THE INTERMEDIATE AGE GLOBULAR CLUSTER NGC 152 IN THE SMALL MAGELLANIC CLOUD

P. W. Hodge ${ }^{1}$
Astronomy Department, University of Washington
Received 1980 December 29; accepted 1981 February 17

Abstract

The color-magnitude diagram of the populous Small Magellanic Cloud cluster NGC 152, measured to $V \approx 22$, shows that it has an age of about 8×10^{8} years and is moderately metals-deficient. Its giant branch is sparsely populated, but includes at least two carbon stars at very red colors. There is a richly populated clump of intermediate-color giants at $M_{V} \approx 0$. Several superluminous giants are detected, also at intermediate colors, but averaging $M_{V} \approx-2.0$. The C-M diagram for the nearby field has very similar properties to those of the cluster.

Subject headings: clusters: globular - galaxies: Magellanic Clouds - stars: abundances stars: evolution

I. INTRODUCTION

This paper is part of a series of studies of intermediate age "blue globular" clusters of the Magellanic Clouds. The series has as its goal the determination of the ages and other features of these clusters from color-magnitude diagram studies. The most interesting aspect is the shape and distribution of stars in the giant regions of the clusters, which form a unique resource for the study of stellar evolution because of the large numbers of giants present. Previous papers have dealt with clusters in the range of age from 5×10^{7} to 10^{8} years (Hodge 1963; Flower and Hodge 1975; Baird et al. 1974; Flower 1976; Flower et al. 1980). We have until now concentrated toward the younger end of this range, because of the availability of excellent and fairly complete stellar evolutionary models for such stellar masses. In this paper, however, we give the results for one of a number of older clusters on our program. Because of theoretical problems with the degeneracy that arises in models at $\sim 2 M_{\odot}$, the comparison with theoretical evolutionary patterns in this case is less complete.

Gascoigne (1980) and Walker (1979 and several earlier references listed there) have both examined several members of the class of clusters sometimes called " anomalous Magellanic clusters." These are objects that originally appeared from early surveys (Gascoigne and Kron 1952; Hesser, Hartwick, and Ugarte 1976; Hodge 1960) to be bona fide globular clusters, but which were subsequently found to have colors (Searle, Wilkinson, and Bagnuolo 1980 and many previous references) that suggested differences from what are considered true globular clusters. The morphology of the giant branch also seemed anomalous in some of the earlier studies. Gascoigne (1980) and

[^0]Walker (1971) were able to show that the objects in question are younger than true globular clusters by going to faint enough limits of photometry that the main sequences were detected. Absolute magnitudes at main sequence turnoff were found to be on the order of +1 for these objects, indicating an age of approximately 1 billion rather than 12 billion years.

NGC 152 in the Small Magellanic Cloud (SMC) is a particularly favorable cluster for this kind of study for two reasons: It is reasonably clear of the most crowded region of the Small Magellanic Cloud so that photometry can be carried to faint limits; second, its structure is sufficiently loose that a fairly complete census of its members can be made right up to the center of the cluster. Its color in the $U B V$ system has been measured at $B-V=+0.70$ (Alcaino 1978) and +0.67 (van den Bergh and Hagen 1968), suggesting that its age is probably intermediate between the young and the true globular clusters.

II. OBSERVATIONS

The observational data on NGC 152 were obtained at the Cerro Tololo Inter-American Observatory in 1979 September and 1980 October-November. Plates (Table 1) were obtained at the prime focus of the CTIO 4 meter telescope. For all plates an auxiliary wedge (Pickering 1891; Racine 1969) 18 cm in diameter was placed in the telescope beam to form secondary images to extend the photometry beyond the photoelectric direct measurements. Plates of 47 Tucanae were taken in each color on each night to calibrate the difference in magnitudes between the primary and secondary images, and in all cases this difference was found to be $6.88 \pm 0.03 \mathrm{mag}$.

Photoelectric measurements were made of 15 stars adjacent to NGC 152, ranging in magnitude from $V=7.82$ to $V=19.42$ and $B-V$ of -0.03 to $B-V$ of

TABLE 1
Plates of NGC 152

Plate	Emulsion	Exposure （minutes）	Filter	Seeing （arcsec）
2260	IIa－D	30	GG495	2
2264	IIa－O	10	GG385	2－3
2265	IIa－O	30	GG385	2
2266	IIa－O	30	GG385	2－3
2282	IIa－D	2	GG495	3
2283	IIa－D	5	GG495	3
2287	IIa－D	10	GG495	3－4
2288.	IIa－D	30	GG495	2
2289	IIa－D	30	GG495	2
4351.	IIa－O	3	GG385	1.5
4352.	IIa－O	30	GG385	1.5
4353	IIa－O	10	GG385	1.5
4354.	IIa－O	2	GG385	1.5
4355.	IIa－D	2	GG495	1.5

