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ABSTRACT 
We present a technique for analyzing time asymmetries of stochastic processes and apply it to high 

time resolution data from pulsars PSR 0950+08 and PSR 2016+28. Subpulses and average 
waveforms show similar time asymmetries. This is consistent with subpulses arising from beams of 
radiation rather than temporal modulations. Micropulses are, on average, time symmetric. It is 
possible that individual micropulses are asymmetric, but over a data set of several hundred pulses, 
there is no preferred sense of asymmetry. 

Subject heading: pulsars 

I. INTRODUCTION 

Pulsar observations of increasingly high time resolu- 
tion have always held the promise of a direct look at the 
coherent radio emission mechanism. Unfortunately, it is 
becoming clear that pulsars hide the details of the 
emission process behind a cover of incoherent super- 
position, removing all traces of the underlying coherence 
except for the enormous brightness temperature. Investi- 
gations of the statistical properties of the pulsar inten- 
sity (Cordes 1976; Hankins and Boriakoff 1978; Cordes 
and Hankins 1979) show that the emission can be 
well modeled as amplitude modulation of a complex 
Gaussian noise process, the so-called amplitude mod- 
ulated noise model (AMN) first presented by Rickett 
(1975). A major implication of the AMN model is that 
micropulse emission (typically submillisecond fluctua- 
tions in the amplitude envelope) may remain the shor- 
test physically meaningful fluctuation of the radio 
emission—even though observations are now available 
(such as those of Hankins and Boriakoff 1978) with 
submicrosecond time resolution. 

Given the above statistical character of micropulses it 
is important to investigate their physical basis. What 
sort of mechanism gives rise to these exceedingly brief 
and intense glimpses at the emission process? Models 
for micropulse emission can be divided into two broad 
classes—“temporal models” in which the intensity 
fluctuation is caused by an actual modulation of the 
radiation beam, and “beaming models” in which the 
pulsar’s rotation sweeps a constant pencil beam across 
the line of sight. Unsteadiness in the current injection 
process near the surface of the neutron star would be 
an example of the first class. Indeed, fluctuations in 
the flow of primary ions and the rate of electron-posi- 
tron pair creation have been proposed (Cheng and 

Ruderman 1980; Ruderman and Sutherland 1975). The 
rise and fall of plasma instabilities in the near magneto- 
sphere, such as beam-plasma instabilities or the forma- 
tion of solitons, are other examples of this class. 

In the second class, beaming models, the micropulse 
emission is primarily a geometrical phenomenon. For 
example, Benford (1977) sees micropulse emission as the 
sweep of our line of sight across a series of radiating 
plasma filaments that are parallel to the field lines. 
Other models have different explanations for the beam- 
ing of radiation along the field Unes (e.g., coherent 
curvature radiation), but concur in viewing a micropulse 
as just the angular sweep of this beam past the observer. 
It should be noted that Ferguson (1979) and Kirk and 
ter Haar (1978) also view the microstructure as essen- 
tially a beaming phenomenon, but one arising from 
relativistic beaming by bunches of particles near the 
light cylinder. 

The two general classes of micropulse models may 
have different observational implications. Although an 
investigation of the full polarization behavior of micro- 
pulses, especially the variation of the polarized emission 
within micropulses, provides a fuller probe of these 
models, we restrict ourselves in this paper to the inten- 
sity envelope of these features. In particular, we present 
a technique for analyzing the temporal symmetry of 
micropulse envelopes, looking for any systematic devia- 
tion from perfectly symmetrical micropulses. 

The physical motivation for this analysis grows from 
the qualitative difference between the two classes of 
micropulse models noted above. If the micropulses are 
primarily a temporal phenomenon, there is no a priori 
reason to expect the micropulse rise and decay time 
scales to be identical. For example, in the case of a 
plasma instability the rise time of the fluctuation is 
governed by the growth rate of the particular instability, 
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whereas the decay time scale involves the rate at which 
the accumulated energy can be transferred to electro- 
magnetic wave modes. 

Beaming models of micropulse emission, on the 
other hand, may more easily produce symmetric 
micropulse envelopes. Even if the local field geometry 
at the point of emission differs from a simple dipolar 
approximation—as it almost certainly does close to the 
star— the main effect is a tilting of the cone of emission 
rather than the introduction of time asymmetry into the 
micropulse profile. 

The average shape of subpulses is also of interest. 
Since subpulse emission is, in general, composed of both 
a micropulse component and a more continuous, uni- 
form emission, care is needed in interpreting subpulse 
shapes physically. A number of questions can be raised. 
For example, what is the relationship between subpulse 
and average waveform shape? It is not known whether 
asymmetry in subpulses contributes to asymmetry in the 
average waveform or whether asymmetric average wave- 
forms are constructed from symmetric subpulses with an 
asymmetrical probability of occurrence in pulse longi- 
tude. 

