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ABSTRACT 

Motivated by observational evidence for the existence of flattened or striated structures of very 
large scale (~ 100 Mpc) in the universe, we study the evolution of nonspherical structures. We set up 
equations to describe the evolution of a rotating, dust ellipsoid in an expanding universe. We derive 
solutions for the shape and density evolution as the ellipsoid expands along with a Friedmann 
background universe and show that deviations from spherical symmetry are preserved by adiabatic 
expansion. Analytic expressions are derived to describe the nonlinear evolution of pressure-free 
ellipsoids. We calculate details of “pancáke” formation which are relevant for reahstic theories of 
galaxy and cluster formation. In particular, the density collapse at turnaround and the collapse 
velocity at pancake formation are found to be reduced relative to the spherical case if the initial 
fluctuations are anisotropic: this may affect kinematic determinations of ß in the local supercluster 
and also enable galaxies with massive halos to form during the fragmentation of pancakes whose 
dynamics are dominated by massive neutrinos. Significant deviations from spherical symmetry in the 
baryon irregularity spectrum might also be naturally associated with primordial isothermal inhomo- 
geneities in a Friedmann universe and their possible origin at the epoch of “grand unification.” An 
exact model for a general relativistic pancake collapse is given, based on an exact solution to 
Einstein’s equations found by Szekeres. This collapse does not pass through a series of ellipsoids and 
has no symmetries. 

Subject headings: cosmology — galaxies: general 

I. INTRODUCTION 

The large-scale structure of the universe reveals very considerable deviations from spherical symmetry. Galaxies, 
clusters of galaxies, and superclusters all possess complex structure and exhibit overt asymmetries. One would like to 
know whether such asymmetry must be attributed to the initial conditions of the very early universe, or whether it 
could have developed naturally during the course of the evolution of the large-scale structure. In this paper, we shall 
present some calculations that describe the development of shape eccentricities in the expanding universe. 

Some specific observational motivation comes from the well-known flattening of the Local supercluster and the 
recent evidence for very large-scale (~100 Mpc) holes and both filamentary and sheetlike structure in the galaxy 
distribution. The lack of evidence for any significant rotation on large scales (e.g., in many elliptical galaxies and in 
galaxy clusters) and the existence of anisotropy on scales where gravitational collapse seems unlikely to have played 
any role are indicative that the anisotropy may possibly be an intrinsic property associated with the origin of the 
structure itself, rather than a consequence of tidal interactions at a relatively late stage in its evolution. Finally, a new 
difficulty arises with the possible existence of a finite rest mass of ~30 eV for the electron neutrino which helps to 
reconcile the deuterium abundance with predictions of cosmological nucleosynthesis (Schramm and Steigman 1981) 
and is stimulating revived interest in the adiabatic fluctuation theory of galaxy formation (Doroshkevich et al 1980). 
There is still at least one major problem in this theory, since the adiabatic density fluctuation spectrum peaks at the 
neutrino Jeans mass —4X1015 (m^/30 eV)-2 Af0 (Bond, Efstathiou, and Silk 1980). This results in the neutrinos 
acquiring the thermal energy appropriate to galaxy clusters, which therefore inhibits the formation of massive galactic 
halos of neutrinos. We shall show that anisotropic collapse may provide one means of resolving this problem. 

Many calculations have been performed to study the evolution of linearized density perturbations in an expanding 
universe (e.g., Bardeen 1981). These have been extended to follow the behavior of nonhnear pressureless density 
inhomogeneities with spherical symmetry (e.g., Kursov and Ozemoi 1975; Silk 1974). In a dense universe (ß> 1), all 
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inhomogeneities eventually recollapse if they initially possess negative gravitational binding energy. However, in a low 
1) density universe, the background expands at a rate faster than inhomogeneities can undergo free-fall collapse, 

and inhomogeneities that possess a density contrast less than a critical value (ocfí-1) will eventually freeze into the 
background (8p/p-> constant). While these calculations are probably adequate for modeling the development of 
large-scale inhomogeneities at z » 1, the assumption of spherical symmetry provides a very poor approximation to a 
realistic gravitational collapse in the nonlinear regime, and moreover precludes any possibility of ascertaining the range 
of initial states from which highly asymmetric structures may have evolved. 

Various authors have discussed mechanisms which tend to result in the development of aspherical structures in the 
universe. Binney and Silk (1979) examined the effect of tidal interactions between neighboring protogalaxies. When the 
inhomogeneities become nonlinear, tidal interactions result in elongation and the formation of prolate structures. This 
mechanism is only effective on relatively small scales, perhaps appropriate to elliptical galaxies, where a sufficiently 
close neighbor may be present to promote the effect. An extensive series of studies by Zel’dovich and his coworkers has 
developed the pancake theory, in which galaxies form after the collapse into thin sheets and ensuing fragmentation of 
mass on cluster and supercluster scales. The pancake collapse is a manifestation of the Lin, Mestel, and Shu (1965) 
instability, which results in the increase of eccentricity during collapse. This effect requires that the collapsing object is 
dense enough to become bound along at least one axis. Objects of very large scale or small density contrast will still be 
undergoing expansion: if sufficiently asymmetric, their morphology may reflect the anisotropy of their initial 
conditions or early growth. 