1．96．It was intended to carry－the photoelectric sequence to fainter magnitudes，but cloudy weather prevented this． However，with the use of the auxiliary prism，it was possible to extend the effective calibration to $V=21.72$ and $B=22.48$（Table 2）．The internal consistency of this extension was checked both for the 47 Tucanae plates and the plates of NGC 152 and is excellent，with a formal probable error of only 0.05 mag ．The photoelectric mag－ nitudes were determined directly by comparison at the telescope with equatorial $U B V$ standards，and are there－ fore independent of any other sequences in the Magel－ lanic Clouds．

III．DATA REDUCTIONS

Using a Cuffey iris astrophotometer，all stars that were reasonably well separated from their neighbors in NGC 152 were measured on the plates for which they were measurable．The stars are identified in Figure 1，and data are given in Table 3.

IV．THE PRELIMINARY COLOR－MAGNITUDE DIAGRAM

In Figure 2 we plot the magnitudes and colors of all measured stars in the area of NGC 152 designated in Figure 1．This figure includes both stars that are field stars and foreground stars，unrelated to NGC 152，as well as a very large number of stars for which the probable error as determined by comparison of magnitudes on various plates is large due to image crowding．We show it in order to give an idea of the distribution of stars in the color－ magnitude diagram for a nearly complete cluster sample． The cluster contains a large number of stars on the main sequence and a concentration of stars in the giant region， in both cases involving approximately 3 times as many stars for the cluster as for the field（these statistics will be discussed in more detail below）．It should be emphasized that the complete color－magnitude diagram shown in Figure 2 is populated with many points for stars that we， in our previous papers，would have excluded from the photometry because of crowding．For this complete sample，the probable errors are calculated to be on the average 0.08 for V and 0.19 for B ．For the limited sample discussed in § VI below，however，the sampling was limited to those stars for which the probable error in $V \leq 0.07$ ．

v．FIELD STARS

Figure 3 shows the area of sky which was chosen for purposes of determining the nature of the foreground and background star population．It is located 5^{\prime} northeast of NGC 152 at a position where the SMC star density is very nearly equal to that at NGC 152．The area of the field chosen is equal to that of the star cluster field．All stars brighter than $V=19.6$ in the field were measured with the astrophotometer，and for the indicated sector of the field a complete sample to $V=21.8$ was measured （Table 4）．The resulting color－magnitude diagram is shown in Figure 4．It resembles fairly closely the color－ magnitude diagram of the cluster，a circumstance that has been found true in general in the Magellanic Clouds（e．g．，

TABLE 2
Photoelectric Sequence

Star	V	$B-V$	$U-B$	$S(V)$	$S(B-V)$	$S(U-B)$	n	V^{\prime}	B^{\prime}
A	12.72	0.54	－0．03	± 0.01	± 0.01	± 0.01	8	19.60	20.14
B	14.51	0.99	－0．70	0.03	0.04	0.05	3	21.39	22.38
C	11.17	0.58	0.06	0.02	0.02	0.02	7	18.05	18.63
D	14.84	0.76	0.32	0.01	0.03	0.04	4	21.72	22.48
E	16.39	1.96	．．．	0.06	0.10	．．．		．．．	\ldots
F	15.96	0.74	\ldots	0.11	0.15	．．．	8	\ldots	\ldots
H	17.37	1.39	\ldots	0.18	0.18	．．．	8	\ldots	\ldots
M	19.42	0.90	\ldots	0.20	0.22	\ldots	4	\ldots	\ldots
X	16.86	－0．03	\ldots	0.09	0.10	\cdots	5	\ldots	
Y	13.16	0.53	0.02	0.02	0.01	0.01	3	20.04	20.67
Z	13.51	0.65	0.13	0.07	0.01	0.01	3	20.39	21.04
AA	12.12	0.50	－0．02	0.02	0.01	0.02	3	19.00	19.50
CC	9.71	1.27	1.29	0.02	0.01	．．．	3	16.59	17.86
DD	7.82	0.90	0.61	．．．	．．．	\ldots	1	14.70	15.60
VF．	18.74	0.76	．．．	0.14	0.14	\ldots	5	\ldots	．．．