The analysis technique that we present here allows us 
to investigate the shape and time symmetry properties of 
both the micropulse and subpulse emission features. In 
§ II of this paper we outline our analysis procedure and 
apply it to simulated pulsar data. In § III we analyze a 
series of pulses from PSR 0950+08 and PSR 2016+28, 
using dedispersed data with microsecond time resolu- 
tion. Finally, in § IV we discuss the implications of our 
analysis for the physical processes underlying both mi- 
cropulse and subpulse emission. The Appendix contains 
the mathematical details of our skewness analysis tech- 
nique, concentrating on the intermingling of time scales 
in the analysis and on the calculation of estimation 
errors. 

II. SKEWNESS ANALYSIS 

a) Measures of Time Asymmetries 

There are a number of possible ways to measure any 
time asymmetry in the micropulse and subpulse fea- 
tures. The most direct method would be to identify 
individual micropulse or subpulse features and pa- 
rameterize their intensity profiles. This method suffers 
from two problems, however: the difficulty of isolating 
overlapping features and the difficulty of finding a 
bias-free model-fitting procedure for a profile whose 
general shape is not known a priori. Both difficulties 
become rapidly more severe as the signal-to-noise ratio 
of the data decreases. 

Consequently, we are led to a method which does not 
rely on identifying individual time series features. In 
addition, because of the large amount of data involved 
and the expected stochastic nature of the emission pro- 

cess, we concentrate on statistical estimations of the 
emission skewness properties. In so doing we build on 
the existing second-order analyses of micropulses 
(Cordes 1976) and adopt a procedure similar to that 
used by Weisskopf et al. (1978) in studying the 1—5 
pulses from the X-ray source Cygnus X-l. 

The mathematical details of this analysis are con- 
tained in the Appendix, but a simple description of the 
technique is in order here. The simplest second-order 
correlation is the autocorrelation function, which yields 
information about the time scales and periodicities of 
various features in the time series, but contains no 
information about the skewness of individual features 
since it is symmetric about the origin. The simplest 
third-order correlation, however, in which the square of 
the time series is correlated with the original function, 

Ti(t) = J dt I(t)I2(t+T), (1) 

where I(t) is the time series in question, is not in general 
symmetric about the origin. We show in the Appendix 
that this lack of symmetry about the origin can be 
interpreted directly in terms of the symmetry properties 
of the emission features. If (r) and Tf (r) represent 
the positive and negative lag halves of the third-order 
correlation [i.e., (t) = Ti(±t)], then our definition of 
the skewness function is simply 

Ki(t) = Tj+ (t ) — Tf (T ), (2) 

which can be normalized by analogy with second-order 
correlations as 

^/(t) = ^/(t)/7>(0). (3) 

An excursion of this normalized skewness function 
away from zero results from asymmetrical emission fea- 
tures in the time series, the time scale of the excursion 
corresponding to that of the time series feature being 
probed. Positive (negative) values of the skewness func- 
tion represent emission features whose rise times are 
smaller (larger) than their decay times. This procedure 
automatically combines skewness information from the 
various emission features within a given pulse, discard- 
ing the phase information from them. We are thus able 
to determine any systematic deviations from symmetry 
in both micropulses and subpulses without having to 
identify them individually. 

b) Simulated Data 

We tested the analysis technique by applying it to 
simulated pulsar data. We generated pulsar pseudo- 
pulses using the AMN model as an empirical description 
of the intensity fluctuations. As further discussed in 
the Appendix, this allows the separation of the pulsed 
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emission into multiplicative components which are then 
combined with a Gaussian noise generator to create the 
intensity time series. We use a simulation with only two 
basic components: a deterministic average waveform 
and a stochastic micropulse shot sequence. 

For a particular realization of this random process 
(i.e., for a particular simulated pulse), the product of the 
average waveform and the micropulse shot train form 
the amplitude modulation. The micropulse shot se- 
quence is the convolution of a Poisson-distributed series 
of impulse functions with a deterministic “shape func- 
tion.” This amplitude envelope is then used to modulate 
a complex Gaussian noise process, simulating an actual 
pulsar pulse that is sampled at the Nyquist rate (Rickett 
1975). Gaussian noise can also be added to this signal so 
as to account for receiver and background sky noise 
with a specified signal-to-noise ratio. 