In what follows, we shall discuss the extent to which large deviations from spherical symmetry can arise in the very 
large-scale mass distribution. We analyze the evolution of the shape of a density inhomogeneity in the expanding 
universe as it evolves by gravitational instability. We show how deviations from spherical symmetry are preserved in 
the linear regime. The nonlinear coupling of the shape anisotropy to the density inhomogeneity and to any possible 
rotation will be derived. To describe their fully nonlinear evolution, we model inhomogeneities by homogeneous 
elhpsoids of arbitrary initial eccentricity in an expanding background. The density contrast at the epoch when an axis 
first attains its maximum expansion is evaluated, and we also compute the collapse velocity when the pancake forms. 
Two applications are relevant here. One is to assess the effects of anisotropy on determinations of ß utilizing 
distortions from the Hubble flow in the Local supercluster (Silk 1974). A second is to provide an estimate of whether 
neutrino-dominated pancakes can fragment into galaxies surrounded by massive halos that consist of neutrinos. 
Finally, we also calculate a particular general relativistic model that illustrates the nonlinear growth of highly 
anisotropic inhomogeneities. 

A specific outline of the remainder of this paper is as follows. In § II, we set up and solve equations that describe the 
evolution of a rotating ellipsoidal dust inhomogeneity in an expanding universe. We calculate the coupled evolution of 
the eccentricity and overdensity together with the effects of pressure and rotation. We also discuss the possible origin 
and evolution of aspherical inhomogeneities in the early universe. In § IV, we analyze the pancake-like collapse of 
self-gravitating spheroids embedded in the expanding universe. We derive the dependence of the collapse parameters 
on the initial eccentricity. Finally, in § V, we give a particular example of a general relativistic nonspherical dust 
collapse. 

II. LINEAR THEORY 

a) Formation 

Let xM=(/, x1) be comoving coordinates which describe an isotropic and homogeneous Friedmann universe. The 
spacetime metric is 

ds1 =dt2 —a2(t)[dr2 +22(r)(sin20<i<i>2 +d02)\ (1) 

when 2(r) = sin r, r, or sinhr according as the curvature is positive, null, or negative. The scale factor a{t) is 
determined by Einstein’s equations. 

We shall be primarily interested in a pressureless, (/?=0), background cosmology with zero curvature. Therefore, the 
Einstein equations give 

AttG 
— Pb*. 
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Pb — 
6irGt2 a=t2/\ (2) 

We shall be interested in the behavior of perturbations to this smooth background. The inhomogeneities of physical 
interest are smaller than the particle horizon at all times after recombination, and therefore intrinsically general 
relativistic effects are irrelevant to their evolution. We can legitimately adopt a Newtonian description in a coordinate 
system which is expanding with the overall Hubble flow. 

In the comoving {x^} system, the Newtonian hydrodynamical equations of continuity, motion, and gravitation are 
easily obtained. They can be simplified to remove the expansion of the background universe by adopting inertial 
coordinates =(t, x'), where 

xl =a(t)xl. (3) 

They become 

-0, 

äVi _ dp 9<i> 4itG 
dt ~ p ^ 

(4) 

(5) 

V2<t>=4irG(p—pB), (6) 

where p and p are the density and pressure perturbations over the background, 

^ = aX'+aM'’ (7) 

|=8( + ^a/ax,., (8) 

and Ui is the coordinate component of the three-velocity. Similar transformations have been used by Irvine (1965), 
Nariai (1969), Drury and Stewart (1976), and Kursov and Ozemoi (1975). 

Nariai and Fujimoto (1972) have calculated the form of equations (4-6) in a noninertial reference frame {x^} 
rotating with angular velocity fl, relative to the {xj frame. The form of equations (4) and (6) remains the same, but 
Coriolis terms appear in equation (5); it becomes 

+2euk
Qjn=-p-'-tj- ijk dt (9) 

where V' is the velocity in the rotating reference frame. Henceforth we shall drop the primes on the variables x', V¡. 
Following Nariai and Fujimoto we set up the equations describing the evolution of a uniform rotating ellipsoid in an 

expanding cosmological background. The velocity field is 

Vi=aij{t)Xj> (10) 

and for an ellipsoidal geometry, 

F(x,,0 = l- 2 (^) =0, (11) 

where a^t) is the zth principal axis. If the ellipsoidal shape is maintained we have 

(12) 
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47T 
—pa1a2«3—constant. 

The velocity gradients aij can be decomposed in the standard way to 

_ 1 / «i à2 d3 \ 
aii   1 ä// +a// ^ 3 \ «J a2 <*3 / 7 7 J 

(13) 

(14) 

where a,, is the shear tensor 

_1/ , x 1 
j 2 ( J ' 3 ^kkßij » 

with a2 =2oijO
lj, and the vorticity vector 

If we integrate equation (6) over the region £(xz, /) we obtain the gravitational potential of the ellipsoid: 

(15) 

(16) 

<t>=irG(p—f>B)<x¡a2cií(UijXiXj ~l). 

where Í4y=diag(14) and is given, with /, by elliptic integrals (MacMillan 1958), 

dx 

(aj+x)4/l/1(x) 

I=l 
dx 

0 ^1/2(x) ’ 

(17) 

(18) 

(19) 

and \//(x)=:IIz
3
=:i(a

2+x). 
If we assume the rotation velocity possesses only an Jt3 component, then from equation (9) we obtain the equations 

of motion for the principal axes of the rotating ellipsoid: 

a7 = 

AttG 
~3~ 

AttG 
~3~ 

4ttG 

pfl( 1 - |a1a2a3i/,) «, -^GMU.a, + ^ 3, 
V z / z (a1+a2) 

Pb (1 — |«i«2«3^2) «2 ~^GMU2a2 + ^ ^3 

Ps (1 - ! CL\a2a2U2 ) «3 ~ § GMU3a2, 

P / p\2_ 
P 3 V p / 

4irGp—a2 + 
8L2 

aIa2(aI +a2)' 
=0, 

(20) 

(21) 

(22) 

(23) 

where L is the (conserved) angular momentum of the ellipsoid. The first terms on the right hand side of equation 
(20)-(22) describe the background expansion effects, while the last terms in equations (20) and (21) incorporate the 
rotational support which opposes gravity. 