Fig. $1 b$

TABLE 3
Photographic Measures in NGC 152

	Star	V	$B-V$	Star	V	$B-V$		Star	V	$B-V$
A1		21.14	0.25	A77	19.12	0.80	B65		20.29	0.56
A2		21.16	-0.05	A78	20.74	-0.43	B66		19.13	0.84
A3		21.21	0.00	A79	20.66	-0.01	C1		20.47	0.23
A4		19.11	0.42	A80	20.98	0.13	C2		20.32	0.79
A5		21.64	0.05	A81	19.61	0.88	C3		19.26	0.66
A6		19.85	0.62	A82	21.17	-0.32	C4		20.91	-0.02
A7		18.97	0.81	A84	21.27	-0.06	C5		21.14	-0.11
A8		19.55	0.68	A85	20.36	0.03	C6		19.29	0.81
A9		18.06	1.17	A86	19.12	0.78	C7		19.33	0.80
A10		21.61	0.21	A87	21.35	0.09	C8		20.03	0.14
A11		19.07	0.84	A88	18.27	0.92	C9		20.50	0.32
A12		20.55	0.66	B1.	19.21	1.10	C10		20.78	-0.49
A13		18.23	1.02	B2.	21.35	0.09	C11		20.69	0.77
A14		19.12	1.03	B4.	19.98	-0.07	C12		19.18	0.99
A15		21.04	-0.16	B5.	19.01	0.67	C13		18.72	1.10
A16		21.08	-0.24	B6.	18.75	1.00	C14		21.10	0.42
A17		18.14	1.27	B7.	19.13	0.84	C15		19.29	0.68
A18		21.10	-0.42	B8.	20.43	-0.24	C16		20.51	-0.01
A19		19.26	0.99	B9	18.80	1.11	C17		19.01	0.80
A20		20.46	0.77	B10	18.94	1.26	C18		19.99	0.31
A22		20.58	0.78	B11	16.52	1.93	C19		15.88	1.71
A23		20.44	-0.14	B12	18.89	0.98	C20		19.25	0.57
A24		19.56	0.75	B13	19.23	1.08	C21		18.88	0.81
A25		18.40	1.04	B14	19.72	1.10	C22		20.82	0.38
A26		20.34	-0.31	B15	21.26	0.40	C23		19.85	0.05
A27		19.44	0.72	B16	21.36	-0.03	C24		17.12	0.28
A28		20.51	-0.06	B17	18.35	1.14	C25		21.05	0.28
A29		19.63	0.98	B18	20.46	-0.24	C26		21.41	0.37
A30		19.19	0.85	B19	21.02	0.02	C27		21.13	0.43
A32		19.17	0.82	B20	20.53	0.49	C28		20.85	0.08
A33		17.11	1.57	B21	21.37	0.57	C29		19.41	0.88
A34		20.96	-0.31	B22	21.14	-0.25	C30		19.54	1.12
A35		21.20	-0.36	B23	20.11	0.83	C31		19.45	1.00
A36		17.99	1.77	B24	19.28	0.52	C32		19.50	0.85
A37		21.27	-0.25	B26	19.97	0.06	C33		19.41	0.83
A39		21.25	0.07	B27	20.06	0.00	C34		20.80	-0.17
A40		21.37	0.21	B28	21.04	-0.26	C35		17.98	1.34
A41		18.41	0.90	B29	18.82	1.03	C36		17.75	1.21
A42		20.69	0.06	B30	20.26	0.04	C37		17.02	1.11
A43		18.60	1.17	B31	20.93	-0.03	C38		19.23	0.92
A44		20.01	0.65	B32	19.65	0.92	C39		19.52	0.82
A46		19.58	0.93	B33	21.28	-0.53	C40		19.74	1.23
A47		19.77	1.15	B34	20.37	0.18	C41		19.48	1.02
A48		19.34	1.00	B35	19.39	0.76	C42		21.22	-0.29
A49		18.91	1.07	B36	19.02	1.71	C43		21.31	-0.31
A50		21.48	0.25	B37	19.39	0.93	C44		20.57	0.10
A51		19.16	0.70	B38	19.27	0.95	C45		20.62	-0.15
A52		20.50	0.60	B40	20.19	1.00	C46		20.36	-0.21
A53		20.05	0.09	B41	21.49	-0.18	C47		21.06	0.13
A54		19.31	0.78	B42	21.28	-0.01	C48		19.53	0.96
A55		20.87	-0.13	B44	21.03	-0.15	C49		20.92	-0.49
A56		18.98	0.66	B45	20.19	0.00	C50		20.12	0.09
A58		19.15	0.85	B46	19.23	0.78	C51		19.51	0.98
A59		18.01	1.10	B47	21.39	0.19	C52		19.96	-0.08
A60		21.53	-0.16	B48	20.71	0.07	C53		20.25	0.80
A61		19.32	0.95	B50	20.57	0.37	C54		19.31	0.67
A62		20.61	-0.14	B51	21.46	-0.38	C56		19.97	-0.14
A64		18.40	1.08	B52	21.35	0.10	C57		19.66	1.06
A65		21.01	0.06	B53	21.51	-0.05	C58		20.82	0.72
A66		17.61	1.31	B54	21.48	-0.62	C59		18.51	0.96
A67		19.43	0.10	B55	21.00	-0.42	C60		18.69	0.84
A68		19.38	0.90	B56	20.66	0.15	C61		18.60	0.51
A69		18.54	1.16	B57	19.42	1.03	C62		21.10	-0.39
A70		19.10	0.99	B58	20.93	-0.08	C63		20.34	0.09
A71		19.39	0.84	B59	19.17	1.02	C64		20.72	-0.03
A72		20.88	-0.07	B60	17.85	1.31	C65		21.10	0.07
A73		19.65	0.69	B61	20.03	0.65	C66		21.10	0.37
A74		21.00	0.12	B62	21.36	-0.25	C67		19.60	0.77
A75		18.31	1.10	B63	20.96	0.09	D1		18.29	0.82
A76		19.93	0.79	B64 .	19.86	0.23	D2		18.70	0.96