Referring to Figure 1 we see the results of one such 
simulation with an asymmetrical average waveform. The 
micropulse shape function is also asymmetrical, being a 
triangle with the base of the leading portion twice as 
long as that of the trailing portion. The filling factor of 
the micropulse shot train, which is defined as 

/=*,**;, (4) 

where is the micropulse width and rj is the micro- 
pulse occurrence rate, was chosen to be 0.25 for this 
simulation. Finally, the signal-to-noise ratio averaged 
over the pulse was set to be close to that characterizing 
the real pulsar data analyzed in § III. 

The results of the skewness analysis are shown on the 
right-hand side of Figure 1. Three skewness curves are 
shown: one of the average waveform itself and two (high 
and low resolution) curves for simulated pulses. The 
skewness function of the waveform is negative because it 
rises more slowly than it decays. In the low resolution 
curve, both the micropulse and the average waveform 
asymmetries are identifiable because of the difference in 
their time scales. The high resolution curve shows the 
micropulse skewness in more detail. 

In both the low resolution and high resolution curves, 
estimation errors are due primarily to the finite number 
of pseudo pulses (1200) rather than to the finite signal- 
to-noise ratio. This estimation error can be understood 
as the result of two effects. The first arises from overlap- 
ping features that affect the shape of the skewness 
function. In the simulation (with a relatively small filling 
factor) this effect is small. The second source of estima- 
tion error is due to exceptionally strong micropulses that 
cause the amplitude of the skewness function to be 
misestimated. Although the effect of any one contribu- 
tion will eventually be balanced out in the averaging 
process (at least in this simulation where the AMN is 
strictly adhered to), it is not easy to estimate how many 
pulses need to be averaged in order to stabilize the 

skewness curves. This has proven to be one of the most 
useful features of the simulated data analysis: the simu- 
lation allows an empirical investigation of the estimation 
error. 

Note that it is the first form of estimation error that 
has led us to adopt a statistical skewness averaging 
technique rather than investigating individual micro- 
pulses. Micropulse features are almost never completely 
isolated from overlapping subpulse, micropulse, or other 
“baseline” emission. The presence of sloping baseline 
emission will bias individual micropulse skewness func- 
tions, typically by an additive term (in the normalized 
skewness function) of order kb/h^ where A 6 is the 
difference in baseline height across the micropulse of 
height hp. This confusion term can significantly and 
irretrievably alter the normalized skewness function for 
an individual micropulse because of the uncertainty in 
subtracting basehne emission from a micropulse feature. 
The statistical averaging technique that we employ is, 
however, much less vulnerable to local baseline emis- 
sion, since the skewness function of independent 
random processes can be separated into independent 
skewness terms (see Appendix, particularly eq. [A34]). 

It should be pointed out that unsloped basehne 
emission will also have an effect on the value of the 
normalized skewness function. Although such emission 
introduces no new skewness, it does alter the magnitude 
of the uncorrupted skewness function by biasing the 
normalizing denominator 7}(0). A misestimation of the 
off-pulse signal mean could, for example, introduce such 
an effect. However, the autocorrelation function is even 
more sensitive to this sort of biasing, and, as we shall 
show in § III, there is no evidence (such as the autocor- 
relation not approaching zero for large lag values) that 
our results are significantly influenced by this effect. 

III. APPLICATION TO TWO PULSARS 

a) PSR 0950+08 

This nearby pulsar is sporadic in its emission char- 
acteristics, radiating in bursts of about 10 pulses whose 
amplitude distribution has a long tail (Ritchings 1976; 
Hankins and Cordes 1981). We have analyzed 240 pulses 
obtained at 430 MHz (see Table 1). The data were 
software dedispersed (Hankins and Rickett 1975) so that 
no interstellar dispersion broadening is present. The 
effect of interstellar scattering as a broadening agent is 
not important in our analysis of this pulsar at 430 MHz. 
Armstrong and Rickett (1981) estimate the decorrelation 
bandwidth at this frequency to be >2 MHz which 
results in a scattering time scale of <0.1 /is. 

The pulses were analyzed in blocks of 60 pulses. The 
variation in skewness profiles from block to block gives 
a good idea of the estimation error present in the 
analysis. The differences between blocks were negligible 
compared to the features common to all of the blocks. 
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708 STINEBRING AND CORDES 

TABLE 1 
Observing Parameters 

Pulsar Date 

Number 
of 

Pulses 

Time 
Resolution 

((is) Polarization 

PSR 0950+08 .. 
PSR 2016+28 .. 

