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ABSTRACT 

We discuss the direction-dependent transfer of X-rays in a plane-parallel atmosphere with a strong 
magnetic field perpendicular to the surface. We present a transfer formalism incorporating the full 
angular and polarization dependence of the cross sections, including vacuum polarization, for 
frequencies not too close to the cyclotron resonance. We treat the problem of a slab illuminated from 
below and of a semi-infinite medium at constant temperature and density and present numerical 
results for parameters typical of the hot polar caps of accreting magnetized neutron stars. Theoretical 
beam and X-ray pulse shapes are obtained for various models of X-ray pulsars, and the frequency 
and phase dependence of the pulse structure is briefly compared with observations. 

Subject headings: polarization — radiative transfer — stars: atmospheres — stars: magnetic — 
X-rays: general 

I. INTRODUCTION 

The directionality of the radiation emitted from a magnetized atmosphere is an as yet not well understood problem, 
which has lately become of great interest because of its bearings on the beaming pattern of X-ray pulsars. With the 
advent of direct measurements of the magnetic field strength via cyclotron line features in several quasi-steady, 
pulsating X-ray sources (Trümper et al. 1978; Wheaton et al. 1979; Dennis et al 1980), values of several X1012 gauss 
have been now confirmed, which should strongly affect the transport properties of the atmospheres of these objects. 
Stimulated by these observations, some detailed radiative cross section calculations have also become available 
(Mészáros and Ventura 1978, 1979; Gnedin, Pavlov, and Shibanov 1978; Ventura 1979; Borner and Mészáros 1979; 
Bussard 1980; Kirk and Mészáros 1980). These cross sections are strongly frequency and angle dependent. However, 
radiative transfer calculations used for models of X-ray pulsars have up until now concentrated on the frequency 
distribution of the radiation, using various angle-averaging schemes (Ventura, Nagel, and Mészáros 1979; Nagel 1980; 
Bonazzola, Heyvaerts, and Puget 1979; Mészáros, Nagel, and Ventura 1980). The angular structure of a pencil beam 
was studied with approximate cross sections by Basko and Sunyaev (1975), through Monte Carlo simulations by Yahel 
(1980), and in the optically thick case by Kanno (1980). In the present paper we set up the transport equations for 
plane-parallel finite and semi-infinite media, with full consideration of the directionality of the radiation. We have 
generalized Sobolev’s (1963) integral equation treatment to take into account the two normal polarizations of the 
medium and the angular anisotropy of the scattering and absorption cross sections, which is required for a realistic 
treatment of the magnetized neutron star atmosphere. Nagel (1981) has also attacked this problem by a different 
method, based on Feautrier’s equations. We have solved here the problem of a finite coherently scattering slab 
illuminated from behind, with internal sources of emission, and also the problem of the semi-infinite radiating medium 
for a magnetic field perpendicular to the surface (we discuss the case of the field parallel to the slab elsewhere). This 
approach is valid both for optically thick or thin situations and allows exact boundary conditions to be applied, 
namely, zero incoming diffuse radiation at the boundaries. In principle, by including thermal and quantum corrections 
in the scattering kernel, one could treat changes in frequency as well as direction in each scattering event. A full 
treatment is, however, bound to be numerically very difficult, and we have made here the simplification of neglecting 
the frequency changes in order to concentrate on the interplay of the polarization and direction changes. We have used 
the vacuum-corrected cold plasma normal modes and assumed the electron distribution to be a one-dimensional 
Maxwellian. For photons near the core of the cyclotron resonance (e.g., Wasserman and Salpeter 1980; Kirk and 
Mészáros 1980), one would have to include both thermal and incoherence effects and also take into account departures 
from a Maxwellian distribution (e.g., Langer, McCray, and Baan 1980). Our present calculation, therefore, does not 
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apply for co ^o)H. However, over most of the continuum part of the spectrum, on which we here concentrate, we expect 
that the present simplifying assumptions should be fairly good. These calculations with the magnetic field perpendicu- 
lar to the free surface provide a model for pencil beam patterns of X-ray pulsars in the continuum region of the 
spectrum. These beam patterns are then convolved with the rotation of the neutron star, assuming various aspects of 
the orientation of the magnetic and rotation axes to the line of sight, to give theoretical pulse profiles. An interesting 
result is that the contribution of the vacuum polarization to the anisotropy is quite strong, especially within ±40% of 
the cyclotron frequency. Also of interest is the appearance of double-pulse structure, already indicated by Basko and 
Sunyaev (1975) on the basis of approximate calculations. Triple and double pulses can in fact appear, as the frequency 
becomes progressively less than the cyclotron frequency, and we discuss a possible method of determining the field 
strength B using this phenomenon. These calculations also show the presence of phase-dependent energy spectral 
distributions resembling observed ones. A large variety of pulse profiles can be generated with these very simple 
atmospheres by varying the density, the optical depth, and the external illumination, so that detailed model fits may be 
ambiguous, especially if in the future one extends these calculations to inhomogeneous atmospheres. On the other 
hand, except for the observed asymmetry of some profiles (cf. § V), it appears that these theoretical pulses provide a 
very flexible tool for fitting many of the major features of observed pulses. 