TABLE 3. (continued)

Star	V	$B-V$	Star	V	$B-V$	Star	V	$B-V$
D3	20.19	0.84	D87 ...	18.83	0.89	H16	19.32	0.87
D4	21.22	0.24	E1.	20.45	0.05	H18	20.74	-0.31
D6	20.91	0.36	E2.	18.92	0.72	H19	17.94	1.09
D7	19.54	0.78	E3	20.17	0.17	H21	19.12	0.83
D8	18.92	0.99	E4	20.90	-0.33	H22	18.76	0.64
D9	21.79	0.21	E5	19.18	0.28	H23	15.98	1.66
D10	21.72	-0.34	E6	19.51	0.69	S1.	16.90	1.19
D11	19.31	0.81	E7.	19.31	0.93	S2	17.93	0.43
D12	19.34	0.76	E9	19.18	0.34	S3	19.15	0.54
D14	20.07	0.19	E10	19.39	1.09	S4	18.44	0.61
D15	19.18	0.94	E11	19.92	0.59	S5	16.84	3.17
D16	19.39	1.02	E12	20.86	-0.24	S6	17.32	0.17
D17	19.41	1.00	E13	20.52	-0.25	S7	18.25	0.66
D18	21.10	0.10	E14	19.11	0.92	S8	18.24	0.39
D19	20.34	0.81	E15	19.32	0.91	S9	19.05	0.39
D20	21.66	-0.13	E16	18.74	0.92	S10.	18.86	0.10
D21	20.94	-0.11	E17	17.99	0.70	S11.	17.73	0.88
D22	21.36	-0.40	E18	16.70	1.58	S12.	16.21	0.93
D23	21.17	-0.06	E19	18.07	1.14	S13.	17.35	0.87
D24	19.28	0.90	E21	20.86	-0.43	S14.	18.95	0.60
D25	21.03	0.88	E22	20.27	0.07	S15.	17.82	0.85
D26	19.18	0.82	E24	19.16	0.99	S16.	18.84	0.46
D27	19.13	0.76	E25	18.48	0.61	S17.	16.96	0.68
D28	20.76	-0.36	F1..	19.42	0.75	S18.	18.88	0.50
D29	21.48	-0.33	F2.	20.77	-0.40	S19.	17.58	0.66
D33	17.47	1.19	F3.	20.36	-0.38	S20.	17.28	0.42
D34	21.31	-0.37	F6.	19.17	0.76	S21.	17.19	0.70
D34	21.31	-0.37	F7.	19.70	0.71	S22.	19.07	0.31
D35	19.33	0.80	F8.	18.83	1.05	S23.	19.11	0.35
D36	18.68	1.19	F9.	19.67	0.13	S24.	18.60	0.68
D37	18.77	0.94	F10	18.57	0.98	S25.	18.80	0.19
D38	20.12	0.87	F11	19.19	1.06	S26.	18.90	0.75
D39	21.14	0.07	F12	20.37	-0.09	S29.	18.76	0.82
D44	21.39	0.03	F13	20.52	-0.11	S32.	18.99	0.61
D45	20.99	-0.08	F14	20.71	-0.26	S33.	18.53	0.38
D46 .	21.44	-0.45	F15	19.97	0.04	S34.	19.02	0.47
D47	20.68	-0.34	F16	19.36	0.93	S35.	18.75	0.56
D48	17.82	1.07	F17	19.36	1.00	S36.	18.68	0.18
D49	19.47	0.90	F19	20.77	-0.39	S37.	18.29	0.80
D50.	18.90	0.79	F20	19.05	0.88	S38.	19.26	0.06
D51	19.25	0.71	F21	20.85	-0.34	S39.	18.44	0.31
D52.	19.53	0.82	F22	19.46	0.99	S40.	18.65	0.04
D53	20.53	-0.44	F23	18.95	1.39	S41.	16.57	0.62
D54	20.58	-0.04	F24	18.43	0.59	S42.	17.24	0.73
D55	19.17	1.04	F27	19.22	0.48	S43.	18.74	0.24
D57	20.44	0.48	F28	17.11	2.29	S44.	18.78	0.35
D58	19.24	0.40	G2.	20.60	-0.15	S45.	18.72	0.64
D59	19.05	0.71	G3	18.94	0.82	S46.	18.44	0.36
D60	19.36	0.77	G4	19.07	0.36	S47.	19.00	0.49
D61	21.21	-0.10	G5	20.78	-0.21	S48.	17.66	0.35
D62.	21.55	0.04	G6	19.82	-0.05	S49.	17.64	0.46
D63	19.32	1.11	G9.	19.65	0.95	S50.	18.18	0.37
D64.	18.66	1.12	G10	18.38	1.23	S51.	18.98	0.21
D65.	18.64	1.28	G11	19.36	0.37	S52.	17.55	0.67
D66.	19.19	0.94	G12	18.04	1.20	S53.	18.76	0.25
D67 .	21.18	0.75	G13	19.43	0.25	S54.	18.77	0.12
D68.	20.89	0.15	G14	18.40	0.82	S55.	16.29	1.83
D69.	20.73	0.87	G15	19.84	0.85	S56.	18.47	0.77
D71..	20.56	-0.12	G19	16.90	0.69	S57.	18.38	0.37
D72.	19.87	0.90	G20	19.13	1.13	S58..	18.42	0.75
D73.	20.47	0.82	G21	19.29	1.18	S59.	17.22	0.84
D74.	21.10	-0.40	H3.	19.02	1.05	S61.	18.92	0.68
D76.	21.01	0.52	H4	20.66	0.14	S62.	18.40	0.72
$\begin{aligned} & \text { D77 } \\ & \text { D78 } \end{aligned}$	20.94	0.00	H5	18.55	1.15	S64.	18.65	0.38
D78.	19.33	0.87	H6	17.15	1.44	S65.	18.92	0.45
D80	17.78	1.36	H7	19.25	0.92	S66.	18.03	0.84
D81 .	21.78	-0.29	H8.	19.17	0.95	S67.	18.22	0.56
D82 D83	21.50	-0.41	H9 .	19.18	0.55	S68.	19.28	0.31
$\begin{aligned} & \text { D83 . } \\ & \text { D84 } \end{aligned}$	20.49	0.81 -0.44	H12	19.99	0.01	S69.	19.06	0.88
D84	21.47	-0.44 0.06	H 13 H 14	19.33 19.11	0.15 0.86	S70.	18.09	0.57 0.67
D86...	21.32	-0.36	H15 ...	19.49	0.86 0.93	S72....	18.94 19.29	0.67 0.88

