flows. A major role is played by source terms,
strong shocks are apt to develop, and rotational effects are
significant. The presence of source terms can lead to unexpected
behavior in numerical methods which are usually analyzed and
tested in the absence of such terms. Strong shocks demand
reliability ; the proper treatment of angular momentum requires
accuracy. Many methods cope with the shock only at the price of
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artificially redistributing the angular momentum. This can be a
serious problem if one is investigating the dynamics of the gas,

since the physical system can be very sensitive to redistribution of

angular momentum.
The equations in an inertial frame for an isothermal gas are

0o
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where g is the density, g is the velocity, ¢ is the (constant) sound
speed and @ is the gravitational potential. The isothermal as-
sumption is used since interstellar gas cools by radiative processes
on a much shorter time-scale than that of any dynamical processes.
It is customary to use for ¢ an equivalent dispersive speed which is
partly thermal, partly due to turbulence, and partly due to cosmic
ray particles.

In the absence of the spiral forcing the gas flow is circular with
angular velocity Q(r) at radius r. A steady spiral field with small
pitch angle « is assumed to rotate rigidly with pattern speed Q,. A
convenient coordinate system is one which rotates at this speed and
is aligned with the equipotential contours of the spiral. The
coordinates parallel and perpendicular to the equipotential con-
tours are denoted by & and n, respectively. The velocity com-
ponents in this frame are written as

v= qé > (3)
u=gq,.

If we assume that the spiral has a pitch angle « <1, the equilibrium
velocities are approximately

Uo=r(9 -Qp),
uy=or(Q—Q,).

In this approximation derivatives with respect to # (normal to the
spiral arms) are retained, but derivatives with respect to ¢ (along
the spiral arms) are discarded. For a two-armed spiral the resulting
equations can be written as the system of conservation laws
AN,

ot 0On

where the vector of conserved quantities is

0
U= ( Qu), (6)
Qv

the vector of fluxes is

@

Q)

Qu
F= (@ +cY) ), @

ouv
and the vector of source terms is

0
2 A
H= ZQ(U—UO)Q+a—rQA sin 4 . ®)
K2
) (u—up)o
The spiral phase 7 is defined by
. 27
fi=—, )
or

and the epicyclic frequency k by

2
2224 20
r dr

(10
In this approximation the flow is periodic; in terms of the spiral
phase the periodicity condition reads

U@, )=U@+2m, 1) (11)

The driving term (2/ar)oA sin # arises from the assumed gravi-
tational field of the stellar component. For the test problem we
adopt the parameters thought to be appropriate for the neigh-
borhood of the Sun in our own galaxy: =25 km s™!/kpc,
k=313 km s~ '/kpc, 2,=13.5 km s '/kpc, ¢=8.56 km s,
r=10 kpc, and a=sin (627)~0.11667. For the amplitude 4 we
choose 4=72.92 (km s™!)?, which makes the amplitude of the
spiral force 2 %, of the equilibrium force rQ?.
In the steady state the Egs. (5) become

du u 24 . 2n

W * 1200w —ny)+== sin 1 12

an uz—cz[ Q@ —vy)+ o sin ocr:|’ (12)
2 p—

d_ K u—uo (13)

dn 2Q u

The particular case studied here becomes supersonic with a sonic
point at spiral phase 7=155°53 and a shock at 7=131268. A
procedure for solving the steady state Eqs. (12) and (13) plus the
periodicity condition (11) is described in Roberts (1969); see also
Shu et al. (1973). The noteworthy features of this flow are the rapid
decompression after the shock and the secondary structure near a
spiral phase of 270° which is caused by resonance effects. The time-
dependent version of this problem challenges a numerical method
to cope with the shock, while also resolving the remaining structure
of the flow.

IH. The Methods

A typical numerical method for the system (5) divides the spatial
region (0, mar) into N zones centered at the grid points = (i —%) 47,
where i=1,2,...,N and Anp=mnar/N (or An=2n/N), and
advances the approximate solution from time ¢, to time ¢, ; (where
t,i1=1,+4f) by means of a discretized version of the partial
differential equations. The approximate value of U at the point
(n;,t,) is denoted by U?; F! and H7 are defined as F(U}) and
H(U?,n,) or, as explained below, H (U}, n;, At). In all methods
discussed here, U7 actually approximates the average value of the
solution over zone i. A subscript i+3 denotes an interpolated
numerical value at the zone boundary n=i4g, or a finite difference
across this boundary; a superscript #+% denotes an approximate
value at f,,,,=(n+3)4t.