II. NORMAL MODE RADIATIVE TRANSFER 

In the case of an isotropic, nonpolarized medium, the problem of the directionality of the radiation in a scattering 
atmosphere has been discussed in differential equation form by Chandrasekhar (1950) and in integral equation form by 
Sobolev (1963). We extend here the integral equation formalism to a medium with two normal modes of propagation, 
with corresponding anisotropic and frequency-dependent scattering and absorption cross sections, and a preferred 
direction given by the magnetic field. For the conditions in X-ray pulsars, throughout most of the continuum one has 
(co/c)(rc7 —rc¿)»(jn7+/i¿)/2, where are the refractive indices and absorption coefficients, respectively (e.g., Nagel 
1980; Mészáros, Nagel, and Ventura 1980). As shown by Gnedin and Pavlov (1974), this reduces the radiation density 
matrix to diagonal form, so that one obtains a set of equations involving the normal intensities only. We shall assume a 
plane-parallel configuration, with a magnetic field B directed perpendicular to the surface, along the z-coordinate. In 
this case, the two normal intensities ij and J2 (per unit circular frequency w) depend only on z and 0, the angle between 
the direction of observation and the field direction (z-axis). We can write 

dlAzM) 
cose — = —a1(fí)/1(z,fí)+eí(z,fí)+ef(z,fi)4-e5)(S2), 

cos$!^j^- = -a2(Q)I2(z,Q) + e!
2(z,Q)+e$(z,Q)+e%(Q), (1) 

where a^Q) is the extinction (scattering plus absorption) coefficient in cm-1 for radiation of polarization i traveling in 
the solid angle dQ around ß and ez(ß) is the emissivity in ergs cm-3 s s_1 sr for mode i into that solid angle. There is 
an emissivity term due to internal sources (thermal emission), ef(ß), another due to external sources (outside 
illumination), ef(z, ß), and another due to scattering of diffuse radiation in the medium, e-(z,ß). We assume the 
thermal emission and absorption to be independent of z, which is valid for a homogeneous isothermal matter 
distribution. We find the intensity scattered into d2, e-(z, ß) as follows. The energy of radiation of polarization j 
coming from dû' which is stopped per unit volume and time is a7(ß')/7(z, ß') dû'. The energy scattered from mode j 
into mode i is A^ß^a/ßO^/C^ ß') where 

X,, ( ß') = O,, ( Û')/[ Oj ( ÍT) + «,( Û')] = o,, m/ccj ( ÍT), (2a) 

^(ß^^c^^ß^+fc^^ß'), and (2b) 

°/(Ö')=0yl(ö')+°,2(ß')> (2C) 

K¡ and Oj being the absorption and scattering coefficient (in cm-1) of mode j along Ö'. Out of this energy undergoing 
the scattering the amount scattered into dñ around ß is (1 /477-)x/,(ß',ß)dÜXj^Ü^a^ü^I^z,ß')dß', where 
Xy,(ß', ß)/47r is the scattering indicatrix, defined by 

X>1(ß'>ß)_ 1 dc^ß'.ß) 
Air a7,.(ßO dß (3) 
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We have then 
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;?(z,o)=x„.(a0«,(a')/i(^a,)Xl'(4ff
,a)+^2,(a,)«2(a,)/2(^Q0X2'(4a

ff’
n) (4) 

= /l(z,ß') 
dû +/2(z,Q) 

d02i{û', ß) 
’ dû 

For the emissivity due to external illumination we denote the external radiation in the direction ß0 incident upon the 
free surface at z=0 by T*(Q0). At a depth z, this gives rise to a diffused emission in the direction ß equivalent to 

«*(Z, ß)=/,*( ß0 ) e
_“i(ßo)zA°s + /* ( ßo ) g-^oWcos e0^

a2i ( Q0 > ß ) dÜ (5) 

Defining the source functions 

2?"(ß) = e"(ß)/«f(ß), 

where the superscript n stands for s, *, or 0, we can rewrite the system (1) as 

cos0 dlx(z,£l) 
^(fl) dz 

= -/i(z,ß)+51(z,ß), 

where 

cos6 dI2(z,Q) 
a2(Ü) dz 

-I2(zfti)+B2(z,Q)9 

5/(z,fí)=2B;(z,fí)+2B*(z,fí)+2Bí
0(í2). 

(6) 

(7) 

(8) 

The formal solution of equation (7) is then 

Ii(z,Ü)=ai(Û)fBi(z',Q)e — aj(Çl)(z — z')/cos t f dz' 
cos 6 9 (9) 

where zm is a constant determined from the boundary conditions. For these, we assume a slab configuration of width z0 

satisfying 

7,(0, ß)=0, for 0<7t/2, 

/¿(zo, £2)=0, for 0>7r/2; (10) 

that is, no incoming diffuse radiation at z=0 and z=z0 (Ii denotes the diffuse component only, the direct illumination 
from outside being /*). It follows that in equation (9) we must set zm=0 for 6<tt/2 and zw=z0 for 0>tt/2. Replacing 
equation (9) into equations (4), (6), and (8) we obtain the integral equation for Bf. 

Bj(z, ß) = JdQ' 
Ix(z,ti') dou(ti',ü) I2(z,Ü') da2i(Ü'yÜ) 

«¿(ß) dQ + dti 
+2Bf(z,ß)+^0(ß). (11) 

Written out in full, with account of the boundary condition (10), this is 

2; fw r/zsmO’de'—^ Jq 

f sinO'dO'— 
Kn a, Jm/2 «/(Ö) dû 

+B*(z)ß)+R,°(z,ß). 