1976 May 
1976 June 

240 
978 

0.8 
7.0 

LCP 
LCP 

The average signal-to-noise ratio for these pulses, de- 
fined as 

SNR=<Z+a_I<£>o«) (5) 
\ * /off 

(where on and off refer to on-pulse and off-pulse aver- 
ages) is ~ 2.2. This average value, though, does not 
account for the extremely localized character of the 
micropulse emission. The micropulses generally occur 
(with filhng factors between 0.1 and 0.5) in subpulse 
groups which typically fill only 30% of the pulse window. 
Therefore, the signal-to-noise ratio of a micropulse peak 
is typically >20. 

i) Skewness of a Single Pulse 

The skewness properties of a single pulse are shown 
in Figure 2. The left-hand side of this figure shows a low 
and high resolution picture of the pulse. Notice the 
sharp discontinuity near the center of this pulse, a 
common feature in this pulsar, with the breaks occurring 
at random longitudes. The right-hand panels show the 
corresponding skewness functions for the low (subpulse) 
and high (micropulse) resolution data. For positive in- 
tensity data the range of the skewness function is ± 1. 

Most of the 0.1 ms fluctuations in the low resolution 
skewness curve are estimation errors, but it is interesting 
to see the correspondence between the time series and 
the skewness curve. Of particular note is the bimodal 
structure (first a positive excursion followed by a stronger 
negative feature), due to the presence of two subpulses 
in this pulse. The initial positive feature is the sum of 
both the leading and trailing subpulse skewnesses. The 
skewness curve of the first subpulse alone would be 
negative because the emission rises more slowly than it 
decays. Conversely, the more sharply angled second 
feature would individually have a positive skewness. 
Since this second subpulse is stronger and more skewed, 
its contribution to the skewness function is greater; the 
pulse taken as a whole then has an initially positive 
skewness. For time lags slightly greater than the sub- 
pulse feature widths, the skewness curve returns momen- 
tarily to zero because the subpulses do not overlap. 
Once the correlation lag becomes large enough to start 
blending the two subpulse features we see a strong 
negative excursion. 

The high resolution skewness curve displays a number 
of features, but it is clear in this pulse that the micro- 
pulse skewness function has a mean of zero. The inten- 
sity discontinuity in the pulse does not affect this curve 
significantly because it occurs over a time scale long 
compared to the range of time lags. Note, too, that the 
values of the skewness function are smaller for the high 
resolution curve than for the low resolution one. This is 
a consequence of our normalization (eq. [3]) by the 
zero-lag third moment which decreases as the data are 
smoothed. 

ii) Average Skewness 

The ensemble average data are summarized in Figure 
3. The general features of the average waveform are 
clearly represented, with the steep falloff of emission in 
the second half of the pulse being a permanent feature 
of this pulsar’s profile. 

The skewness curve of the average waveform (the 
smoother curve in panel 3 c) demonstrates quantitatively 
what the eye can distinguish in the profile qualitatively: 
the second half of the pulse falls off more rapidly than 
the pulse builds up (hence, the skewness function is 
negative). 

The autocorrelation function, shown below the aver- 
age profile, has the following features: a small zero-lag 
spike component which has been reduced in height from 
its critically sampled value of 0.5 by the averaging of the 
data over 32 samples (64 degrees of freedom). More 
significant is the “breakpoint” in the slope of the curve 
at ~ 120 fis lag, which is a characteristic value of the 
distribution of micropulse widths. 

The heart of the analysis for PSR 0950+08 is shown 
in the average low and high resolution skewness func- 
tions. The low resolution curve still shows fluctuations 
on a 100-200 fis time scale, but these are due to 
estimation error. What is stable and significant is the 
negative excursion to a skewness value of —0.05 fol- 
lowed by an almost total return to the zero skewness 
level. This excursion indicates a systematic skewness of 
the subpulse features, with the rise time longer than the 
decay time. Notice that the subpulse skewness feature is 
both narrower and less pronounced than that of the 
average profile in Figure 3, indicating that a typical 
subpulse for PSR 0950+08 is both narrower in width 
and slightly more symmetrical than the average profile. 
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711 TIME ASYMMETRIES IN PULSAR SIGNALS 

The high resolution skewness function displays a much 
simpler functional behavior. To a very high degree of 
sensitivity there seems to be no systematic skewness on 
micropulse time scales in the pulses we have analyzed. 
Note the sharp improvement in the estimation error 
here, since we are now dealing with micropulse contri- 
butions which significantly outnumber the subpulse con- 
tributions in a typical pulse. If the micropulse shape 
were even 10% as asymmetrical on the average as the 
total profile we would see a deflection in this skewness 
curve. 

b) PSR 2016+28 

Whereas PSR 0950+08 is sporadic in its emission, 
PSR 2016 + 28 produces a very narrow average 
pulse amplitude distribution, with no evidence of nulls 
(Ritchings 1976). It does, however, exhibit drifting sub- 
pulses. Taylor, Manchester, and Huguenin (1975) have 
shown that the subpulse drift bands change their slope 
in a manner that maintains a roughly constant separa- 
tion (P2 ~ 10 ms or 7° of longitude). This is in contrast 
to PSR 0950+08 which only occasionally has multiple 
subpulses within the window at a given time, and then 
with no particular phase relationship between the two. 