The form of equation (23) allows us to discern the qualitative effects of rotation and shear anisotropy upon the 
process of gravitational instability. If o=L=0 in equation (23), then it may be solved exactly. The density reaches a 
maximum value equal to 97t2/16 of that in the flat background universe described by equation (2), and after that 
recollapse occurs. It is clear from equation (23) that rotation (L) acts in the opposite sense to self-gravitation (Gp) and 
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so makes it easier to resist gravitational collapse. Rotating objects can attain a larger density contrast over the 
background before collapse occurs. Likewise, shear (a2) reinforces the effect of gravity and makes gravitational 
binding and collapse easier, essentially by providing more degrees of freedom for the recollapse (all axes need not 
collapse simultaneously). 

b) The Evolution of Shape and Density 

One would like to ascertain how likely it is that asymmetric structures on very large scales originated from objects 
which possessed significant deviations from sphericity at the end of the radiation era, z^lO3. We therefore need to 
know how eccentric shapes evolve as the universe expands. 

Let us first use equations (20)-(22) to ascertain the manner in which a shape («j ^a2 perturbation behaves in 
an expanding universe. If we introduce the fractional axes 

R -ai 

then equations (20)-(22) become, in the absence of rotation (L=0), 

¿ + ~ = ' ¿ (1 ' - 

To second order in these equations become 

„// i 1 „r  
Pt +íPí-' 

ßPi 
io ’ 

o"-l-1/?'_ 3 «_ 5/?2 S,-,, 
ß +2ß 2ß~ T 4^'’ 

where 

and 

ß= 2 ßi, 
i=i 

Pi=ß-\ß, 

,-d , 2, =-r: T=ma= —mt. 
dt 3 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

Equations (26) and (27) therefore describe the nonlinear evolution of the shape anisotropy,/;,, and ß which describes 
the density contrast to first order; by equation (13) we see 

ôp _P~Pb 
= ~ß. (31) 

Pb Pb 

A zero-order solution for {p,,ß} is obtained by neglecting the right-hand side of equations (26) and (27). This yields 

pf) =Af>t -]^+Bf>=Af>e -T/2 + Bf>, (32) 

ß^=C(0)t2/3+D(0)t~'/3 = C(O)eT+D^e-3T/2. (33) 

These are the well-known growing and decaying modes of perturbation theory, first found by Lifshitz (1946). To obtain 
the second-order coupling between the shape (p¡) and density (/?) perturbations we solve for the first-order p\X) and 
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-|  nV ri ' ^ Fi irv J ^n(0) 
10 

em-+á("-?Él = -ÍÉíl-l i .m' 
" ' o i ^ ¿t Vi ■ 

1=1 
This gives 

A?' D<°) 
/?(l)=^(0)e-T/2 + 5<0)_ ^C(0)eT_y4(0)^_e-2r_ ^__Z)(0)e-3r/2) 

15 
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(34) 

(35) 

(36) 

0(1) = c«V + D(0)e--ST/2 _ -52(- e
2T- 5£>(0)2 

12 
r+e -T/2 ( y C<0>i)(0> + ) +12U°2e “T + ^ 2fi2. (37) 

From these expressions we can ascertain the couplings between different growing and decaying modes. To first order, 
shape and distortions remain constant. The only growing modes in the shape anisotropy are driven by the density 
perturbation ß. Likewise, the rapid t4/3 term in ß is a second-order curvature mode driven by the first-order term 
^C{0)t2/3. 

The ratio of the shear to the Hubble expansion factor is given by 

-7-constant, to first order, 
\ H Jo a dty 

( ^ ) 17<cl > t° second order. 

(38) 

(39) 

The evolution in eccentricity is given by Pj~(8x—8y)/a. 

c) Generalization to an Open Universe 

We can repeat the previous analysis for the late stages of an open universe of negative curvature. In this phase the 
expansion factor and density evolution are well described by 

AirGt3 ' 

In this case the analogs of equations (26) and (27) are 

X=0, 

'■" + T = -¥'Í1 + f)- 

(40) 

(41) 

(42) 

(43) 

where now 
The second-order solutions are 

AfW0) RZ<0)C(0) \ 
5 + 5 /+ 90 P?] =A?) +B^t ( 1 + f<0)) y^ + ~( BP + 

00) = C<°> +ö(°>/-1 + (5Xcr2+12^12 + ) 71 + ( ^ -5C<0>Z)<0>X- ) - yj (52)<0>2X+ ). 

(45) 
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All growing modes are absent, and the shape and density perturbations freeze in at constant values. The shear to 
Hubble contrast is (eq. [38]) 

— constant. (46) 

These calculations indicate that small deviations from sphericity are preserved by the expansion of the universe. We 
shall see in § III that the final parameters of the nonlinear evolution are determined by these small initial eccentricities. 

d) The Effects of Rotation and Pressure 

From equation (25) we can obtain the following equations for the principal axes when rotation and pressure terms 
are included. The latter is parametrized by the sound speed in the perturbation 

v2=^- s dp 
(47) 

In the flat cosmological background this gives, to first order. 