1 dajl(Û ,ß) jZa
B^z^Q^e-ccj(ü')(z-z')/coSea^Q^ dz 

cos 6' 

(12) 
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The external illumination term for a distribution of angles Q0 is, from equation (5), 

1 
B*(z,Q)= f nd<p0 H sin0od0o Jo Jo 

1 
+ 

dQ 

«^(12) dQ 

I^Ü0)e-^oWc°se0 

Iï(Ü0)e- aï(Q0)z/cos$0 

while the thermal emission term is 

Bm=- 
e,(Ü) 

H-ai(ß)//ci(ß) ’ 

with Pœ, the Planck function for one polarization, being 

Pu)=(27t) 3c~2hco3/[exp (Âco/ÆJ1) — l], 

Vol. 251 

(13) 

(14) 

(15) 

where we have assumed implicitly that the electron distribution is a one-dimensional Maxwelhan. The total intensity 
coming out at the other end of the slab (z=z0) is then, from equation (9) and the boundary conditions (10), 

lf(z0,a) = f0Bi(z',Q)e-° 
•'o 

„-«.(axzo-^') Aos ^ / +/* ( ß ) £ —0£t(ñ)z0/COS 9 
COSÍ 

(16) 

and the intensity reflected at z =0 is 

Il
R(0,Q)=-f/Bi(z',Q)e~aiWz'/eose^^-d^'. (17) 

In equation (16) the first term is I/zq, ß), the diffuse forward scattered intensity at z0, and to make up the observed 
intensity, the second term representing the diminished incoming flux has to be added. 

III. METHOD OF CALCULATION: FINITE SLAB 

We shall assume the incoming flux I*(tio)=I*(0o) to be rotationally symmetric about the field B(z-direction). The 
integrated cross sections (e.g., Appendix A) are ^-independent, al(Ù) = ai(0), while the differential cross sections 
¿/<j/7(ß'ß)/dß depend on From equation (13), £*(z, ß) will therefore not depend on (¡>, and from the iterative 
construction of B¿(z,Q) implicit in equation (12), neither will B¿, Bi(z,Q)=Bi(z,0). The ^-integral equation in 
equation (12) acts therefore only on dGij(^

/, ß)/dß, leading to 

oij/u') dz' 

+ Gß(u',u)f°Bj(z',u')e+^u' )(z-z')/u‘ OjWdz' 
+ B*{z,u)+B°{u), (18) 

where m—cos 9. We have defined 

Gu(W,u) = Jo
2W-^ÿj 

1 daij(u', u) i daij(u', u) 

dÜ «,(«) du 
(19) 

and for the i-integrals between tt/2 and tt we have performed the change of variable w'-> — u' and used the symmetry 
properties (e.g., Appendix A) 

Gij(u'>u) = Gij(~u'’u)’ ff«(_«) = <,/(M)> ai(-u)=al(u). (20) 
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The corresponding B* is 
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B*{Z,U) = /1d«0[Gli(M0,«)/f(«0)e-“'<“o^“o + G2i(Mo,M)/2*(«o)^“2(“o)V“°]- (21) 

We have solved numerically the system of equations (18) under the boundary condition of a given incoming beam 
/*(tt0) impinging on the slab surface at z = 0 and obtained the reflected (z=0, tt/2<0<rn) and outcoming (z=zo,O<0 
<7t/2) beams /^(w), lf(u) by setting a grid of z, w, and u' values and solving iteratively. Some care must be given to 
the treatment of the exponential (cf. Appendix B). The nature of the cross sections, as determined in particular by the 
value of co/co^, the ratio of the frequency to the cyclotron frequency, influences the accuracy of the calculation for any 
finite grid. For very large optical depths, especially if the cross sections are very different for the two modes as is the 
case for œ/œH^ 1, the finite slab numerical solution becomes progressively less accurate, and a different set of 
equations is more advantageous, as described in the next section. 

IV. SEMI-INFINITE MEDIUM 

Let us first establish the form of the equilibrium solution at very great optical depths, «jZ» 1, a2z» 1. At these 
depths, the influence of B* on the solution should be negligible. We notice that the exponential terms will be 
nonnegligible only for z—z'^u'/a^u'). If the optical depth is large for all w, this means we may set B{z\ uf)^B(z, u') 
and take it out from under the integral sign in equation (18). This is further justified by the consideration that 
physically one expects B not to depend on z at great depths. If we take z at some arbitrary point, we may set the upper 
and lower limits of z' as ± oo and write 

f\ r00 

Bl(u)= du' Bx{u')Gn(u\u) \ e 
*'0 L *'-00 

B2{u)—Cdu' Bx{u')Gn{u',u) i e~ 
- — rvi 

i /i / |z —z |o¡i( w )/u  L_   A*’ \ u j r00 

-j—dz' + B2(u
,)G2x(u

,,u)f 
U •' — no 

i /i / t\ / ,<*2(1*') |z-z \a2(u )/u 2V 1.^/ dz' 

i /i t >\ / /«i(w') -\Z-Z'\CLÂU'}/U' , 1 V 
——dz'+B1{u,}G11{u\u) Í e 
U •' — no 

, /i / /\ / /«7(W') -iz-z/i«2(M/)/t</ fy i- 
u' 

(22) 

that is, 

Bx{u)=i Cbx{u')Gxx{u', u) du'+ 2 flB2(u')G2X(u', u)du', 

B2(u)=2 ílBx(u')G2X(u', u) du'-\-2 CB2(u')G22(u\ u) du'. Jo *'0 
(23) 

We seek the conditions for an isotropic solution, B^u) — Bt = constant. Because of the symmetry properties, 
daii(u9 u')/du'=dau(u\ u)/dwand da^^u, u^/du'—doj^u', u)/du (i¥=j) (cf. Appendix A). We can write 

— —. r\ 1 doxx(u,u') 
Bx=Bx2l —r^— \ du'+ B2 1 1 J0 ax(u) du' 

ri 1 daX2(u9u') 
 du , 2/ -7- 

J0 ax(u ) du' 

From the definition 

— -s-.r1 1 da2i(u>n') J, tn 1 doni“,'*'),, B? = Bx2 I  7—r — du -h B72 —7 r- r-, du . 
‘'o a2\u) du Jq a2{u) du 

r ^ n j ,dai\(u’u') , n i ,d<’i2(u,u’) 
°M=J_d“ ¿7 +J_d“ 77 

(24) 