The data for PSR 2016+28 have had the effect of 
dispersion smearing removed (yielding 7 /is time resolu- 
tion) and are also not significantly affected by scattering 
in the interstellar medium because the 430 MHz de- 
correlation bandwidth of 70 KHz (Rickett 1977) implies 
a scattering time of ^2 /is. 

We analyzed a total of 978 pulses for PSR 2016+28, 
split into two blocks. Again, we saw no significant 
differences in these two blocks. The estimation error is 
smaller for this pulsar than for PSR 0950+08, both 
because of the greater number of pulses and because the 
emission is steadier. 

Turning to the single pulse curves shown in Figure 4, 
we see a more complicated behavior than for PSR 
0950+08. The low resolution intensity curve of the pulse 
chosen here shows the characteristic double subpulse 
structure mentioned above, with the two subpulses sep- 
arated by ~11 ms. Likewise, in the low resolution 
skewness curve we see a double-troughed feature. As in 
Figure 2, the first trough represents the skewness of the 
individual subpulse features; the second feature is a 
“cross-skewness” of the two subpulses. 

The high resolution skewness curve looks remarkably 
similar to that for PSR 0950+08 except that the estima- 
tion error is smaller. Any micropulse feature would 
appear within the first 25-35 lag values; the rest of this 
skewness curve probes the subpulse structure. 

The average results for PSR 2016+28 (Fig. 5) show 
both strong similarities and differences with the PSR 
0950+08 curves. The profile is more complex than for 
PSR 0950+08, broader and composed of two unequal 
components. The autocorrelation function shows the 

presence of the second subpulse at an 11 ms time lag 
and the micropulse breakpoint at —250 /is. In the 
skewness curve, the tendency of the profile to fall off 
more steeply than it rises is confirmed quantitatively. 
There is some blending here of the notched structure 
between the two peaks into the leading and trailing edge 
features. This reduces the minimum value attained by 
the curve, since the notch and the outer edges of the 
profile have the opposite sense of skewness. 

The average low resolution skewness curve has a 
number of properties. Most important is the double- 
troughed feature already mentioned in the single pulse 
section. The first feature is preceded by a zero-level 
section indicating oppositely skewed but similar shapes 
for the two subpulses. The individual skewnesses of the 
subpulse components have opposite senses and hence 
cancel each other initially. After time lags greater than 
—3 ms, though, one of them starts to dominate. This is 
supported by the single-pulse analysis of PSR 0950+08 
above, which also has a “cross-skewness” trough. The 
sense of skewness compatible with this curve is one in 
which the outside edge of either one of the subpulses has 
a longer time scale than the inside portion of that same 
subpulse. This interpretation also requires the skewness 
of the first subpulse in the window to be slightly more 
pronounced than the second. 

At less than the 1% skewness level, there is no evi- 
dence for micropulse asymmetry in these data. Since the 
skewness analysis is statistical it can only be used to 
comment on the systematic properties of the mi- 
cropulses. It is not clear whether this high degree of 
symmetry is maintained in individual micropulses; a full 
investigation of this would require a sixth-order moment 
analysis to estimate the “skewness variance.” 

IV. DISCUSSION 

We have presented a general method for analyzing 
time series asymmetries and have applied it to pulsar 
signals. The skewness analysis sensitively probes asym- 
metries occurring on a variety of time scales. Further- 
more, it is not dependent on an explicit identification of 
the feature being explored, removing a source of bias 
from the results. We have also shown both empirically 
and analytically that this technique is able to identify 
time series asymmetries in the presence of noise and 
when the individual features are closely spaced. 

a) Observational Results 

A number of interesting results have arisen from the 
skewness analysis of PSR 0950+08 and PSR 2016+28. 
The micropulse emission from both (quite different) 
pulsars seems to be highly symmetric on average. The 
average symmetry may reflect a precise symmetry of 
individual micropulses; however, we cannot rule out the 
possibihty that micropulses are asymmetric with nearly 
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714 STINEBRING AND CORDES Vol. 249 

equal probabilities for positive and negative skewness. 
At the very least, we can conclude that there is no 
preferred sense of micropulse skewness. 