Our sample of numerical methods includes

a) The beam scheme (B) [see Sanders and Prendergast (1974)].

b) Godunov’s (1959) method (G).

¢) Second-order flux-splitting method (FS2) [see Van Leer
(1981a)].

d) MacCormack’s (1969) method (MC2).

e) Flux Corrected Transport (FCT) methods of Boris and
Book (1973).

Before discussing these methods at length, some general
remarks are due. The methods (a) and (b) are first-order accurate,
that is, these approximate Eq. (5) with an error O(4x). The
remaining methods are of the second order of accuracy. All first-
order methods and also method (c) are based on upwind differenc-
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ing. This means that, in approximating 6F/0n in (5), a distinction is

made between contributions from wave motion or material motion

in the positive direction and in the negative direction [see the review

by Harten et al. (1981)]. The methods (d) and (e) are based on

central differencing, in which the above distinction is not made.
The schemes can be written in the form

+1
urm-ur +¢F+1/z —Pl1p

=m+1/2
At 4n b

(14)

with v=n for the first-order methods and v=n+}% for the higher
order methods. The latter all are two-step algorithms in which time
centering is achieved using the first-order accurate results of the
first step at Z,41,2 OF £, 1.

The numerical flux vector

L UL, (15)

is a function of 2k arguments (initial values); for the time-step in
question it is a representative value of F at#;,,, according to some
model of the interaction of the gas cells. It is the particular choice of
@ that distinguishes one scheme from another.

Note that (14) approximates (5) in the so-called “‘conservation
form”, that is, total differentials are approximated by perfect
differences. This allows the use of the approximation in regions
where the flow is discontinuous; see Lax and Wendroff (1960).

‘piv+1/25‘p(U?—k+1, ..

The methods usually are stable under the Courant-Friedrichs- -

Lewy condition, which says that the largest radial wave or material
speed in a cell must not exceed the numerical signal speed An/A4¢.
In programming methods (a), (b), and (c), the effect of the
source term was accounted for in separate steps, that is, Eq. (5) was
approximated by starting out with integrating the equation

ou

over a half time-step, then continuing by integrating

ou + oF 0 a7
ot op
over a full time-step, and finishing off with integrating Eq. (16)
over a half time-step. This procedure is convenient in that it allows
a very flexible program structure.

Another advantage of this method is that Eq. (16) can often be
integrated accurately by itself. For the current problem the analytic
solution of (16) is

oty +t,m)=0f,

u(t,+1,1;) —up = (U —up) cos (x7)

2Q A .\ .
+—| v} —vy+—— sin # | sin (k7), (18)
K arQ

—A4 .
v(l,+71,1;) —Vg=—- SIN
(ot T.m) —vo=""5 sin ]

A
+ <v;’ —vg +ocr_Q sin ﬁ) cos (k1) —% (u! —up) sin (k7).

Use of such an accurate solution proved essential for maintaining
stability in very long runs (over 2000 time-steps). The cause of the
instability that arises otherwise is the same that would make a
linear first-order algorithm for integrating (16) unstable: instead of

choosing (u(t,+71), v(t,+7)) on the ellipse given by (18), the
linearized version will put it on the tangent to that ellipse, thus
always leading to an amplification of the disturbance.

The exact solution to the test problem is known reliably only in
the steady-state limit. Thus, the numerical methods cannot be
evaluated precisely on how well they calculate the time evolution of
the flow. We therefore restrict ourselves to testing the methods on
the accuracy of the steady state they produce. Note that evaluating
the methods on the time required for them to reach the steady-
state starting, say, from uniform initial values (g, 4, v)? = (1, 4, vo),
is unfair because the better methods will fare the worst. Because of
the periodicity of the flow any transients will persist until they are
damped out by the numerical viscosity, which is highest for the
least accurate schemes. It seems to us that the fairest test is to use
the exact steady state solution itself as the initial-value distribution,
and compare how well the various methods preserve it. This
constitutes the first test performed. In keeping with the spirit of the
methods, the grid values U? employed are not the point-values of
the steady-state but rather the zone-averaged values. Two methods
that performed well in this test were applied to the problem with
uniform initial values, mainly to determine their “robustness”.
This constitutes the second test.

