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ABSTRACT 
This paper is the fourth in a series studying the timing noise process in the isolated pulsars. We 

quantitatively analyze eight mechanisms that have been proposed to account for the observed 
phenomenon. Of these we find that five face severe difficulties in meeting the observations. These are 
the notions that timing noise arises from: (1) star quakes; (2) the random pinning and unpinning of 
vortex lines (“hard superfluidity”); (3) accretion from the interstellar medium; (4) vortex annihilation 
at the outer boundary of the superfluid; and (5) pulse-shape changes. We find the remaining three 
mechanisms to be severely constrained, although not ruled out, by the observations. These are 
the notions that pulsar timing noise arises from : (6) crust breaking by vortex pinning ; (7 ) the response 
of the star to a series of heat pulses; and (8) luminosity-related torque fluctuations. We conclude by 
noting those areas of future research that we feel would be most worthwhile. 
Subject heading: pulsars 

I. INTRODUCTION 
It has long been known that pulsars do not rotate with 

perfect regularity. Two typesof nonsecular behavior have 
been reported. The first is the glitch, or period jump—a 
sharp and sudden increase in pulse repetition rate accom- 
panied by an increase in slowing-down rate. The second is 
a good deal more subtle and initially gave rise to a certain 
amount of confusion in the literature. It was not until the 
pioneering work of Boynton et al (1972) that its true 
nature was correctly identified: it is noise in the pulsar 
clock. 

It is with this noise that we are concerned in this paper. 
We quantitatively analyze eight mechanisms that might 
be operating in pulsars which could give rise to the 
observed noise. Of these we find that five face great 
difficulties in meeting the observational constraints, 
difficulties sufficiently severe that, in our view at least, 
they cannot be considered viable candidates. These in- 
clude the notions that pulsar timing noise arises from : (1) 
a continuous and erratic quaking of the crust or core of 
the star; (2) the random pinning and unpinning of vortex 
lines as they migrate through the crust (“ hard 
superfluidity”); (3) accretion from the interstellar 
medium ; (4) the sudden annihilation of vortex lines at the 
outer boundary of the superfluid; or (5) pulse-shape 
changes. We find the remaining three mechanisms to be 
severely constrained, although not ruled out, by the 
observations. These are the possibilities that timing noise 
arises from : (6) the response of the superfluid interior to a 
continuous and erratic series of heat pulses; (7) the 
unpinning of vortex lines via crust breaking; or (8) 
luminosity-related torque fluctuations. 

In this paper we are concerned with the theoretical 

implications of the data, with an eye toward understand- 
ing the physical nature of the underlying mechanism 
responsible for timing noise. We are hampered in this 
analysis by the fact that no observation has unequivocably 
isolated an instance of the underlying event. We emphasize 
that the observed structure in the timing residuals, even 
that structure which can be seen over short time scales, 
arises from the combined effect of a large number of 
unresolved events. Pulsar timing noise is precisely analo- 
gous in this regard to Brownian motion. It is well known 
that a particle undergoing Brownian motion occasionally 
exhibits sharp and apparently discrete jumps in position. 
But such a jump does not arise from a single collision with 
an unusually energetic atom. Rather, in any resolvable 
time interval, the particle suffers a very large number of 
collisions to the right and a similarly large number to the 
left, and the observed motion arises from small differences 
between the two. In the same way, structure in pulsar 
timing residuals reveals, not the underlying mechanism, 
but statistical fluctuations in this mechanism. 

It is an appealing possibility, although by no means 
required by the observations, that in certain pulsars we 
have in fact succeeded in time-resolving the underlying 
events : they are the glitches. It is obviously significant in 
this regard that glitches are frequency steps and that the 
Crab pulsar, which exhibits glitches, also exhibits 
frequency noise. We can imagine a spectrum of frequency 
steps, with the many small steps giving rise to the noise 
process and the occasional large step visible as a glitch. 
This possibility is discussed in § II below, along with a 
summary of the observational constraints and a compari- 
son of timing noise with length-of-day variations of the 
Earth. 
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In § III we discuss the subtleties of our methodology, 
which is a comparison of the measured variance of the 
rotational phase with that predicted by various models. 

In §§ IV-VII we turn to a consideration of a number of 
physical models for the noise process. We establish in 
each case an estimate of the theoretically predicted 
magnitude of the noise strength and use the data to test 
the model. Finally, § VIII summarizes our results and 
discuss further observational and theoretical studies 
which would be helpful in future research. 

II. DISCUSSION OF OBSERVATIONAL RESULTS 
a) Summary of Pulsar Timing Noise 

The data upon which we based our study have been 
gathered in an eight-year effort by the University of 
Massachusetts pulsar observing group. These data are 
presented in Paper I of this series (Helfand et al. 1980) and 
a method of analysis is described in Paper II (Cordes 
1980). Paper III (Cordes and Helfand 1980) applies this 
method to a sample of fifty pulsars. The central results of 
Paper III, which we take as input to our study, are as 
follows : 

1. Timing noise is widespread in the pulsars. Indeed, 
there is every reason to believe that it is present to some 
degree in every pulsar. 

2. Timing noise is correlated with period derivative P, 
but weakly correlated with period P. Therefore, timing 
noise is correlated with P/P, the spin-down age of the 
pulsar, and with (PP)1/2, proportional to the pulsar 
magnetic field. 