Fig. 2.-C-M diagram for all stars in NGC 152 for which even crude magnitudes could be measured. The carbon stars are indicated by C.
see Flower et al. 1980). This suggests that the clusters in the different parts of the Clouds might be thought of as condensations of the general stellar population. The field $C-M$ diagram shows the main sequence reaching up to approximately $V=21$ and a general concentration of giants in the color range $B-V \approx 1.0$ and at the level $V \approx 19.5$. The giant branch apparently extends up to $V \approx 17$ and $B-V=1.6$ for the field stars. The fainter upper limit for the sparsely populated main sequence may indicate a generally older age for the field, though the number of stars is too small to make this a very strong statement. It is likely, instead, that the field has a range in age, with the majority of the stars having ages of one to a few billion years.

VI. THE CLUSTER COLOR-MAGNITUDE DIAGRAM

Figure 5 shows the color-magnitude diagram for NGC 152 that includes only those stars with V magnitudes that have a probable error of less than 0.7 mag. Several features of this diagram are significant. There is a wellpopulated main sequence at $B-V \approx 0.0$, extending from $V=22$ up to $V=20.0$. The main sequence width is large because of the uncertainties in the photometry below $V=20$, leading to larger than average probable errors in the values of $B-V$ even for the select group of stars shown in this figure. The mean color of the main sequence agrees very well with the standard age-zero main sequence color for these absolute magnitudes, which in turn agrees with the fact that there is probably very little reddening in the SMC and in the foreground at this location (Sandage and Tammann 1974).

A second conspicuous feature of Figure 5 is a strong concentration of stars in a giant "clump" centered at $B-V=0.95$ and $V=19.3$. This group of giants is apparently identical to the so-called "clumps" of giants found in intermediate age clusters in our Galaxy (Cannon
1970), as well as in the Magellanic Clouds (Gascoigne 1980; Hodge 1980). It represents the stage of stellar evolution that occurs after giant branch evolution, when helium burning begins in the core and the star's temperature increases and its evolutionary progress slows down, leading to an accumulation of stars (Gascoigne et al. 1976). A comparison of the giant branch clumps in various clusters of the two Magellanic Clouds, including comparisons with stellar models and a semiempirical solution to the age and chemical composition problem, is given elsewhere (Hodge 1980).

A third feature of the color-magnitude diagram is the thinly populated giant branch extending from $B-V=$ $0.80, V=20.5$, to $B-V \approx 2.0$ and $V=16.5$. At the red tip of the giant branch there are two carbon stars (see§ VIII).