4 A 2 „ 2L2 / „ . „ , 2ü2/}) 
ß' + Ttß~^ß-~ -(ß\+ßi)- 

4 A 21? 
^ + Jtß2~^ß = Tiß^ßi) 

9t 

ß + 4 ß 2 2vjß3 

It is easier to work in the variables ß, y, e, where 

which satisfy 

y=ß\-ßi, 

t=ßx+ß2, 

.. i 4 4L2e 2ü2y 
Y+3/Y ,8/3 ,4/3 > 

, 4 . 4 2ü2e 
£+37£_^-~7^’ 

4 ß 2 ß- 2vlß 
ß+Ttß J?ß 77r> 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

i) Irrotational Case: (L=0) 

We solve equation (53) to obtain the effect of pressure damping on the density perturbation: 

ß=t~i/6Q±5/2(3]/2vst
i/'3), (54) 

where 6 are linear combinations of cylindrical functions (/, Y, 7/(1), //(2)). At late times (oscillatory 
terms), and so asymptotically 

Also equation (51) solves as 

(55) 
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therefore, 

y^t 1/3 as/->oo; (56) 

e~t 1/3 ast-^oo 

from (51). 
The effects of pressure are the familiar ones: density perturbations are damped out on small scales, and disparities in 

the scale factors of the elhpse are also attenuated at the same rate. 

ii) Pressure-Free Case (vs=0, L¥=0) 

The effects of rotation only couple directly to the y equation, and we can solve for equations (51)-(53) exactly to 
obtain 

ß=At2^-FBt~\ 

e=Cr^+D+
2-f-2\^f~\ 

y=Et~'/3+F-6L2Ct-'-lSL2Dt-2/3-SL2A]nt-j L2Bt ~5/3. 

(57) 

(58) 

(59) 

To the order of approximation calculated, the rotation has no effect upon the rate of growth of the density 
amplitude. It only directly affects the evolution of axes orthogonal to the rotation axis and so couples to y but not e. 
The effects die away in the course of time because the centrifugal potential driving asymmetries is smaller than the 
potential deriving from Sp. 

III. THE ORIGIN OF ASYMMETRIC STRUCTURES 

Since our calculations indicate that sizeable asymmetries can be preserved before inhomogeneities enter the 
nonlinear phase of their evolution we should inquire into the likelihood of their existence. This involves discussing the 
shape evolution through the radiation era of the big bang model and is complicated by the presence of pressure 
gradients and the effects of general relativity. A few general points can be made. If we suppose the overall expansion 
dynamics are still described by the Friedmann model and density gradients are small then the shape evolution problem 
amounts to solving for the shear tensor aab, where on scale A, using Ellis (1973), we have 

^-3{2afr(X) + /V(0[<3)Äai(A)-i(3)Ä(A)«aJ ¿í}. 

Here (3)Ä^ is the Ricci three-curvature of the universe. Its isotropic part contributes the well-known decaying mode of 
anisotropy, acca~3; however, the anisotropic curvature drives a distortion mode that need not decay over finite time 
intervals, and its time dependence can only be calculated from the remaining Einstein equations. In practice, one is 
interested in more specialized problems: theories of galaxy formation focus attention upon two types of primordial 
density inhomogeneity—adiabatic and isothermal (Barrow 1980a). We can argue that the likelihood of large 
deviations from sphericity surviving the radiation era may be linked to whether the inhomogeneity is isothermal or 
adiabatic. 

a) Adiabatic Inhomogeneities 

It has been shown that photon diffusion and radiative viscosity erase adiabatic inhomogeneities on scales less than 
M^IO13^5/4 M0 by the end of the radiation era (Silk 1968). Any adiabatic perturbations of this order which were 
nonspherical would be damped by radiative viscosity slightly more efficiently (oc[l —e]2). Any adiabatic inhomogene- 
ity of mass exceeding MD might in principle be strongly aspherical. However, if the baryons in an adiabatic fluctuation 
of scale \>ct are very nonspherical the photons must share this geometry because of the thermal coupling. For a 
fluctuation power spectrum |8fc|

2cck" with n< 1, this asymmetry would create a non-Friedmann cosmology on the 
horizon scale \»c¿. The metric perturbations induced by strongly anisotropic adiabatic inhomogeneities are signifi- 
cant, and unless 1 one would not expect nonspherical inhomogeneities in the matter distribution to emerge from the 
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radiation era as small deviations from a smooth Friedmann background universe. In fact, Zel’dovich has argued for 
n—\, corresponding to constant curvature metric fluctuations. Constraints from the anisotropy of the cosmic 
background radiation and from the large-scale matter distribution favor a somewhat greater value of n (Wilson and 
Silk 1981). The existence of any ‘equipartition’ principle demanding that shape and density perturbations contribute 
equally to the metric perturbations on some scales may allow stronger conclusions to be drawn. 

b) Isothermal Inhomogeneities 

The situation is much more interesting if density inhomogeneities are isothermal (ôpy=0, ôpw7^0). In this case for 
an arbitrary fluctuation spectrum, the baryon distribution can possess very large asymmetries on scales exceeding the 
horizon which have no significant effect upon the expansion dynamics and the Friedmann background because 
8pm<£py in the radiation era. 

Isothermal perturbations arise from spatial variations in the baryon number of the very early universe (r< 10 “ 4 s) 
(see Barrow 19806). Recent developments in gauge theories of the strong and electroweak interactions make it 
attractive to conclude that the baryon number of the universe arose from nonequilibrium C, CP, and baryon 
nonconserving interactions during the first ~10~35 s of its expansion history. If the cosmological dynamics were 
strongly anisotropic and slightly inhomogeneous at this early time then baryon number would be distributed in an 
anisotropic and inhomogeneous fashion at t~ 10”35 s (Barrow and Turner 1981; Bond, Kolb, and Silk 1981). 