(25) 

and the fact that doij(u, u')/du'—doij(u, —u')/du', so that fQdu' = (\ /2)fLxdu' in these integrals, we obtain 

— fi donO^tT) , , , f 1 1 da^u, id) r 
— Bx C —j— Jo a,(M ) du’ 

-du'+ B2 Í —L- j0 «](«) du' 
-du'=0, 

B, 
Jo a2(u 

1 do2X(u,u') — fi 1 do2X(u,u')  -í/m + D 1  
(m) du' 

b2 y—7— 
Jq «2(m ) du' 

-du' = Q. (26) 
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B\ = B2 , I\ = I2 , (27) 

as one might expect. 
Let us seek now approximate expressions for Bi(u, z), valid at large optical depths but not quite as large that it 

would lead to equation (27). We consider a semi-infinite medium, extending from z= — oo to z= +z0. The equations 
are 

Bj(z,u 

(28) 

At z = — oo, Bl=Bl=
zB2=B29 and we may choose z0 large enough that at z=0 this is still true. This will be the case if 

for all u we have 

z0»max [l/a^w)], z‘^1,2. 

Normalizing to 2?, 1, equation (28) becomes 

Bi(z,u) = Cdu' Gu{u',u) í dz' -\-G2i(u
/,u) Í B2(z',u')( 

•'0 J0 U Jo 

(29) 

2V -dz' 

+ f'du'[Gu(u',u)e-a'(u’^u'+G2i(u',u)e-a^u''>z/u']. 

(30) 

The last term, which comes from the integral between z— — oo and z=z0 under replacement of z0 by + oo, plays the 
role of boundary condition. 

v. RESULTS 

We have performed calculations for a magnetic field strength of 2?=0.12?C=4.4X 1012 gauss, perpendicular to the 
surface of the atmosphere, for finite slabs and for semi-infinite media, with grids in z, «, and u' typically of 30 points 
each. The densities used reflect the values expected in an accreting X-ray pulsar, varying from 1020 to 1024 cm-3. 
However, we are not aiming here at providing a model for any specific source, but rather have in view a study of the 
properties of the radiative transfer in a general situation involving a magnetic field. 

An interesting question is the effect of a magnetized atmosphere in reprocessing the directional distribution of an 
incident beam of light of arbitrary angular distribution. In Figure 1 we have plotted the shape of the outgoing flux at a 
photon energy of 10 keV as a function of angle for a slab of density n= 1022 cm-3, T= 10 keV, and Thomson optical 
depth tx—7. The curve labeled 8 is the outgoing intensity for an incoming beam distribution which is a delta function 
in angle (actually a step function of width 15°), centered at 0=0° (parallel to the field). The curve labeled “cos” is for 
an input varying as cos 0, while curve A is for an isotropic input. The curve B is the outgoing intensity for zero input 
(i.e., due only the self-emission of the slab, bremsstrahltmg modified by scattering). The curve C is for a semi-infinite 
medium of the same density and temperature. The general effect, of course, is toward a broadening of the incoming 
beam, which increases with the optical depth of the atmosphere. For an input delta function at 0=0° an optical depth 
of tt=7 (based on ax=6.6X 10~25 cm2, not on a[0]) is, however, not yet enough to smear out the incoming beam 
entirely. Similarly, a cosine input is modified, but higher optical depths would be required to reproduce an isotropic 
input. A semi-infinite medium produces a beam similar in shape to the isotropic input in a slab. A self-emitting slab 
(2?) produces a hollow beam, as already pointed out by Basko and Sunyaev (1975), which reflects the structure of the 
cross sections. If one convolves these beam shapes with the rotation of the neutron star, assuming that both poles emit 
at the same relative intensity, we obtain the pulse shapes of Figure 2. We have used here as illustration two different 
choices of aspect angles /j (between the line of sight and the spin axis) and i2 (between the spin axis and B), namely 
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30 60 
ANGLE 

30 60 
ANGLE 

Fig. 1.—Outcoming beam shapes as a function of angle 0 for atmospheres of n= 1022 cm-3, 7= 10 keV. C, semi-infinite atmosphere; B, 
self-emitting of rx=7 and zero external illumination; A, the same with external illumination, isotropically distributed in angle, at blackbody 
temperature 7bb = 5 keV; cos, same if external illumination is distributed as cos 0; 5, same if it is distributed as 0(0). (a) Polarization 1, 
extraordinary; (b) polarization 2, ordinary. The flux is per unit circular frequency co, i.e., ergs cm-2 s_1 s. 

60/45 75/45 

Fig. 2.—Pulse shapes obtained convolving the beam shapes of Fig. 1 with rotation of the neutron star, (a) For inclination angles 
/], ¿2=60o,45°; (b) for í2=750,45°. 

*2)“(60°,45o) and (75°,45°). The effective angle 6 at which the beam is sampled by the observer is given by 

cos 0 = cos ix cos i2 + sin ix sin i2 cos <#>, (31) 

where <i> is the azimuthal angle around B (0 when the beam is pointing closest to the line of sight), and if 0 > 77-/2, one 
takes 6 ^ tt — O. The profiles are invariant under interchange of ix and i2. 

In Figures 3, 4, and 5 we show the outcoming fluxes in both polarizations at photon energies of 1, 10, 20, 30, and 70 
keV. The cyclotron frequency is near 50 keV for our field value of B =0.1Z?C, and in the present paper we avoided this 
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Fig. 3.—Outcoming beam shapes as a function of angle 0 for a slab of rx =7, n — XO73 cm-3, 10 keV, Æ =0.1 =4.4X1012 gauss 
( /z Wtf « 50 keV), photon energies 1,10, 20, 30, and 70 keV, illuminated by an incoming isotropic beam of blackbody radiation at Thh = 5 keV. 
(a) Polarization 1; (b) polarization 2. The flux is in ergs cm-2 s_1 s, the full Unes are calculations including vacuum polarization, and the 
dashed ones are what one would obtain if this is neglected. 