The results presented are based on a computational grid of 64
zones; the numerical solutions for all methods are advanced by
1200 time-steps from the exact steady-state with a constant time-
step corfesponding initially to a global Courant number of 0.5. In
this span the fastest moving signals can traverse the computational
domain about 10 times. This is a reasonable amount of time to
allow the computed solution to adjust towards the steady-state of
the difference equations.

Many additional experiments were run with grid sizes of 16—
128 zones, a variety of Courant numbers and a maximum number
of time steps well over 10,000. These mainly served to check the
consistency of our findings or to examine the long-term stability of
the numerical solution.

The computed solutions of the first test are displayed in Figs. 1—
6, while root-mean-square (rms) errors are listed in Table 1 for
three consecutive output times. Since no method is expected to be
equally accurate at the shock and away from the shock, 8 points
straddling the shock, including 5 points in the decompression
region, are excluded from the rms error calculation. The entries in
Table 1 therefore mainly indicate the accuracy in the smooth part
of the solution ; for shock rendition we rely on visual inspection of
the figures.

a) The Beam Scheme (B)

The beam scheme, used only in astrophysics, is due to Prendergast
(see Sanders and Prendergast, 1974). It exemplifies the
“Boltzmann approach,” that is, mass and momentum are trans-
ported by pseudo-particles with a velocity distribution f (w)
designed for numerical convenience. In the beam scheme the
velocity distribution is the sum of a number of delta functions (the
beams); for the present calculations we used three beams:

Fw)=L 05w —[u—c]/3])+2 06 (w—u)+ 405 (w—[u+c)/3]), (19)

although the middle beam is not really needed for this isothermal
problem. Assuming that the velocity distribution is uniform and
constant in each cell during the time-step, we can compute the flux
of mass and momentum out of a cell in the positive direction,
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ITER =1200 TIME =1.1573 F*(U), and in the negative direction, £~ (U):
( ou _
wo T FU)=| 062 +ed | uzd)/3
130 - . ouv
_ 120} N Lo(5u+c)/3)
llow ] - ég[4uz+(u+cl/§)z] 0§”<Cl/§ o
oLy égv(5u+c]/§) .
Lo(u+c)/3)
40 ' T ' Lo(u+c)/3) —cl/3<u<0
30+ . égv(u+cl/§)
L 0 us —c]/g,
and F~ (U) is obtained from
F=(U)+F*(U)=F(U). (20.2)

o 0 e '2;0' 360
SPIRAL PHASE

Fig. 1. Numerical results (circles) obtained with the Beam scheme

(B) after 1200 time steps, starting from the exact solution (line),

zone-averaged

Table 1. Test 1. Rms errors in the smooth region of the numerical
solution, obtained with four schemes after 1200+ 150 time steps
with a Courant number of 0.5, using the zone-averaged exact
solution as initial-value distribution. Differences in the definition
of the Courant number cause differences in the output times ¢,,. The
results at n=1200 correspond to those of Figs. 1-6

rms error (% of equilibrium value)

in

Scheme n t, 0 u ou v
1050 7.8 7.6 0.70  0.37

B 1200 1.1573 8.4 7.7 0.77  0.36
1350 8.0 7.8 0.74  0.37
1050 3.5 4.0 0.57 0.18

G 1200 1.2266 3.6 4.1 0.40  0.19
1350 3.6 4.5 0.48  0.19
1050 0.54 042 025 0.026

FS2 1200 1.1983 0.62 0.53 025 0.020
1350 048 046 011  0.026
1050 1.0 071 0.58  0.052

MC2 1200 1.1962 1.0 1.0 0.51  0.037
1350 079 0.80 032  0.049

The net flux across the cell interface at #;,,,, to be used in the
scheme (14), is

Dty =F"(UD+F~(Ulsy). (21)

That Eq. (21) leads to upwind differencing becomes clear when
we write down the central difference of @ needed in scheme (14):

B i1p = Bloap=F N —F Ny + (F )y —(F O (22)
Thus, the flux difference of the forward/backward moving material
is biased in the backward/forward direction.