A fourth feature of the color-magnitude diagram is a scattering of stars of intermediate color, most of them at $V \approx 17$ to 18 and ranging in color from $B-V=0.2$ to the color of the giant branch. A comparison with the field color-magnitude diagram (§ V and below) shows that statistically the majority of these stars must be members of the cluster. All but one of the seven are located in the cluster core. We believe that these are most likely similar stars to those found in many other, somewhat younger, clusters in the Large Magellanic Cloud (LMC) (Flower and Hodge 1975; Flower et al. 1980). For reasons discussed in the latter of the above cited papers, it seems most likely that these are stars in an advanced stage of evolution, one which has not yet been predicted on theoretical grounds. A second possibility is that the stars represent an accumulation of multiple stars that for some dynamical reason are concentrated toward the center of this cluster. A discussion of these objects is presented in more detail elsewhere (Hodge 1981).

Figure 6 shows an alternative way of presenting the color-magnitude diagram of NGC 152 , which allows the

FIg. 3.-The SMC field near NGC 152 with measured field stars identified.

TABLE 4
Field Stars

Star	V	B-V									
1	17.19	1.11	45	22.07	0.37	89	21.96	-0.40	202	19.50	0.76
2	21.78	0.24	46	21.99	-0.51	90	22.05	0.49	204	18.57	1.06
3	19.86	0.57	47	21.25	0.39	91	22.46	-1.06	208	19.32	0.78
4	18.58	0.40	48	17.86	1.18	92	22.11	-0.38	218	19.40	0.81
5	19.25	0.74	49	19.59	0.84	93	22.10	-0.15	223	17.48	1.37
6	19.32	0.52	50	17.39	1.69	94	21.01	-0.25	224	18.82	0.83
7	22.14	-0.91	51	22.04	0.13	95	21.76	-0.63	225	19.29	0.91
8	22.33	-0.58	52	19.86	0.59	96	21.78	-0.35	228	17.85	1.13
9	21.45	0.26	53	22.72	-1.39	97	21.29	0.25	230	19.57	0.96
10	20.07	0.60	54	21.93	-0.42	98	21.40	0.03	231	19.51	0.48
11	21.75	-0.95	55	22.05	-0.57	99	22.04	-0.96	232	18.61	1.05
12	17.37	1.65	56	22.40	-0.99	100	22.74	-0.68	253	19.09	1.22
13	21.10	-0.13	57	18.16	1.04	101	19.80	0.82	254	18.96	1.02
14	18.25	1.34	58	19.74	0.59	104	19.78	0.59	256	19.32	1.25
15	21.57	-0.55	59	20.13	0.03	115	19.20	0.44	257	19.31	0.85
16	22.34	-0.32	60	19.53	0.89	116	19.48	1.01	262	17.54	1.22
17	22.51	-0.20	61	19.35	1.07	120	19.23	0.88	271	18.66	1.11
18	20.21	0.22	62	21.19	-0.30	121	19.39	1.07	280	17.74	1.79
19	20.31	0.38	63	21.83	-0.46	124	19.67	0.88	289	18.54	0.01
20	20.70	0.26	64	21.29	0.01	133	19.19	0.90	291	18.88	1.05
21	22.07	-0.62	65	22.05	-0.94	136	19.44	0.76	292	19.02	1.00
22	20.23	0.24	66	20.95	0.00	138	19.54	0.71	293	19.55	0.39
23	19.64	0.55	67	19.90	0.45	142	19.10	0.97	311	19.13	0.90
24	22.20	-0.64	68	21.61	-0.18	145	18.20	1.28	312	18.61	1.20
25	22.71	0.24	69	19.99	0.73	146	19.44	0.71	315	18.88	0.69
26	20.14	0.71	70	22.04	-0.75	148	19.49	0.99	318	18.89	1.23
27	19.46	0.51	71	22.05	-0.70	150	18.70	0.73	319	19.26	1.21
28	22.01	-0.69	72	22.16	-0.41	152	19.51	0.90	322	19.22	0.81
29	19.15	0.68	73	22.46	-0.35	153	19.13	-0.83	327	19.32	0.86
30	22.30	-0.36	74	21.28	-0.47	156	18.27	0.96	330	18.88	0.98
31	20.46	0.24	75	18.71	0.88	171	19.58	0.14	334	19.78	0.99
32	19.83	1.08	76	19.51	0.83	172	19.67	0.93	339	19.18	0.58
33	20.09	0.22	77	22.74	-0.68	174	18.79	1.16	341	19.45	1.13
34	19.07	0.86	78	19.91	0.51	175	19.52	0.56	345	18.93	1.03
35	21.36	-0.66	79	21.16	-0.10	178	18.53	1.00	346	19.46	0.87
36	21.25	0.00	80	22.37	-0.40	181	19.60	0.96	347	19.27	0.93
37	18.57	0.85	81	18.46	0.88	184	19.21	0.68	348	19.11	0.68
38	19.45	0.12	82	20.05	0.86	186	19.65	0.96	352	19.25	0.38
39	20.84	-0.20	83	18.67	0.64	187	18.99	0.66	353	18.92	0.64
40	22.05	-0.13	84	22.55	-0.91	188	19.46	1.08	354	19.26	0.86
41	22.24	-1.16	85	22.74	0.14	197	19.59	0.83	357	18.29	1.25
42	19.96	0.16	86	19.05	0.77	198	19.23	1.02	360	18.94	0.86
43	22.22	-0.36	87	19.61	0.97	199	19.04	1.38	362	19.75	0.01
44	20.55	0.72	88	22.19	-0.48	200	18.91	1.24			