This distribution would be preserved in the quark sea until baryons condense at 10-4 s. At this time their 
gravitational effect upon the Friedmann background metric would be completely negligible (the smooth radiation 
density dominates by a factor >106). The shape distortions would then be preserved in the baryon distribution until 
the end of the radiation era, 1012 s. They would be expected to have effects upon two sets of observable parameters. 
Primordial nucleosynthesis would be affected through the baryon distribution. Regions of high baryon density destroy 
more deuterium and bum it to helium—4. There would arise a spatial distribution of these light elements that would 
mirror the distribution of baryons. Also large asymmetries in the baryon distribution at recombination would increase 
the expected fluctuation level of the microwave background radiation on small angular scales, and they would be more 
readily detectable than spherical overdensities (Wilson and Silk 1981). 

Finally we should mention that there have been recent conjectures that extended sheet or stringlike structures might 
rather naturally emerge from the very early universe (Kibble 1976,1980; Zel’dovich 1980). It is possible that 
spontaneous symmetry breaking at ~10-35 s could ensure that, when the universe cools below some critical 
temperature Tc~ 1014 GeV, the Higgs field gains a nonzero vacuum expectation value and is partitioned into vacuum 
domains with unusual geometry—sheets or strings (depending upon the topology of the manifold of degenerate vacua). 
The possibility of sheets of vacuum energy appears to be excluded by the isotropy of the microwave background; even 
one would contribute ~ 106 as much energy density as all known forms of matter today; see ZePdovich, Kobzarev, and 
Okun (1974). However, one-dimensional strings do not suffer from such a constraint (the thickness should be of order 
of the Compton wavelength of the Higgs mass ~1014 GeV responsible for the symmetry breakdown). These objects 
should remain thermally decoupled from radiation during the early expansion history and would impose a nonspheri- 
cal, linear geometry on the matter distribution at recombination. 

Similarly, one could imagine that the initial spectrum of inhomogeneities was not of the traditional adiabatic or 
isothermal type at all. For example, suppose the structure emerging from the Planck era, tp~ 10 ~43 s, was formed out 
of a network of gravitational discontinuities in the metric and its first derivative; that is, a network of intersecting 
gravitational shock fronts. The tesselated character of the gravitational field would then fashion inhomogeneities into 
linear and sheetlike structures during the subsequent expansion. 

IV. NONLINEAR THEORY 

The calculations of § II indicate how small initial asymmetries evolve in the linear and almost linear regime. 
Eventually the overdensity of the ellipsoid will become considerable because the linearly growing modes (8p/p~t2/3) 
attain amphtudes of order unity, and the ellipsoid will begin to recollapse in at least one direction. The ellipsoid will 
tend toward an increasingly pancake or cigarlike configuration depending upon its initial degree of oblateness or 
prolateness. 

Consider a spheroidal perturbation in an expanding universe (the following analysis can readily be generalized to the 
case of an ellipsoidal perturbation). Provided that the density within the spheroid is always assumed to be uniform, and 
initially (at t0) exceeds that of the background by an amount 8p(tQ)=8*p(t0)9 the subsequent evolution can be 
described approximately by 

x=a—jA(a—ae), (60) 

z—a—jB(a—ae). (61) 
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Here, the principal axes are x0X(t) and z0Z(t), a(t) is the background scale factor, ae(i) is the scale factor for a 
universe of mean density p+ôp at t0, and A and B are functions of the initial eccentricity defined by equations (62) 
and (63) (MacMillan 1958). They are equal to the Ux and U3 defined by equation (18) when ax =a2>a3. We relabel 
them here for convenience: 

A=e 2[e2 —1 + (1—e2)1//2sin 1 e/e], (62) 

5=2^_2[l —(1—e2)1/2sin_1 ^/^], (63) 

and \—e2 =(z0/x0)
2. Initial conditions are X—Z—a—ae = 1 at t—t0. The initial velocity is equal to the Hubble 

velocity at /0. White and Silk (1979) have shown that equation (1) provides a reasonably accurate model for the 
nonlinear as well as the linear evolution of a homogeneous spheroidal perturbation, followed until the first (Z) axis 
recollapses (pancake formation). The parametric equations satisfied by a(t) and ae(t) are 

a=20^QT(c^_1)’ (64) 

and 

= (65) 

At the instant, denoted by subscript i, when the first (Z) axis turns around, Z=0, we have 

à,.(l-2/3i?)=ôe,.. (66) 

It is convenient to define the free-fall time for a spherical perturbation of density excess 8 

so that 

t=(t[[/27r)(0 — shi0). (68) 

Hence, equation (66) can be rewritten using equation (63) as 

v x 7 1—cos#, 5¿ff \ a, / 
(69) 

We consider first the evolution of an ellipsoid to a pancake configuration in an Einstein-de Sitter background with 
background evolution 

--(t/'o) 
2/3 

(70) 

Equation (69) can now be further simplified, using equations (65) and (70) to give 

and 

1-2/35= 
sin 0¡ 

1 — cos 0( 

(71) 

(72) 
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The density contrast at turn-around is 

s,=tf,yU2z,), 

Vol. 250 

(73) 

where from equations (60) and (65), 

^=a,(a-|^)+||(l-cosi,) (74) 

and 

Z1=ai(a-!B)+!f(l-cos0,). (75) 

One obtains 

s_ (37r/4)(2/3fi)(2A4)2(g,—sinfl,)V   

{ ( 1 - cos 0, )/2 - ( 1 - 2/3ß ) [3/4( 0,. - sin 0,. )]2/3} { ( 1 - cos 0, )/2+(2/3,4 -1 ) [3/4( 0,. - sin 0, )]2/3} 

This expression yields the familiar limit =(37r/4)2 for the spherical case, when A=B=2/3 and 0;=77\ In general, one 
has to first solve equation (72) for 0, when an arbitrary initial flattening is specified; equation (76) then provides the 
density contrast at turn around for the Z-axis. 