As for subpulse skewness, the sense of skewness is the 
same for both pulsars, although we do not suppose that 
this will hold for all pulsars. Of greatest significance is 
the fact that the average subpulse skewness follows that 
of the average waveform, at least in sense if not in 
detail. It is well known that the average waveform 
results from two effects: (1) a multiplicative one whereby 
features in single pulses have amphtudes determined in 
part by their position in the pulse window (strong 
subpulses tend to occur near local waveform maxima); 
(2) the frequency of occurrence of subpulses at given 
longitudes (strong but infrequent subpulses occur in low 
intensity regions of the waveform). The detection of 
significant subpulse skewness suggests that subpulse 
shapes are influenced by the multiplicative aspect of the 
waveform. The waveform is wider than subpulses due to 
subpulse jitter, and the waveform skewness is on a larger 
time scale than the subpulse skewness. The enhanced 
waveform skewness is clearly due to the arrival-time 
jitter of asymmetric subpulses, but it is also clear (Fig. 5 
of Hankins and Cordes 1981) that the jitter itself for 
PSR 0950+08 is time asymmetric: strong subpulses 
sometimes occur with their peaks on the leading edge of 
the waveform but almost never occur on the trailing 
edge. 

b) Physical Interpretation 

Physically, we can interpret the skewness measure- 
ments in terms of polar cap models as they are under- 
stood at present (Cheng and Ruderman 1980; Arons 
1979, 1981). Within such models we can furthermore 
make the distinction (as in the Introduction) between 
angular beaming and temporal modulations as possible 
causes for observed intensity variations. The correspon- 
dence of subpulse and average waveform asymmetries 

lends support to the view that subpulses represent angu- 
lar beams of emission that are instantaneous versions of 
the time-average emission beam (i.e., the waveform). A 
similar conclusion has been reached (Rickett and Cordes 
1981) on the basis of the polarization and frequency 
dependence of subpulse emission. 

Rickett and Cordes have also shown that micropulses 
are inconsistent with an angular beaming interpretation, 
primarily because micropulse separations are evidently 
frequency independent (Boriakoff 1981), whereas sub- 
pulse widths and separations depend on frequency in a 
manner consistent with angular beaming effects in polar 
cap models. Assuming micropulses represent temporal 
modulations we must ask why, on average, their rise and 
decay times are identical. Such temporal modulations 
may arise from fluctuations in particle injection processes 
or from coherence fluctuations. Both processes could 
easily produce asymmetric emission features since the 
initiation of particle creation and acceleration of coher- 
ent radiation may depend on different physics than the 
termination of these processes. One possibility is that 
asymmetries are produced locally but with either sense 
of skewness so that, even over an individual micropulse, 
the asymmetry is washed out. 
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graciously allowing us to use their data and for provid- 
ing helpful suggestions during the course of this work. 
R. Lovelace also made useful comments regarding the 
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paper through numerous helpful and heated discussions. 
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encouragement during the preparation of this paper. 
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APPENDIX 

SKEWNESS MEASURES OF STOCHASTIC PROCESSES 

a) Third-Order Moments 

The second-order moment analysis of a time series has become a common tool in astronomy, although it is more 
often referred to as an autocorrelation or spectral analysis. Since we rely heavily in our time skewness analysis on 
third-order correlation functions, we discuss them here along with definitions of the statistical measures which 
accompany them. We also apply this skewness analysis to an extension of Rickett’s (1975) amplitude-modulated noise 
model of pulsar emission. 

Consider a real continuous random process, I{t). The ensemble average of the autocorrelation function is defined as 

<Ä/(T)>=(j+(0/(*+T)<*)> (A1) 

where the duration of the time series is L (which should be implicitly understood in the expressions that follow). The 
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autocorrelation function is real, symmetric about the origin, and contains information about the time scales of 
amphtude variations in the signal. 

The third-order correlation of the same random process is 

<Q(t1)t2)> = ^//(0/(í+t1)/(í+t2)^^ (A2) 

whose two-dimensional Fourier transform, the bi-spectrum, is used extensively in oceanography and geophysics. We 
are interested in a restricted, one-dimensional version of this correlation, 

<7}(t)) = <C/(0,t)>, (A3) 

or 

(Ti+ (t)> = (C/(0,t)>= (\fI2(t)I(t+T)dt (A4a) 

and 

(TI-(T))=(CI(r,r))=^fl(t)I2(t+T)dty (A4b) 

for t>0 only. The function (7}(t)) is not in general symmetric about the origin. In fact, (7}(r)) is only symmetric if 
I(t) is composed only of time fluctuations which are symmetric about their centroids. 