reader to gauge the effects of contamination of the diagram by field stars. In this figure we compare the number of stars in the NGC $152 C-M$ diagram for each square of the array with the number of stars in that color-magnitude interval found in the field diagram. In the case of the field diagram numbers, statistical corrections have been made to allow for the difference in the area covered and for the difference at different magnitude levels of the loss of plotted stars in NGC 152 due to crowding. The result shows that most of the main sequence stars and giant stars are members of NGC 152, while the field stars occupy primarily regions of intermediate color (particularly around $V=20$). Figure 7 is a third representation of these data, in which a statistical subtraction of stars in the color-magnitude diagram has been effected by using the field diagram (corrected for equivalent coverage at different magnitudes) to remove stars from the cluster diagram. In this case, the cluster diagram stars nearest in plotted position to equivalent
stars in the field diagram were removed, giving a cleaned diagram of cluster stars only.

VII. INTERPRETATION OF THE COLOR-MAGNITUDE DIAGRAM

In the following discussion I am using the distance modulus, reddening, and absorption for the Small Magellanic Cloud that was derived by Sandage and Tammann (1974). Conclusions regarding the age and chemical composition of NGC 152 would be somewhat altered if instead the distance modulus and reddening proposed by de Vaucouleurs (1978) were used. It should be noted that the latter does not seem to fit the observations of the main sequence as well as the Sandage-Tammann distance and reddening, as is illustrated in Figure 8, which shows a comparison of the observations with the Yale isochrones (Ciardullo and Demarque 1977) for stars with $Z=0.007$ and $A=2 \times 10^{9} \mathrm{yr}$, the lower age limit suggested for this cluster by Mould and Aaronson (1980) on the basis of its

Fig. 4.-The $C-M$ diagram for the field near NGC 152. See text for a discussion of completeness to different magnitude limits.

FIG. 5.-The $C-M$ diagram for NGC 152 , including only those stars for which the probable error in V is less than 0.07 .

FIG. 6.-A comparison of the NGC 152 C-M diagram (points and left-hand numbers in each box) with the field (right-hand numbers), all corrected for relative completeness.

Fig. 7.-The NGC 152 C-M diagram from which field stars have been removed statistically.

FIG. 8.-A comparison of the NGC $152 C-M$ diagram with a Yale isochrone for $Z=0.007$ and $A=2 \times 10^{9} \mathrm{yr}$, assuming two different assumptions about reddening and distance. Also shown is a model calculated by Flower et al. (1980) and an adopted C-M diagram interpretation.

FIG. 9.-A comparison of schematic C - M diagrams for three SMC clusters for which faint photometry is available

FIG. 10.-The spectrum of the carbon star H23, obtained with the RC spectrograph and the SIT-Vidicon on the CTIO 4 m telescope.
integrated colors. This comparison also shows that these particular values of the Yale isochrones are inappropriate for NGC 152 no matter which distance modulus and reddening is assumed, the cluster being considerably younger than 2 billion years if the composition is anything like that of the Yale model.

Figure 9 shows a comparison of NGC 152 with two other SMC clusters for which photometry is available to similar magnitude limits, Lindsay 1 and Kron 3 (Gascoigne 1980). It is clear that SMC clusters are fairly similar in the main properties of their color-magnitude diagrams. NGC 152 seems to be the youngest of the three, with a main sequence turn off point that is approximately half a magnitude brighter than for Kron 3 (although this is somewhat uncertain because of poor statistics of stars on the upper main sequence) and more than a magnitude brighter than the main sequence turnoff for Lindsay 1. The giant branch of NGC 152 is very similar in color to that for Lindsay 1, except for the fact that it extends to brighter and redder limits. It is significantly redder than that for Kron 3, a fact which is most likely accounted for by a difference in the chemical abundances for the two clusters. The magnitude for the clump of stars in the giant

TABLE 5
Carbon Stars and Very Red Stars

Star Name	V	$B-V$	Type ${ }^{\text {a }}$
Confirmed carbon stars:			
H23	$15.98{ }^{\text {b }}$	1.66	C,2
F28	17.11	2.29	C,4
Very red stars:			
B11....	16.52	1.93	K5
C19.	15.88	1.71	M0
E18	16.70	1.58	K5
S5	16.84	3.17	...
S55	16.29	1.83	\ldots