Fig. 4.—Same as Fig. 3, slab of rx=7, but with zero external illumination, self-emission only 
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Fig. 5.—Same as Fig. 3, but for a semi-infinite medium 

frequency range since to study it properly would require introducing a number of complicating factors (e.g., Kirk and 
Mészáros 1980). Already for 30 and 70 keV, if the photon propagation angle during its random walk comes close to 0 
or Tr, the photon would have entered the core as defined by Wasserman and Salpeter (1980), so that within the present 
approximations frequencies closer to œH than these could lead to errors. The density and temperature were taken as 
77= 1023 cm-3 and T= 10 keV. Figure 3 shows the flux from a slab of rx=7 when illuminated by an isotropic 
blackbody flux (Thb—5 keV). Figure 4 is the flux from the same slab when the incoming luminosity is zero 
(self-radiation only). Figure 5 is the flux from a semi-infinite medium of the same characteristics. These fluxes were 
computed using the cross sections of Appendix A, the full hues being calculations including vacuum polarization, and 
the dashed ones neglecting it. One sees that for an external illumination exceeding the luminosity of self-radiation (Fig. 
3) the hollow beam structure giving rise to double pulses (visible in Fig. 4) is not present, except to some degree at such 
frequencies where the background intensity (Tbb=5 keV) is less than the plasma emission (T= 10 keV), as is the case at 
70 keV for polarization 1 (Fig. 3a). It is interesting to compare our Figure 4 with Nagel’s (1981) slab results with 
comparable parameters (his Fig. la). Some difference is inherent in the fact that we included vacuum polarization, 
which in Nagel’s calculation was set equal to zero, and also his profiles are summed over polarizations and normalized 
to the blackbody intensity at each frequency. Allowing for this, the two methods seem to lead to fairly similar results. It 
is also interesting to compare Figure 4 (slab of tx=7) and Figure 5 (semi-infinite medium), both without external 
illumination. As one would expect, the central hollows in the beams tend to fill up as the path length increases. 

It is useful also to present beam shapes normalized to unity for singling out the purely angular features, and in 
Figure 6 we have done this for a semi-infinite medium of n = 8X 1023 cm-3, B=0.2BC, T—10 keV for various values of 
co/cojj, where uH in this case is ~ 100 keV. The full lines are calculations including vacuum polarization, and dashed 
Unes are without. One sees that for a given density and temperature, as one decreases co/co^, the single lobe evolves 
toward a triple lobe, and as one decreases co/co# even further it becomes eventually a double lobe. Kanno (1980) has 
computed lobe shapes for the same parameters, using an approximate analytic procedure, which may be compared 
directly with our Figure 6. It is interesting to see that his approach leads to qualitatively similar predictions concerning 
the pulse multiplicity, but there are quantitative discrepancies. For instance, for values of (co/co#)-1 of 20 and 30, with 
vacuum polarization, Kanno predicts the peak of the sidelobes at —45° for both, and normalized intensities of —0.16 
and 0.18, respectively. Our calculation, on the other hand, predicts 38° and 32° with intensities of 0.6 and 0.78, 
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Fig. 6.—Outcoming flux from a semi-infinite medium of n = 8X1023 cm 3, T=\0 keV, and B=0.2Bc(hwH^ 100 keV), normalized to 
unity. Full lines include vacuum, dashed ones do not. The label on the curves is now (co/co^)“1. 

respectively. In general, his method produces rather narrower central lobes than ours, e.g., 8° at intensity 0.5 versus our 
19° at 0.5 for (ü)/œH)~l = \0, and much flatter and less intense sidelobes. A qualitative difference is that we find 
normalized central lobes which widen with increasing while Kanno’s method gives the opposite behavior, at 
least for (tu/io^)-1 = 10,20,30. 

While the normalized lobes reveal the angular changes with frequency, the intensity information contained in 
Figures 3, 4, and 5 is linked with these. The effect of vacuum polarization in the normalized lobe plot of Figure 6 is to 
narrow the angular distribution and lower the intensity. In the nonrenormalized lobes of Figures 3, 4, and 5 we see, 
however, that the inclusion of vacuum polarization reshuffles the energy between the frequencies and the polarizations. 
This is because the radiative cross sections including emission are strongly affected, both in their angular and 
frequency behavior by the inclusion of the magnetic vacuum polarization (e.g., Mészáros and Ventura 1978, 1979). In 
the usual plasmas, in the magnetoionic, cold plasma limit, one has negative electrons gyrating all in the same direction 
and giving rise to predominantly elliptically polarized modes, so that only one mode is resonant, that for which E 
gyrates in the same sense as the c“. In the magnetic vacuum of an X-ray pulsar, however, the virtual e+—e~ pairs can 
become more important than the real e~. One has now charges of both signs, almost equal in number and gyrating in 
opposite directions. This has the effect of driving the normal modes toward becoming nearly linearly polarized, and it 
also makes the second (ordinary) mode resonant, so that the relative importance of both modes is changed. The cross 
sections, as seen in Appendix A, are direct functions of the normal polarization vectors and therefore reflect these 
changes. Although, as discussed for Figure 6, the general effect of the vacuum is to narrow the beam, this appears so 
because in this plot the flux is normalized. However, the inclusion of the vacuum also alters the relative intensity at a 
particular frequency because of its effect on the mean free paths and thermalization lengths, etc. This can lead to an 
increase of intensity at some angles and a decrease at others, e.g., for 0<2O° and 6>20° at 10 keV in Figure 5a, or 
only to an increase, e.g., 20 keV in the same graph, or only a decrease, e.g., at 70 keV. This naturally shows itself also in 
the pulse profiles that we discuss further below. 