The skewness function in our analysis is just a measure of the asymmetry of (7}(t)) (cf. Frenkiel and Klebanoff 
1967), 

^/(t) = 7)+(t)-7)-(t). (A5) 

For a deterministic /(/), like those functions shown in Figure 6, we gain no new insight from Kj(t) and do just as well 
considering I(t). However, for studying the structure of a random process (such as the micropulse features of a pulsar 
signal), we need a skewness measure that does not require us to explicitly locate each feature. This is the job performed 
by calculating Tt(t) (and subsequently the skewness function ^[r]), because it throws away information about the 
location of each feature and collapses the skewness information down to a region localized about the origin. 

Fig. 6.—Skewness functions of deterministic signals: (a) one-sided exponential and (b) its positive-going skewness function; (c) a 
triangle function with a negative-going skewness function. 
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A number of characteristics of Kj(t) are apparent in Figure 6. First of all, the sign of the function determines the 
sense of the temporal skewness: positive (negative) Kj(t) values indicate structure which rises more rapidly (slowly) 
than it decays. 

Second, note that by definition the skewness function will equal zero at the origin and that any excursion away from 
zero will occur on time scales equal to the temporal fluctuations being studied. This, of course, can lead to a blending 
of skewness features if there is modulation of I(t) occurring on several time scales at once, a point we consider further 
below. 

Third, the normalization of Kj(t) is chosen by analogy with the autocorrelation function to be 

*'(t)-W (A6) 

so as to limit the range of the skewness function to the internal [ — 1, +1]. This last condition strictly holds only for 
positive definite time series, such as the intensity of a pulsar signal. 

b) Application to an Empirical Model for Pulsar Signals 

We now apply this skewness analysis to the amplitude-modulated noise (AMN) model of pulsar emission. In this 
empirical description, the predetection signal is represented as the product of a statistically stationary noise process 
and a nonstationary amphtude modulation, 

y(t)=a(t)n(t), (A7) 

where a(t) is real and n(t) is zero-mean complex Gaussian noise. Assuming that the effects of dispersion smearing 
have been removed from the signal (see, e.g., Hankins and Rickett 1975) and that multipath scattering in the 
interstellar medium can be ignored, the fluctuation time scale of the signal is determined by the impulse response 
function of the receiver, h(t). Rickett has shown that the average autocorrelation of such a signal is 

(RI(r)) = (RAr))\Rh(0)\2 + (RAmRM2- (A8) 

The second term in this expression falls to zero at times greater than ~l/A^ for critically sampled data (Ay is the 
receiver bandwidth) so that the noise merely contributes a “zero-lag spike” to the autocorrelation function. Similarly, 
by expressing the sixth-order moment of complex Gaussian processes 

<XjX2X3.X4.X5X6) 

as a sum of all the unique products of second-order moments we find the analogous result for the third moment, 

(TI(T)) = 2\Rh(0)\XTa2(T))+4^ (A9) 

Note that the zero-lag spike in this case is 2/3 (7}(0)) as compared with 1 /2 (jR7(0)) for the autocorrelation function. 
Again, the only effect of the noise process on the average third moment occurs on time scales < 1/Ay. 

Concentrating attention, then, on the detected value of the amphtude modulating function, 

A(t)=a2(t), (A10) 

we want to break it into the product of two functions, 

A(t) = S(t)p(t), (All) 

the first describing subpulse variations in the signal, the second the micropulse contribution. The micropulse function 
can be further specified by assuming a stationary shot-noise model 

p(t)=2<iig(t-t<), (A12) 
i 

where the “shape function”, g(t), is deterministic and the a/s are drawn from an amphtude distribution with finite 
moments up to sixth order. 
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We now calculate the skewness function of I(t) in terms of the skewness functions of S(t) and From equation 
(A9) it follows that 

<7}(T)>cx<r4(T)> (A13) 

for times greater than 1/Ap, and, if we assume subpulse and micropulse variations are not correlated with each other, 
equation (Al 1) indicates that 

<^(t)> = <7;(t)><7;(t)>. (A14) 

If the rate of occurrence (per unit time) of the micropulse is ij, then 

(A15) 

and 

(n(t\)n{t2)y = =r\(a2) j g(t\-t')g{t2-t') dt', (A16) 

since = Then the third-order moment of /x(i) is 

From the definition of the skewness function, equation (A5), we then have 

<^(t)> = <M2(0í1(í+t)>-(m(0í‘2(í+t)), (A18) 

which, after using equation (A 17), becomes 

(Kljí(
T))=rl(a3)Kg(

T)’ (A19) 

with 

Ks(T)=fs2(t)g(‘+'r)dt-fg(t)g2(t+T)dt. (A20) 