[^1]region, which we identify as the equivalent of blue loops in younger clusters or the horizontal branch in older clusters, is approximately the same for the three clusters, $M_{V}=0.0 \pm 0.5$.
A more complete discussion of the color-magnitude diagram's interpretation in terms of both age and chemical abundances is given elsewhere (Hodge 1980). There an array of observationally calibrated theoretical $C-M$ diagram parameters leads to a value of $Z=0.0035$ and an age of $8 \times 10^{8} \mathrm{yr}$ for NGC 152. It is thus similar in age to NGC 1868 in the LMC (Flower et al. 1980), but is less metals-poor. NGC 1868's slightly younger age and its very blue giant branch both account for the cluster's bluer integrated color $(B-V=+0.45$, as compared to +0.70 for NGC 152). ${ }^{2}$

VIII. THE CARBON STARS

Star H32, one of the brightest in the cluster, was examined with the Cassegrain Spectrograph and the SIT Vidicon on the CTIO 4 m telescope on 1979 September 27. Grating 26, giving a dispersion of $100 \AA \mathrm{~mm}^{-1}$ over $3600-5200 \AA$, was used with a $600 \mu \mathrm{~m}$ slit width. Standard CTIO 10th mag stars were used for the reductions, which were carried out on the La Serena computer. The star turned out to be very red (Table 5), and its spectrum (Fig. 10) is that of a carbon star. Mould and Aaronson (1980) independently identified this object as a carbon star, classifying it as type C,2. Additionally, they found star F28 to be a carbon star of type C,4. We have picked out other red stars and likely candidates, based on their locations in the $C-M$ diagram.

I wish to acknowledge the help of Richard Dickson who did the astrophotometry, Edward Olszewski who

[^2]reduced the photoelectric measures, and Hugh Harris who reduced the spectrophotometry. I am also indebted to Phillip Flower for many helpful discussions and for letting me use some of his plates of NGC 176, which had
images of NGC 152 on them. Most of this research was carried out with financial support from the National Science Foundation under grants AST-76-17598 and AST-7915148.

REFERENCES

Alcaino, G. 1978, Astr. Ap. Suppl., 34, 431.
Baird, S., Flower, P., Hodge, P., and Szkody, P. 1974, A.J., 79, 1365.
Cannon, R. 1970, M.N.R.A.S., 150, 111.
Ciardullo, R., and Demarque, P. 1977, Trans. Astr. Obs. Yale Univ., Vol. 33.
de Vaucouleurs, G. 1978, Ap. J., 223, 730.
Flower, P. 1976, Ph.D. thesis, University of Washington.
Flower, P., Geisler, D., Hodge, P., and Olszewski, E. 1980, Ap. J., 235, 769.

Flower, P., and Hodge, P. 1975, Ap. J., 196, 369.
Gascoigne, S. 1980, in IAU Symposium 85, Star Clusters, ed. J. Hesser (Dordrecht: Reidel), p. 305.
Gascoigne, S., and Kron, G. 1952, Pub. A.S.P., 64, 196.
Gascoigne, S., Norris, J., Bessell, M., Hyland, A., Visvanathan, N. 1976, Ap. J. (Letters), 209, L25.

Hesser, J., Hartwick, F., and Ugarte, P. 1976, Ap. J. Suppl., 32, 283.
Hodge, P. 1960, Ap. J., 131, 351.
——. 1963, Ap. J., 137, 1033.
——. 1980, preprint.
-. 1981, Astr. Ap., in press.
Mould, J., and Aaronson, M. 1980, Ap. J., 240, 464.
Pickering, E. 1891, Ann. Harvard Obs., 27, 14.
Racine, R. 1969, Ap. J., 74, 1073.
Sandage, A. R., and Tammann, G. 1974, Ap. J., 190, 525.
Searle, L., Wilkinson, A., and Bagnuolo, W. 1980, preprint.
van den Bergh, S., and Hagen, G. 1968, A.J., 73, 569.
Walker, M. 1971, Ap. J., 167, 1.
——. 1979, M.N.R.A.S., 186, 767.
P. W. Hodge: Astronomy Department, FM-20, University of Washington, Seattle, WA 98195

[^0]: ${ }^{1}$ Visiting Astronomer, Cerro Tololo Inter-American Observatory, operated by AURA, Inc., under NSF contract AST 74-04129.

[^1]: ${ }^{\text {a }}$ From Mould and Aaronson 1980.
 ${ }^{\mathrm{b}}$ Variable.

[^2]: ${ }^{2}$ After this paper was written, N. J. Stewart kindly sent me a portion of his Ph.D. thesis, which includes data on NGC 152, for which he derives a similar age.