One finds that compared to a spherical fluctuation with the same initial overdensity 8, the turn-around occurs 
earlier, at about 0.14 tff for the case of extreme initial flattening, as opposed to 0.5 t{{ for spherical collapse. The density 
contrast at turn-around is reduced relative to (377/4)2 by up to a factor of about 3. 

Consider next the epoch of pancaking, denoted by subscript p, when Z^O, and 

(1-cos 0i,)/2«=a/)(l-2/35). 

Making use of equations (68) and (70), we can rewrite equation (77) as 

l—cosOp 3 
1—2/32?= ■ f(^-siH)] 

•2/3 

(77) 

(78) 

This gives 6p for arbitrary flattening. One can now calculate the parameters of interest at the epoch of pancaking, 
notably the pancake radius and collapse velocity. We find that 

Xp = (\-A/B)ap, (79) 

where ap is obtained from equation (77), and 

1-2/35- 
sin0p 

1—COS0p 
(80) 

The velocity in the plane of the pancake is obtained from 

AZ„ 

B +y0- -,4/5). 

The collapse velocity down the z-axis can be expressed as 

Vz = -{àp/ap)rp4>, 

(81) 

(82) 
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where rp=r0xp is the pancake radius, and 

443 

<*>= 3 sin Op 
2 (l-cos^)2 

(Öp-sinÖ^) B(l-e2y/2. (83) 

Solving equation (78) for 0p leads to the following conclusions: the pancake is still expanding in the Jf-direction if the 
initial flattening is z0/r0 <0.44, for which value we see that the collapse velocity is just reduced to the Hubble velocity 
in the plane of the pancake àp/aprp(<j>~\) and the radial collapse factor Xp/ap=0.6. For more extreme initial 
flattening, the collapse velocity is reduced considerably: by a factor <|>_ 1 =2.5 for z0/r0 =0.24 and 6.1 for z0/r0 =0,12. 
The radial collapse factor Xp/ap in these cases amounts to 0.8 and 0.97, respectively. The dimensionless collapse rate 
in the plane of the pancake is 

^ «4 2 (l-costf,)2 
(84) 

A useful relation is 

" 1,1 
(1-2/3B) 3/2 _ sin0„ 

[2(l —cos 0^)] 
1/2 (85) 

Write 0p =27t—e, with e=0 for spherically symmetric collapse. Then expanding in powers of e, equation (78) yields 

5=|[l+e2(127r) 2/3]+0e4(127r)" 4/3 

and equation (85) reduces to 

Hence, for moderately small initial eccentricities, this product is independent of the initial degree of flattening. This 
simplification occurs because Xp oc 1 —A/Bcce2, and the dominant contribution to Zp^[5Bàp sm 0p/2

3/1 

(l-cose;,)
1/2](l-2/35)“1/2is oce"1. 

To generalize the preceding to Ü< 1 universes, let us denote by tx the epoch at which z=Q \ For z>ß 1 an open 
(Q<1) universe is well approximated by the flat Einstein-de Sitter behavior, but for z<Q~l the evolution is 
curvature-dominated, as in equations (40), (41). Any inhomogeneities of large amplitude that have turned around both 
the Xand Z axes before z^ß-1 will evolve exactly as in the ß= 1 case since their dynamics become independent of the 
background for z<ß-1. However, axes which have not turned around by a redshift of ß_1 will be affected by the 
change in background expansion. For example, suppose the Z-axis turns around when z>ß_1. It will continue to 
collapse independently of the background for z<ß_1, but if the X-axis has not turned around before z«ß_1, it can 
become frozen into the background expansion which is proceeding so rapidly that collapse need never occur along the 
X-axis. Notice also that ellipsoids do not have to possess negative binding energy in order to collapse down one axis. 
Even though Z->0, the X-axis may continue to expand indefinitely, X-» 00, or at least until other physical processes, 
like fragmentation, intervene. Assume that at tp the universe is open, the density parameter at this epoch being denoted 
by ß^. Consequently, we infer that 

tx/tp=Ûp. (86) 

If tx ^tp, it follows moreover that 

(87) 
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Equation (78) generalizes to 

BARROW AND SILK 

and equation (80) becomes 

q R f 9 sin 0n / v\ 
(I)7 (^-s“^)'73!. 

Vol. 250 

(88) 

(89) 

Equation (21) can be rewritten as 

Xn àn 

-f=vv-A 
Xp 

ap\ 
1 I Ol/2 Sm£  

P (1—cose)1/221/2 (>-è) 

2 \ ~3/2 
(90) 

in fair agreement (at least for a limited range of values of e or e and Qp) with the numerical interpolation given by 
White and Silk (1979): 

$ = ^il-1.1005[(l-e2)-1/2-l]_1'3}. (91) Ln k ^ P P 

At turn-around, the derived expressions for 6¡ and S¡ generalize to 

8 = 
(3 w/4)2 a (2/35) (2 /3A )2( 0, - sin 0,)2( 1 - cos Ô, ) “ 2ñ, 

[ 1 - 3 sin 6, (ö,—sinö,)/(l — cos 0, )2] [ 1 - 3 sin 0, ( 0, - sin 0; )/( 1 “ cos 0, )2(2/3A -1 )/( 1 - 2/35 )]2 

(92) 

(93) 

As in the spherical case, the density contrast at turn-around is enhanced by a factor ~ß/1 relative to that for the flat 
cosmological model. 