The local stability condition of a beam scheme with velocity
dispersion +puc, p=1, is
At
— (|u]+ pe) 1. (23)
an

The beam scheme turns out to coincide, for u=1, with the
“flux-vector splitting” method of Steger and Warming (1978),
derived without reference to a velocity distribution. The term

“splitting” refers to the splitting of F into F* and F~. Figure 1
displays the results obtained with the beam scheme.

b) Godunov's Method (G)

In this method, designed by Godunov (1959), the interaction of a
pair of cells at their interface is assumed to take place through
discrete finite-amplitude waves rather than material beams. This
yields a more accurate scheme. It has less diffusion than the beam
scheme, yet still avoids non-physical oscillations in the vicinity of
shock waves.

Assuming that at t=t¢, the distributions in each cell are
uniform, we find discontinuities at the cell interfaces; these will be
resolved instantaneously through shock waves and/or rarefaction
waves, and (not for an isothermal gas) a contact discontinuity. Let
o, 2 be the state remaining at #;,,, after the resolution;
Godunov’s method incorporates

D12 =F(Ols1)- 24)
It is easily seen that

OF )is1p=Plrrp — 17, (25
and

(5F+)?+1/25F?+1 —‘D?H/z (26)
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ITER =1200 TIME =1.2266

120 -
110 V i

100 A T SRR

oL . A - N
) 30 180 270 360
SPIRAL PHASE
Fig. 2. Results of Godunov’s method (G) after 1200 time steps

are the flux differences across the waves moving backward and
forward from #;,,, respectively. We have

Blip— P 1p=Pl 1 —F+F =Py

=(0F )1+ (6F*)i- 1725 (X))
showing the upwind character of this method. The splitting evident
in (25), (26), that is

A1 FP=Fly —F} =F )1+ (OF vip, (28)
is called flux-difference splitting, as opposed to the flux-vector
splitting of Eq. (20.2).

The computation of U7, 12 is the bottle-neck of Godunov’s
method, and a multitude of variations have been proposed based
on employing a suitable approximation of U?, 125 see Harten et al.
(1981). In our computations we used an iterative procedure to find
or,, 2, Which we stopped just short of convergence. For a
compilation of the formulas and iteration procedures to resolve an
arbitrary discontinuity (Riemann’s initial-value problem) the
reader may consult, e.g., Chorin (1976) or Van Leer (1979).

Note that in the supersonic region of the flow U}, ,, equals
either U? or UY., (the scheme becomes one-sided), so no full
Riemann solution is needed. It therefore pays to test whether the
flow is sub- or supersonic. The local stability condition for

Godunov’s method is

At

= (29)

i+1/2§ 1>

when W, ,, is the largest wave speed occurring in the solution of
the Riemann problem at 7;,,. The results obtained with the
Godunov method are displayed in Fig. 2.

¢) Second-order Flux-splitting Method (FS2)

Any first-order upwind-differencing method can be changed into a
second-order method by first advancing the cell-boundary values,
to be used in the numerical flux function, and the source term, to
the intermediate time level f,.,. In obtaining these values, the
interaction between cells can be fully ignored. This observation, due
to Hancock (1980), has led to a drastic simplification of second-
order upwind schemes since these first were formulated by Van
Leer (1979).

We choose Q to be a vector of (not necessarily conserved)
quantities describing the state of the gas, in particular:

()

We then assume that the initial values for Q form a piecewise linear
distribution:

(30)

© Q i
C=Qr+a-m) P a<n < (31.1)
with
(54)?=c~ave<q‘“ 4 ——E> (31.2)
c ¢
and
(Ql+1 ) (Ql Ql 1>
50) =0} -ave( 2 R 31.3
o= < (e+1+0D)" (@f+0iv1) (31.3)

where ave (@, b) is an averaging procedure to be specified later. The
formulation in Eq. (31.3) guarantees positivity for ¢ when sub-
stituted in Eq. (31.1). Thus we have

00\ (6
(o]

allowing us to calculate (0Q/0f)! from the appropriate modifi-
cation of Eq. (5). The cell averages are now advanced to ¢, . 1/,, and
boundary values are calculated [the source terms have already been
advanced, by Eq. (16)]:

0
Qn+1/2 Qn At< Q> (331)
ot
Qitip =2+ (5Q) (33.2)
iR, = U(QIEY3).). (33.3)

The time-centered fluxes at cell boundary i+% can now be
computed from UpiY3,_ and Uity . by any upwind-biased
numerical flux formula, such as used in B or G. Here we use a
formula, due to Van Leer (1981b), based on flux-vector splitting

and therefore related to the flux in B; however, no particular
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ITER =1200 TIME =1.1983 ITER =1200 TIME =1.1962
o T T T 1 Mo T T 1
130 — 130} a
> 120 . > 120 .
110 B 110 V e
100 " . L N N 1 0 . | 100 1 1 1
1] L B 40 T T T
30r B 30 1

0 N . N N | N N 1 N N

0 3'0 180 270 360
SPIRAL PHASE

Fig. 3. Results of the second-order flux-splitting method (FS2)

after 1200 time steps

velocity distribution is used in its derivation. The forward and
backward fluxes of mass and momentum are defined according to

-

F(U) u=sc
AIQ—C(u+c)2
FH(U)= ! %(u—kc)z |u|<e, (34)
f—c(u+c)2v
0 us —c

\ =

and (20.2), while @ again is given by (21). The split flux (34) is
smoother than (20), having continuous first derivatives.
Furthermore, the reduced mass flux in (34) relative to (20.1) results
in a reduced numerical diffusion, making the numerical results of
(34) alone come very close to the results of Godunov’s flux (24) for
the present test problem. The local stability condition is a
combination of (23) with u=1, and

At <1 35)
— s
an G52 €
In FS2 we then use
THE=FT Utk )+ F~ (Ugtih)4), (36)

with F*(U) and F~ (U) given by (34) and (20.2).

0 N . 1

0 SOIIIéOI‘2'I70I.380
SPIRAL PHASE

Fig. 4. Results of the second-order MacCormack method (MC2)
after 1200 time steps

The function ave (a,b) is chosen such that it tends to ¥ (a+ b) if a
and b are subsequent finite differences of a smooth solution, but
tends to the smallest value where the solution is not smooth (see
Van Leer, 1977). We specifically chose

B*+)a+(a®+&*)b
A+ 28

ave(a,b)= , 37

where &2 is a small non-vanishing bias of the order O((4#)?). This
type of averaging prevents central differencing across a discon-
tinuity in the solution or in its first derivative, which would lead to
numerical oscillations. The bias prevents the undesirable clipping
of a smooth extremum (see Sect. ) but otherwise has negligible
influence. In the actual computations we used & =0.008, but the
results are not very sensitive to the precise value of ¢2. The results
obtained with the second-order flux-splitting method are displayed
in Fig. 3.

d) MacCormack Method (MMC2)
This finite-difference method developed by MacCormack (1969)

has been used widely in aerodynamics. On even time-steps it uses a
forward predictor step which determines provisional values at ¢, ;

_ At
U}'H=U§'—Z— (Ftyy —F)+AtHY, (38)
y
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ITER =1200 TIME =1.1938
o ————T T
130 1
> 120
110 \,}f i
100 PO R L 1
4o —T T T
30k -

8] — 90 — léU — 2'I70 ‘ 360
SPIRAL PHASE

Fig. 5. Results of SHASTA after 1200 time steps as given by Eqs.
(43)—(45), with the limiter off

followed by a backward corrector step which determines the final
values at 7,4+

_ At — _
Urtt=3 [UE'+ U?*‘—Z';(FT“— ,~++1’)+AIH§'“} (39
The corrector step corresponds to inserting
I =3 (Fl +FYY, (40.1)
HY P =5 (HP + HI™), (40.2)

into (14). On odd time-steps a backward predictor is employed
with a forward corrector. This method is formally second-order
accurate in both space and time.

Although MacCormack’s method is slightly dissipative, an
explicit smoothing term had to be added in order to control
nonlinear instabilities in the test problem. This was implemented
by adding the term

At
D?—‘-bz‘;["?n/z(w'ﬂ—U?)—V?—1/2(U?—U?—1)] 41)
to the right-hand side of Eq. (39). The coefficient b is an adjustable

constant of order unity; the choice
V?+1/2 = |u§'+1 —u;‘], 42)

for the artificial-viscosity coefficient was made on the basis of
Liebovitch’s (1978) experience with MacCormack’s method in
two-dimensional calculations. Figure 4 displays the results ob-

ITER =1200 TIME =1.1938

140 — T

130 - B

> 120

110

oo vy
40 T T T
30 B

0 M

1

0 R 360
SPIRAL PHASE

Fig. 6. Results of SHASTA after 1200 time steps, with the limiter
on

tained with the second order MacCormack method [provided by
T. A. Zang following the calculations of Zang and Hussaini
(1980)].

e) Flux-corrected Transport Methods

We tested the following Flux-Corrected Transport (FCT)
methods: SHASTA, Boris and Book (1973), and Phoenical
SHASTA, Book et al. (1975) in the formulation given below, and
also the low-phase-error routine of Boris (1976). These methods
are known to perform well for flows with strong transient waves;
we verified this with our programs.