Thus, the skewness function of the micropulse shot sequence is simply proportional to that of the micropulse shape, 
g(0- 

We now want to determine 

^(r) = 7;+(T)rít
+(T)-7;-(T)7;-(r), (A21) 

where ensemble averaging brackets should be understood on all quantities that follow. Using equation (A17) and 

Rfi(
T)=1l(a2>fg(Og(t+T)dt, (A22) 

we have 

7;±(0 = <i‘(0>3 + (f‘(0>[2^(r) + ÄM(0)]+T)<a3)7’g
±(T), (A23) 
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from which we find 
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^(T)=Tï<a3>[7;+(r)7’g
+(T)-7;-(T)7’g-(T)] 

+ (ft)
3[l +R,í(0)/(rf] K^ + I^R^KAt) 

If we further assume that on micropulse time-scales 

(A24) 

(A25) 

and, without any loss of generality set (ja) = l (thus attributing nonstationary intensity fluctuations to S(t)\ see eq. 
[All]), then 

(a/ (Wi) (a)2riW2 
1 

where 

and 

^(O=^(t)/Rm(0)<1, 

w. 
x)dx 

Jg3(x)dx 

1/2 

, W2 

[/g(^) dx 

Jg2{x)dx 

(A26) 

(A27) 

(A28) 

are characteristic micropulse time scales with Wl ~ W2. If we normalize the skewness function according to 

and use 

with 

Ica(t)=Ka(t)/Ta(0), 

7^(0) = 7^(0) 7^(0), 

t;±(o)=i + —^—2 + -^-*-, 
(aŸinWtf <a)2vW2’ 

(A29) 

(A30) 

(A31) 

we can simplify equation (A26): 

Mt) = 
(l + l//,2+3//2) |^g(T) + (1 + 1//2)^('r)+^^(T)^(T) (A32) 

where 

^ (A33) \ <a > / (û2> 

are two filling factors (e.g., if all amplitudes are the same, then ^ 1 implies that micropulses are few and far 
between, while y]Wl 2 

> 1 implies extensive overlap). 
Equation (A32), then, expresses the skewness function of I(t) in terms of the subpulse and micropulse skewness 

functions. How do these three terms contribute to kA(T)l For small values of the filling factors the expression becomes 

MT)~MT)+^[1+rM(T)]MT)- (A34) 
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On micropulse time scales the second term above is insignificant compared to the first, and we have kA{T)^kg(r). In 
other words, estimating the high resolution skewness function of the intensity is essentially the same as measuring it for 
the deterministic micropulse shape function. Additionally, on subpulse time scales, when /cg(r) and ^(r) are essentially 
zero, we have kA(T)^(f\/f1)ks('r)- That is, the estimated skewness function is proportional to the subpulse skewness, 
the proportionality depending on how fully the area under the subpulse is “filled” with micropulses. 

When the filling factor becomes very large we lose track of the micropulse skewness entirely and 

(A3 5) 

which is essentially zero on micropulse time scales. This is just an expression of the central limit theorem, the final 
distribution arising from the superposition of densely packed micropulses of any shape. At intermediate values of the 
/’s (of order unity) equation (A32) gives in principle a correction for the estimation of kg{r) from /^(r): 

Mt)~2{2Mt)-Mt)[1+,m(t)]}- (A36) 

c) Estimation Errors 

Finally, we consider in a qualitative fashion the error arising from the estimation of (kA{T)) by a finite averaging 
process 

<MO)est = T7 2 ^I(
T)’ (A37) 

/=1 

where kA{j) is the skewness function associated with the ith realization of A(t) (in our case the zth pulsar pulse). 
General considerations give an estimate of the third moment estimation error as 

AMt) 
l(MT))es,-(MT))| 

<Mt)> 
(a6)'/2 1 

<a3> 
(A38) 

where N is the number of micropulses in the ensemble average. Greatest estimation problems will arise, then, for 
amplitude distributions that are highly skewed and, of course, for pulsars with few micropulses. 

Note that this same analysis holds for additive receiver noise preset in the system, although for this case we know the 
amplitude distribution 

(a6)l/2 

' { =4.47, 
<a> noise 

and the value of N is equal to the number of independent time samples in the data set, typically a very large number. 
Hence, receiver noise is not a significant contribution to the skewness estimation error. 
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