Finally, it is of interest to compare these results for homogeneous spheroidal inhomogeneities with the ZeFdovich 
approximation for pancake formation, which White and Silk (1979) show can be written in the form 

X=a[l-(a-l)^s], (94) 

Z=a[l-(u-l)-^5s]. (95) 

These expressions are valid for an Einstein-de Sitter universe: the generalization to ñ<l is straightforward, but does 
not concern us here. The numerical factor is chosen so that equations (94) and (60) coincide in the linear regime when 
a» 1 (or í»¿0). One infers from equations (94) and (95) that, for example, equation (79) is unchanged and Zp = —àp9 

leading to a collapse velocity on a scale Rp of 

V^-R^/a^il-e^il-A/B)-'. (96) 

As before, the collapse velocity can be reduced appreciably for sufficiently great initial flattening. 
One should also note that the initial conditions, which specify 8 and eccentricity, are equivalent to specifying S and 

an appropriate velocity perturbation. For example, one can show from equations (94) and (95) that (with H=à/a) 

^-=(Z-X)/à=-ja(B-A)8. (97) 

Since A77/77oca, as is the rate of growth of the density contrast in the linear regime, it follows that any anisotropic 
velocity perturbation, such as a plane-wave perturbation, is equivalent to specifying an initial eccentricity B—A^ 
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(hH/H)08-1^ 1. An additional minor point to note in making numerical comparisons is that the velocity field in the 
homogeneous spheroidal perturbation is of the form vz=z0Z(t). Hence, a more relevant value of vz may be the 
volume-averaged mean-square value: (uz

2)1/2=3~1/2t>z. 

V. A SIMPLE RELATIVISTIC COLLAPSE 

In §§ I-II we have examined the Newtonian dynamics of a self-gravitating ellipsoid embedded in a background 
universe which expands at a rate determined by Einstein’s equations. It is well known that the special case of a 
spherical dust inhomogeneity can be described by an exact solution of the Einstein equations due to Tolman (Tolman 
1934; Bondi 1947) and the results of linear perturbation theory can be easily recovered (Silk 1977). 

If one neglects the effects of the cosmological background and treats the inhomogeneity as a separate universe, then 
the behavior of aspherical dust inhomogeneities can be traced using some general relativistic solutions found by 
Szekeres (1975). These exact solutions of Einstein’s equations describe the evolution of anisotropic and inhomogeneous 
dust clouds, (p—0) possessing no spatial symmetries (they have no Killing vectors; Bonnor, Sulaiman, and Tomimura 
1977). They are determined by spacetime metrics of the form (Bonnor and Tomimura 1976) 

ds2 = dt2 — Q2(x, y,z, t) dx2 — R2(t)(dy2+h2(y) dz2), (98) 

where 

Q=AR + T (99) 

and A(x, y, z), T(x, t), h(y) are spatially varying quantities determined by the Einstein equations. The function R(t) 
satisfies the Friedmann equation 

2RR+R2=-k; k=0, ± 1, (100) 

and h ( v ) satisfies 

d2h 

dy2 — kh. (101) 

The solutions fall into two classes. One generalizes the Tolman models away from spherical symmetry by allowing each 
spherical shell of dust to have a different center. The other class generalizes the homogeneous but anisotropic 
Kantowski-Sachs (K-S) universes (Kantowski and Sachs 1966) to provide models of strongly anisotropic inhomogenei- 
ties. The particular solution of interest to us is of closed K-S type where the metric functions of equations (99), (100), 
and (101) have the form 

A = [a(x) cosz+v(x) sinz] siny+w(x) cosy, (102) 

R = 2Ksm2 I 
2’ 

t=K(0-sïn6), (103) 

8'irGp= 

cot j —lj+fi(x) cot 

6KA—ß(x) 

QR2 

(104) 

(105) 

where £>0; 0<t<2tnK\ 0<x<27r; 0<y<7r, and 0<z<77. 
In the (y, z)-plane the model expands and then recollapses exactly as a closed Friedmann universe. Along the x-axis 

the model at first collapses and then expands out to infinity as R-*0. The solution (45-48) reduces to the homogeneous 
isotropic Friedmann and the homogeneous, anisotropic K-S solutions in special cases: 

Friedmann: o=u=ß=ft=0; v=\; (106) 

K-S: o=v=o)=0; constant. (107) 
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In general, one of the five arbitrary functions ß, ¡i, a, v, œ can be transformed to ± 1, leaving the dynamics determined 
by the four remaining functions of one variable and the constant K. The model is physical1 when we choose 

ß<0, fi>0, 77/?+/i<0. (108) 

We can now compare the evolution of a dust ball described by equations (98)-(105) with that of a ball described by the 
Friedmann solution (eq. [106]). A comparison of physical quantities at the same time instant will effectively describe 
the behavior of an anisotropic inhomogeneity embedded in a Friedmann background. 

The y, z axes reach a maximum when R=0 at 0=7r, and at that moment the orthogonal scale factors are 

R(7t)=2K, (109) 

Q(ir)=2AK-ß, (110) 

(Ill) 

We can use our coordinate freedom to set ß constant. 
We can easily calculate the density contrast over the Friedmann background using equation (105). If we denote the 

Friedmann background density by pB we have at turn-around (O—tt) 

(1,2) 

and the density contrast is 

( pb)#=w ^ X^1 3x) ’ (113) 

where x=ß/6AK. When the inhomogeneity is spherical (x=0), we recover the standard result. When the anisotropy 
of the perturbation is very large, |x| ^ oo, then the density contrast approaches a smaller value (compare eq. [76]), 

Lt 
|x|^oo 

Btt2 

16 ‘ 
(114) 

When the anisotropy is small, |x|< 1, we see an analogous effect to that calculated in §§ II, IV. A smaller turn-around 
density contrast is required than in the case of spherical inhomogeneities 

w<i <u5) 

Eventually the imploding ß-axis is reversed into expansion. Suppose the Q turn-around (0=0) occurs close to the 
R-axis maximum, say when 6 reaches 

0*=7T—e9 

where |e| is small. We have that Q—0 when 

_ jtt —7r/2 
“2AK+ß9 

(116) 

(117) 

and at that moment the density contrast is 

3(6,4*:+l)(0*-sm0*)2 

160(0*)sm4Y 

9w2 

16 

'This avoids singularities in 0<t<2irK. 
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so by equation (117) 

(¿)(,^(1-10ï). (118) 

Thus, equations (115) and (118) give the overdensities relative to the Friedmann background at the turning points of 
the expansion in the x and y-z dimensions. The spherically symmetric results are obtained when x=0. 