We have plotted in Figure 7 the differential photon energy density ww inside the atmosphere as a function of depth z 
(linear scale) for the individual polarizations and for their sum at a photon energy fcw—10 keV. Curves “ö” 
correspond to the slab with background of Figure 3, curves “c” to the slab without background of Figure 4, and curves 

to the semi-infinite case of Figure 5. The depth z runs from zero to z0, and in the slab cases the radiation escapes 
from both ends, but in “a” there is an external illumination incident at z=0. The slabs have tt=7, while for the 
semi-infinite case “6,” the value of z0 was chosen so as to satisfy the condition (29). For instance, at 10 keV, we took 
z0= 1400 cm or rx=94. The number of iterations used for solving the integral equations has to be chosen large enough 
to ensure that information is propagated across a distance equal to the slab length, or in the semi-infinite medium 
across a thermalization length. Thus, at 10 keV, where ^22>(7

11~
a

12^
<721

>/c2>,ci» f°r the slab this implies Nit> 
(al2z0)

l/2, and for the semi-infinite medium Nit>(al2K2)l/2. Typically we used 40 to 60 iterations for the slab models, 
and over 400 for the semi-infinite models. 

We then calculated pulse profiles, shown in Figures 8, 9, and 10, corresponding to the intrinsic beam shapes of 
Figures 3, 4, and 5, by convolving them with the rotation of the neutron star at different values of the inclination 
angles ix and i2 of equation (31), indicated at the top of each figure. The total fluxes (1+2) at each frequency (70, 30, 
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z 

Fig. 7.—Photon energy densities uu (ergs cm-3 s“ ') as a function of depth z at frequency 10 keV, for the slab of Fig. 3 (curve a), the slab 
of Fig. 4 (curve c), and the semi-infinite medium of Fig. 5 (curve b). Polarizations 1, 2, and their sum 1+2 are given. 

20, 10, and 1 keV from top to bottom) were all normalized to unity to emphasize the difference in shape. The full Hues 
are the calculations including vacuum polarization, while the dashed lines are the corresponding calculations without 
vacuum polarization. It is seen that at most frequencies >10 keV, the inclusion of vacuum polarization introduces 
significant differences, and the more so the closer one is to the cyclotron resonance (50 keV for these figures). 
Depending on the aspect angles ix,i2 and the frequency, the pulses can appear broader or narrower than for the zero 
vacuum case. For the high-intensity cases (slab with background, Fig. 8, and semi-infinite case, Fig. 10) at 10 keV the 
vacuum narrows the pulse, but in the low-intensity, self-emitting case (Fig. 9) it broadens it. It also changes the depth 
of the hollow, where present. At 20 and 30 keV, the vacuum in general narrows the pulses, but at some angles this 
effect reverses. At frequencies larger than the cyclotronic, in general it seems to broaden them, but in practice this is 
more difficult to observe since the total photon number in the actual observations is lower and the noise higher. These 
changes introduced by the vacuum polarization reflect the corresponding ones in the cross sections which were 
discussed previously. The cross sections can become larger at some angles at the expense of other angles, but since the 
transfer involves a complicated interplay of photon creation, scattering, and polarization exchange, the relative 
intensities in both polarizations at different frequencies are changed, so that depending on the viewing angles ix and i2 

and the phase angle, this can lead to either narrowing or broadening of the pulses. 
We have also calculated pulse profiles based on the intrinsic lobes of Figure 6, with rc = 8X 1023 cm-3, B=0.2BC 

(o)H= 100 keV), T= 10 keV, which are shown in Figure 11. The aspect angles iu i2 used were 40/33 and 78/86, and 
the energy variable was taken to be for comparison with Kanno (1980). Our calculation predicts wider central 
peaks, and the transition to a double peak occurs at lower frequencies than in his approach. 

From the point of view of the application to specific models one sees from an examination of the sample of 
theoretical pulses described above that a broad range of pulse shapes can be reproduced by changing a few basic 
parameters of even the simplest, uniform atmospheres. One feature observed in many X-ray pulsars is an asymmetry of 
the pulse shape around phase 0, or 1 (Pravdo et al. 1977; Pravdo et al. 1979), and this does not appear in our theoretical 
pulses. One way to reproduce such asymmetries might be to have an inhomogeneous flow along the azimuth of the 
accretion column. Another possibility would be an asymmetric (nondipole) magnetic field. Without, however, going 
into the asymmetry, which is not very pronounced in many pulsars, we can attempt a qualitative comparison with some 
known objects. Two well-studied objects are A0535-b26 (Bradt et al. 1976) and 3U 0900-40 (McClintock et al. 1976). 
The first shows no interpulse, the main pulse being single at higher energies and splitting into two at lower energies. 
Looking through Figures 8, 9, 10, and 11 we see that the self-emitting slab of Figure 9 around 50/20, 30/30, or the 
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40/33 78/86 

Fig. 11.—Pulse shapes normalized to unit flux for the semi-infinite medium of Fig. 6, for (co/w#) -1 = 10, 20, 30, 40, and 100 from top to 
bottom, and aspect angles of 40/33 and 78/86. 