The simplest FCT methods can be implemented by adding to
the scheme of Lax and Wendroff (1960) or MacCormack (38, 39)
the strong artificial diffusion
Di=§ (Ut —2U7+ UL ), (43)
thus suppressing numerical oscillations for a local Courant

number <%l/§, and then taking the diffusion away in the so-called
anti-diffusion step, without creating new oscillations:

U?+1=U7i'+1 —%‘{((7?:11 _U}H—l)lim

-0t — ~i—+11)1im} (SHASTA), “4)
Ot =0 (U = U @5
—(U - UMD im (Phoenical SHASTA).
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Table 2.Test 2. Rms errors in the smooth region of the numerical
solution, obtained with two schemes (FS2 and MC?2) after 2400
time steps with a Courant number of 0.5, using uniform initial
values

rms errors ( % of equilibrium value)
in

Scheme n ty 0 u ou v
FS2 2400 23946 24 438 7.0 0.20
MC2 2400 2.3934 3.1 3.9 7.0 0.19

Here U"*! is the updated solution withou;c the extra diffusion,
U+ is the diffused updated solution and U"** is the final result.
The limiter works as follows:

(Uis1 = Udtim=
min{8|Ui_Ui—1|>lUi+1_Ui[,8|Ui+2_Ui+1|}Sgn(Ui+1_Ui)
if sgn(U;—Uim))=sgn (U1 —U)=sgn (Ui, —Uj.1),

0 otherwise. (46)

In integrating our periodic test-problem starting from the
stationary solution, we find that the limiter tries to give each
extremum in g, ou, and gv a flat top. This generates waves that keep
running around, pile up and ultimately destroy any resemblance of
the numerical results to the stationary solution.

Figures 5 and 6 show the results obtained with the Lax-
Wendroff-based SHASTA. In order to illustrate the effect of the
limiter, we first display the results generated with the limiter
switched offin Fig. 5; these have reached a steady-state to the same
degree as methods a)—d). Note the pre-shock spatial oscillations;
without the limiter the scheme does not preserve monotonicity.
Figure 6 shows the results generated with the limiter switched on.
These are far from steady, and there is no numerical steady state to
which they can converge. The other FCT methods tested behaved
similarly.

A recent investigation of FCT methods by Zalesak (1981)
suggests that it is not the form of the limiter that causes the
problems, but the fact that it is placed in the final step of these
methods, and that it acts independently on each of the conserved
quantities, without synchronization.

It must be mentioned that the method FS2 also contains a
limiter, albeit much more gently than (46), in the form of the
averaging function (37). To our knowledge this does not hamper
the convergence of the numerical solution in any way. However,
divergence was observed with an earlier version of the formula,
used by Van Leer (1977, 1979):

|bla+|alb
ave (a,b)="~7——. 47
la +[8]
This causes clipping of an extremum, since
ave (a,b)=0 if sgn a= —sgn b. (A6)

In the present test problem, use of (47) in an FCT-like formulation
of scheme FS2 caused a slowly growing travelling disturbance,
invisible after 1200 time steps but a clear lump after 3600 time
steps.

IV. Results

Method B a) is clearly singled out for its strong numerical
diffusion. The computed shock appears as a shadow of the real
one. The density maximum is severely underestimated and is
displaced downstream by several zones. The corresponding values
of u are barely subsonic. In the smooth region of the flow only the
most general features are represented.

The displacement of the shock in the downstream direction is
typical of upstream-differencing methods; the supersonic zone
immediately before the shock is not influenced by the downstream
subsonic region.

Method G b), although of the same order of accuracy, produces
a substantial improvement. The density peak is better represented,
the shock is much narrower, although still displaced downstream,
and the smooth part of the solution is also closer to the truth.