To study the final stages of the pancake collapse, Ä-»0, oo, it is convenient to change the time variable 
to 

T=2^K-t. (119) 

Suppose the Szekeres dust cloud begins at 0=77, then the initial conditions for the pancake collapse are 

RQ=R(<iT)=2Ky (120) 

Q0=Q{*)=2KA-ß, (121) 

at t=itK. The initial eccentricity, e0, is given by 

e2
0 = \-Rl/Q2

0 (122) 

= 1—^4-2(l —3x)-2. (123) 

As t-^0, the metric (98) approaches 

024) 

and the density diverges as 

^ 6A-ßK-1 

P 24 itGt 
(125) 

It is interesting to compare the form of this collapse to the Newtonian ellipsoids. Hutchins (1976) has found that 
numerical studies of irrotational collapsing ellipsoids can be modeled by a relation of the form 

¿=X(3irGp)1/2, (126) 

where 

X=10ol2(l-eo)
14,(^) , (127) 

and e0, p0 are the initial eccentricities and densities, respectively. For the collapse of a sphere we have X—2/3. For the 
Szekeres collapse we have 

Asz- 

-1/2 

V 6po/ — 3jc 

where p0—p(7r). Therefore, when \x\ is small, we have 

if-M 
^ I 6p0 / 

1/2 
1- 

2\-'/2 

Wei, 

(128) 

(129) 
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and when anisotropy and inhomogeneity is large, 

Xsz~^2(¿) ’W"00 

Finally we note that the Szekeres solutions possess straightforward Newtonian analogs (Lawitzky 1980). None of our 
results are consequences of general relativistic effects alone. 

VI. SUMMARY 

We have examined the evolution of nonspherical inhomogeneities in an expanding Friedmann universe. This 
generalizes earlier analytic studies away from the restrictive and unrealistic assumption of spherical symmetry during 
the nonlinear stages of gravitational binding and collapse. Specifically, we followed the evolution of a self-gravitating 
dust ellipsoid embedded in a Friedmann background. The evolution of the density contrast and shape anisotropy were 
calculated when the rotating elhpsoid is expanding with the cosmological background. We discover that deviations 
from spherical symmetry are preserved by the expansion of the universe. When the elhpsoid becomes nonlinear it 
partially decouples from the background expansion and collapses anisotropically to a pancake configuration first 
identified by Lin, Mestel, and Sha (1965). We generalize their analysis to include the effects of the expanding 
background universe and provide simple analytic formulae for the density contrast at turn-around, the epoch of 
pancaking, and the infall velocity anisotropy at pancaking. We also give an exact relativistic description of 
nonspherical gravitational collapse. 

Various connections with models of galaxy and cluster formation are indicated. One is to kinematic determinations 
of ß from the local Hubble flow in the Virgo supercluster and to generalize the nonlinear spherical model of Silk 
(1974). Perhaps the most important is to the adiabatic fluctuation theory of galaxy formation in the presence of 
massive neutrinos. The pancake theory of galaxy formation has been in disfavor largely because of the excessive 
fluctuations predicted in both the matter and radiation distributions on scales above the damping mass. Massive 
neutrinos provide a timely release from these quandaries, although the recent detection of a quadrupole moment in the 
cosmic microwave background radiation may pose a new problem (Silk and Wilson 1981). One major conceptual 
difficulty in accepting the pancake theory with massive neutrinos is that it becomes difficult to see how galaxy halos 
can form. For if the pancake collapse results in the neutrinos acquiring random motions appropriate to that of a rich 
cluster of galaxies, the neutrinos will have too much kinetic energy to form galaxy halos. We have shown that the 
collapse velocity at pancake formation can be reduced by a substantial factor in the presence of initial anisotropy 
relative to the velocity acquired in spherically symmetric free-fall. In the presence of neutrinos, one species of which 
has a mass of —30 eV, the minimum half-thickness of adiabatic fluctuations is —10(1 +z) ~1 Mpc (Bond, Efstathiou, 
and Silk 1980). Collapse along this axis effectively yields the minimum collapse velocity: the pancake radius can be up 
to a factor —10 larger according to our analysis. It seems likely that an effective value of the collapse velocity 
(averaging over the pancake volume) can easily be reduced to several hundred km s “1 for a pancake on the scale of the 
Local supercluster. If galaxies form at pancake collapse, it seems possible for them to acquire substantial halos of 
neutrinos, although no detailed dynamical calculations have been performed. One might also speculate that halo 
formation would tend to be inhibited in more isotropic superclusters, where higher velocities may have been attained 
by the collisionless component. 

We also discuss the likely origin and evolution of significant asphericities in the baryon distribution of the universe 
and show how adiabatic and isothermal perturbations may differ in this respect. Such primeval anisotropic structures 
may be inevitable in the primordial baryon distribution if initial protogalactic perturbations are isothermal in 
character. These asymmetries might explain the presence of developed nonspherical structures of supergalactic 
dimensions as vestigial remnants of chaotic conditions in the very early universe at the time of baryon generation. 
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by NSF grant 79-15244. Some of this work was completed when J. S. was an S.R.C. senior visitor at the Department of 
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