semi-infinite medium of Figure 10 at 30/30 or of Figure 11a around 40/33 shows this behavior. In 3U 0900-40 at 
higher energies there are single main and interpulses, of not too different height, splitting at lower energies into double 
structures, possibly going through a multiple pulse stage in between. This can be seen in the theoretical profiles of 
Figure 9, the self-emitting slab at 80/60 or 75/45, and the semi-infinite medium of Figure 10 at 80/60 or of Figure 
\\b at 78/86. Kanno, in fact, suggested on the basis of his approximate calculations semi-infinite atmospheres at 
40/33 and 78/86 as possible candidates. It is important to notice that one has the choice of several models, involving 
different physics. A semi-infinite medium kept at 10 keV is, of course, an idealization in an accreting neutron star. In 
principle, the heated region should have a depth comparable to the stopping length of incoming protons, which 
depends on a number of other uncertain variables (whether they are stopped by particle collisions, or if there is a 
shock, etc.) but perhaps 5-50 g cm-2 is the depth of the actual X-ray atmosphere. If the heating is more or less 
uniform throughout, a self-emitting slab could then be used as a first approximation. On the other hand, if the heating 
occurs mostly toward the end of the stopping length, a slab with a blackbody illumination from below might serve as 
approximate model. If downward thermal conduction were very effective, which again is uncertain, a semi-infinite 
atmosphere might be appropriate. Better (and needless to say more difficult) models would have to consider also 
density, temperature, and field gradients, as well as departures from plane-parallel symmetry. It is encouraging, 
however, that even these very simplified models are already able to account for several major features of the observed 
pulses. 

Of potentially great observational interest are the frequency of onset of the multipulse structure and the phase 
dependence of the energy spectrum. The first of these could, in principle, serve to determine the magnetic field 
strength, if one did not know it from, say, a cyclotron line measurement. The reason is that for a given density, 
temperature, and geometry the multipulse behavior sets in at a particular value of u/uH. This method is not 
apphcable, however, to all pulsars, since the aspect angles have to be within a certain range (there are aspect angles at 
which no multipulse structure shows up). It also makes a difference whether slab or semi-infinite models are used. 
However, if one is able to adjust the total luminosity by making reasonable guesses for n, T, and z0, a fit of a 
particular sequence of pulses at different energies with a theoretical sequence at different o)/uH would determine wH or 
B. The other effect is that the spectrum observed varies with phase, as a look at Figures 3, 4, and 5 shows. This effect is 
known to occur observationally (e.g., Pravdo et al. 1977), a hardening of the spectrum occurring toward the middle of 
the pulse of Her X-l. Without going into details, which would require a number of further considerations, one sees 
that, for instance, the self-emitting slab of Figure 4 shows a definite hardening toward 6—0, and the semi-infinite 
model of Figure 5 also has a similar tendency. 

To summarize, we have investigated here some of the main properties of the basic radiative transfer in a pencil beam 
situation. These results give one a feel for the elements one should use in a realistic model of an accretion column, 
insofar as concerns the structure of the radiation field. It is worth noting that the amount of computation required in 
this approach is significantly less than in Monte Carlo photon escape calculations. The results discussed here need to 
be extended to include the fan beam case (field parallel to the free surface; cf. Nagel 1981) and to take account of 
incoherent scattering, a calculation now in preparation by the present authors. It is clear, in conclusion, that the 
peculiarities of the cross sections in a magnetic field, as well as the structure of the atmosphere, play a large role in 
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determining the pulse shapes of accreting neutron stars. Detailed models of astrophysical sources incorporating some 
of the elements described above should be possible in the near future. 

We are grateful to E. Boldt, W. Nagel, R. Ramaty, and the referee for very useful comments. 

APPENDIX A 

CROSS SECTIONS 

We list here the expressions for the cross sections necessary to arrive at the symmetry relationships used in the text 
(for a discussion see Mészáros and Ventura 1979; Ventura 1979). In this appendix, u is no longer cos 6 as in the text, 
standing for a different quantity (cf. eq. [A2]). 

The rotating components of the extraordinary (1) and ordinary (2) polarization eigenvectors e\e2 are 

e,’2= (el’2, e+2, eh2), 

e\= —Ca sinû, e2=-Csinû, 

e1
+ = C2~l/2e~''l,(a cos0+1), 4 =C2_l/2e“’<,>(cos0-a), 

eL = C2“,/Vw'i’(acos0-l), <?2 =C2“1/Vw'i,(cos0+a), (Al) 

where 9 is the angle between the magnetic field and the wave vector, <i> is the axial angle around B, and 

a=a(0)=f>[l-(l+¿T2)1/2], C=(l+a2r1/2, 

b=b(0)=2~l(sin2 0/cos0)ul/2[\ + 38(\—u)/(uv)]9 

u={uH/u)2, «=(wp/w)2. (A2) 

where u,, and w are cyclotron and plasma frequencies. The fi-parameter is the vacuum polarization correction, of value 

S= (457T r1 ( e2/hc) ( B/Rc)
2~0.5 X KT4 ( B/Bc)

2, 

where Bc is the critical field Bc=m1^/eh^AAX 1013 g at which the cyclotron energy huH equals me2 

The differential scattering cross section from mode i at angle 6 into mode j at angle 9' is 

do,7(M') 
dW 

■=r2 ¡ , ei
+*e{ , eL * ei 

el *e{ -\ T57 + 
l+u'/2 l-«'/2 

=ro[afj+2aij(biJ+
c

iJ) cosß+(biJ + c,J)
2cos2(h,7-c,7)

2 sin2ß], 

where ß=<!>'—<l>9 r0=e2/me2, 

a,7=|e'||^'|, h,7=|4lKl(l+«1/2)”'. c/7=k-lle-l(l—m1/2)_I, 

the prime indicating that O' must be taken. The ^integrated differential cross section is 

-¡¡¿¡FW = [2“5+(iiv+‘ui +(bu - c<jf\=2’,'o 
+ 

(A3) 

K-lle-l 
1-M1/2 

(A4) 

(A5) 

(A6) 
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The integrated polarization exchange cross section is 

Vol. 251 

(0,0') 

where ^=(3/4)/L1d(cos0')|e¿(0', <i>=0)|2, and 

Ajyz\
2+ ^|e'l,+. 