Note the change in the numerical derivative of u and ¢ across
the sonic point near a spiral phase of 160°. The downstream
subsonic region cannot numerically influence the upstream super-
sonic region by sound waves moving upstream, while the numeri-
cal diffusion across those waves vanishes in the sonic point. The
solutions on either side therefore are not strongly coupled. We may
also say that the rapid variation of the scheme’s truncation error
shows up on this relatively coarse grid.

The very best results are produced by FS2 c). Its sharp,
oscillation-free rendition of the shock shows the efficiency of
applying dissipation through the averaging function (37). The rms
entries in Table 1 are uniformly the lowest in all columns.

The virtues of method MC2 d) are evident in the smooth region
of the flow. The shock is reasonably narrow and in the right place,
with minor oscillations in front. The free parameter 4 in the
numerical dissipation (41) was given the value 1.0; values in the
range 0.2-2.0 produce acceptable results. No “fine-tuning” was
attempted. Nonetheless, the fact that MC2 needs an adjustable
parameter must be considered as a disadvantage of this method.

For methods a)—d) the rms error in the product gu, a quantity
that becomes uniform in the steady state, is considerably smaller
than the error in each of its factors. The errors in v, which by itself
varies only a few percent in the solution, are again much smaller.
The numbers in Table 1 are representative in that they do not
change significantly when the iterations in time are continued far
beyond 1200. Because of their poor quality, the FCT results have
not been included in Table 1.

The methods, FS2 and MC2 were selected for the second test,
to approch the steady state from uniform initial values. Neither of
the schemes developed stability problems. The rms errors after
2400 time steps are listed in Table 2. They do not differ much from
scheme to scheme and are substantially larger than the steady-state
errors.

V. Conclusions and Recommendations

From the results of the first test a number of conclusions can be
drawn about the spatial accuracy of the methods considered. The
following three are quite firm.

1. The best second-order method (FS2) outperforms the best
first-order method (G) by a huge margin, on a grid with resolution
comparable to what is feasible in two-dimensional calculations.
The second-order method, which includes a predictor step and a
monotonicity algorithm, requires less than twice the computation
time of the first-order method. A comparison of the rms errors
suggests that the first-order method would require a six times finer
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grid to match the accuracy of the second-order method. Thus, the
extra programming effort reduces the total computational cost by
an order of magnitude for the present mesh size. This holds even
more strongly for computations on finer grids or in more
dimensions.

2. Monotonicity algorithms for second-order methods have
really come of age. The averaging procedure in FS2 that replaces
central differencing is a simple and effective implementation of the
ideas of artificial dissipation, filtering and limiting that have been
explored during the last decade. The performance of FS2 derives to
a great extent from the availability of this algorithm.

3. The second-order central-differencing scheme (MC2), while
sufficiently accurate in rendering the smooth part of a solution,
cannot compete with the second-order upwind-differencing
method (FS2) in shock representation. The culprit seems to be
the kind of artificial-dissipation term commonly used with this
scheme. Better results can be expected from the use of terms
derived from the scheme’s truncation error (Klopfer and McRae,
1981); the derivation, however, is cumbersome.

The results of the second test show that the schemes selected
could handle the more severe transients without heavily damping
them. Firm conclusions about the accuracy of these schemes
applied to transient phenomena should not be given, since the
solutions obtained cannot be calibrated with a time-dependent
exact solution.

" One transient problem with known exact solution is the

Riemann problem, describing the break-up of a discontinuity

between two arbitrary uniform states. Comparative tests of twelve
schemes on the basis of such a problem were carried out by Sod
(1978). Among the correctly programmed schemes are central-
difference schemes, including MC2. The results obtained for the
same Riemann problem by Van Leer (1979) with an earlier version
of FS2 are more accurate than any of the results of Sod, indicating
the same hierarchy of accuracy as established in the present paper.

Our test results do not indicate how to proceed in order to reach
a steady state that is not known a priori, with the minimum number
of time steps. This was not the goal of the present paper. One
possible strategy might be to start out with a first-order scheme
while slowly turning on the source terms, and then finish off with a
higher-order scheme.

In summary, on the basis of the present test results we may
recommend the second-order upwind-differencing method FS2 for
solving flow problems involving a shock of importance. For
smoother problems, MC2 may do as good a job. One advantage of
MC?2 is that it has been extensively experimented within multi-
dimensional computations, while the multi-dimensional ex-
perience with FS2 is still limited. :
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