AL\e i |2 

(x+u'/1)1 {\-ux/2Y 
(A7) 

y-i 
(A8) 

The integrated cross section summed over outgoing polarizations is 

a, = a, +a, —On e!\2+ ■ 
o/12 k2!2 

(l+M1/2)2 (l-M'/2)2 
(A9) 

The free-free absorption cross sections in the limit where one sets Gaunt factors equal to unity (an approximation 
which should not introduce much greater deviations than some of the other ones made) can be taken as (e.g., Ventura, 
Nagel, and Mészáros 1979) 

Ki{e) = ^i{6){^/^){2e2/hvúí)(nec:'/u,2){\-e Hu/kT), 

where vlb=(irkT/2m)l,/2 and ne is electron density. 

(A10) 

APPENDIX B 

SKETCH OF THE NUMERICAL METHOD 

The integrals in equation (18) require some attention to the fact that the kernel K:(u)=[aj(u
r)/u']ea‘{u )i: '' )/V 

becomes unwieldy when a-> oo. Let us define 

b+(j,l)=i[b(j+i,l)+b(j+i,l)], 

b_(j,l)=±[b(j+i,l)-b(j,l)], (Bl) 

where B(J, L) is the value of B computed on the point (/, L) of the integration grid. We have terms of the type 

\ du'G{u\u)\ B{z\u')e-{Z-Z)a^^u   
*'0 •'o u 

= 2 f(L+l)kdu'G(u',u) 2 fJh B(z',u')^^-e-(2-z>^u'dz', 
v=0

JL'k r=iJ(J’-i)h « 

(B2) 

where we have treated for simplicity one polarization only and dropped the index i. Here h=z0/(NJ— 1) is the z-step 
size, and k= 1 /(NL— 1) is the m—cos 0 step size, and J=z/h. We may assume B and G to be sufficiently smooth that 
to a good approximation the integral (B2) may be written 

i r i j-\ 
f du' - - f dz' ‘ ‘ ‘ = "T 2 1 
J0 Jo 4 A A 

{G(L,k,u) + G[(L'+l)k,u]} 

X[B+(J’,L+1)+B+(J',L)] f(L +l)kdu'iJh a^le-^-’W’^'dz' JL’k J(J’-\)h « 
(B3) 
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The double integral becomes 
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/•(!/+1)A: 

'uk 

and defining the functions 

yp+(j, L)= [kL (B4) Jk(L-\) 

the integral (B3) becomes 

Z 1 NL~l J~l 

f du'-- f dz'---=^ 2 2 Í{G(L'A:,m) + G[(L'+1)A:,m]} J0 •'0 4 L’ = i /'=] 

x[B+(/',L+l) + B+(/',L)][^+(/-/',L)-^+(J-/'+l,L)]]. (B5) 

There is another similar integral, with zf<z'<ZQ, which analogously becomes 

i z i NL~X NJ~l 

f du'--- f0dz'---=\ 2 1 ¡{G(kL',u) + G[k(L’ + l),u]} 
Jo Jz 4 L'=i r-\ u- 

X [B+(/', L+ l)+B+(/', L)] [^'+(/'—/ +1, L) +ip+(J'—J+2, ¿)]J- (B5a) 

The functions \p+(J, L) can be computed to the required accuracy and stored at the beginning of the computation. For 
slabs of tx<3 this method is accurate to within a few percent. 

When the condition z0a(w)» 1 is encountered (too wide a slab, or semi-infinite medium), the above method is no 
longer adequate. To deal with this case, instead of refining the grid size (which in fact does not help much), it is more 
advantageous to take into account the effects of the first derivative of B. The integrals (B4), (B5) can be written then as 

•V/'-n* w JUk 

{z-h{r-\))_e-{z-hr)^ 

NL— 1 J-\ 
2 2 

l'=i r=\ 
{ L') + L')] L’)-^+{J-J'+\,L')} 

where B±(J, L) = (1/2)[B±(/, L)± B±(J, L +1)], G(/, L) = (1/2)[G+(J, L) +G(/, L +1)], and = 
h~xi^k~\)[u/a(u)\e-a(u){J-')h/udu. Similarly, 

/ NL-\ NJ-\ 
( du'--- (°dz'---= 2 2 {[B+{J',L') + ^êM',L')}[^+(J'-J+hL')-^+(J'-J+2,L')] 

Jz L'=\ J'=J 

-B_(/',L')[^+(/'-/+1,L')->Í'-(/,-/+1,L')]}G(jL',m). (B7) 

From the definition of ip+,\p-, B+, and B one sees that for a(u)z»l the integral (B6) becomes 

z NL~l 

Í du' - - - ( dz' -=k 2 ±[B(J,L')+B(J,L'+l)]G(L',u), (B8) 
•'0 ^0 ¿'=i 

z NL~1 

f du’--- [0dz’---=k 2 ±[B(J,L')+B(J,L'+l)]G(L',u). (B9) 
J0 JZ L' = 1 
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These integrals are the same as one would have in the asymptotic case of equation (23); i.e., 

B(J, u) = flG(u', u)B(J, «') du'+B*(j, u), 
Jo 

with an added boundary condition term B*. 

(BIO) 
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Note added in proof.—In Figure 3 the curves are labeled (from top to bottom) 70, 30, 40, 20, 10, 1 keV. In Figure 10, 
the top label 40 should read 70, and the fourth set of curves should read 60/45. 
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