3. Timing noise is not correlated with height above the 
galactic plane, radio luminosity, or with pulse-shape 
changes. 

For 11 out of the 50 pulsars studied, the data re 

sufficiently good to allow a detailed analysis of the 
statistics of the noise process. In this group, by far the 
greatest number show noise whose statistical properties 
are those of a random walk in the rotation rate (as does 
the Crab pulsar [Boynton et al 1972; Groth 1975]). We 
will refer to this as frequency noise (FN). However, not all 
pulsars exhibit this type of noise : two are undergoing a 
random walk in the slowing-down rate (slowing-down 
noise, SN) and two a random walk in the phase (phase 
noise, PN). The noise process is idealized as consisting of 
a series of steps in the phase </>, frequency v, or frequency 
derivative v. The step sizes have mean-square values 
<A</>2>, <Av2>, or <Av2> and are Poisson distributed in 
time with an average rate P. For the three types of noise, 
the strength is defined as 

SpN = P<A02> , 

SFN = R<Av2> , 

Ssn^P<Av2>. (1) 

Measured values of the strength parameters are listed in 
Table 1. 

Table 1 also lists upper and lower limits to the magni- 
tude A0, Av, or Av of the underlying events. The upper 
limits were obtained by combining the measured 
strengths with a lower limit on the rate P, in turn obtained 
by noting that the rate must exceed one event per mini- 
mum block length analyzed in Paper III. The lower limits 
were obtained as follows. If the underlying frequency 
steps in the FN pulsars all have the same sign (i.e., if the 
noise process has nonzero mean amplitudes), then the 
noise contributes to the slowing-down rate a term 
^noise = P<Av>. We require that this be small compared 
to the observed slowing-down rate of the pulsar v: 

TABLE 1 

Random Walk Analysis of 11 Pulsars 

Pulsar Strength Magnitude Limits3 

Phase Noise Type 

1133 + 16  1.5 ± 0.9 x 10 14 s 1 A(f> lies between 1.8 x 10 14 and 7.5 x 10 4 cycles 
2217 + 47   1.6 ± 0.9 x 10“13 8.6 x 10“14 2.5 x 10“3 

Frequency Noise Type 

0329 + 54  7.0 ± 4.0 x 10 27 Hz2 s 1 Av lies between 1.7 x 10 12 and 4.9 x 10 10 Hz 
0531 + 21...  6.6 + 3.0 x 10"23 1.8 x 10“13 2.3 x 10“9 

1508 + 55..  1.0 ± 0.6 x 10“26 1.1 x 10“12 5.9 x 10“10 

1915+13,  1.1+0.7 x 10“25 5.6 xlO“13 1.9 x 10“9 

2002 + 31   1.0 ± 0.7 x 10“27 5.9 x 10“14 1.9 x 10“10 

2016 + 28   2.0± 1.2 x 10“28 4.1 x 10“13 8.3 x 10“11 

2020 + 28   2.0± 1.6 x 10“27 1.2 x 10“13 2.6 x 10“10 

Slowing-down Noise Type 

0611 + 22  1.3 ±0.9 x 10“37 Hz2 s“3 Av less than 1.8 x lO'^Hzs“1 

0823 + 26   2.0+ 1.3 x 10“40 8.3 x 10“17 

Note.—Equality holds if all steps have the same sign. 
3 We emphasize that the lower limits only apply if the noise process has a nonzero mean. 
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R<Av> = S/<Av> v, implying <Av> S/v. Similarly, 
for PN we require that the contribution vnoise = R<A0> 
of the noise to the rotation frequency be small compared 
to this frequency. For the SN pulsars, the analogous 
procedure has been carried out in § IVc of Paper III, and 
we find lower limits on Av almost precisely equal to the 
upper limits. Thus, if the noise process in the SN pulsars 
has nonzero mean, the step size is determined. 

b) Distribution of Step Amplitudes for the Crab Pulsar 

random walk steps, the unobserved intermediate-size 
steps, and the glitches are 

SFN = R' [ d(Av)/(Av)(Av)2 , 
- 00 
Avt 

d(Av)/(Av), 
— 00 
Avi969 

Rinl = R' I d(Av)/(Av), 
JAvt 

Little is known about the distribution of step ampli- 
tudes for the random walks other than values of (or limits 
on) various moments (such as the random walk strengths 
and limits on random walk contributions to v, v, etc.). In 
Paper II we discussed the extent to which the third 
moment, which would characterize the asymmetry of the 
distribution, could be determined. Here we ask whether 
glitches from the Crab pulsar represent infrequent, large- 
amplitude events from the tail of the distribution that 
describes the individual steps of the random walk. The 
answer, as we shall see, is no and conforms to a similar 
conclusion made by Groth (1975) on different grounds. 
Groth determined that the mathematical form of 
the glitches (a constant plus an exponential; see Table 3) 
must be different from the frequency perturbations that 
form the random walk. We now demonstrate that glitches 
are different from random walk steps because the distrib- 
ution of frequency steps must necessarily be bimodal. 

We consider the constraints that can be put on the 
distribution of steps from the observables. From the 
Princeton optical timing data (Groth 1975), we have 
the quantities SFN = RFN< Av2> = 0.53 x 10“ Hz2 s“ 1

9 
Rfn > ld~ \ Av1969 = 3 x 10“7 Hz, and 

A^i975 == 1.2 x 10“6 Hz , 

which are, respectively, the random walk strength, the 
rate, and the magnitudes of the glitches of 1969 Septem- 
ber and 1975 June. We also know that no individual 
frequency steps were observed that are smaller than the 
observed glitches yet bigger than a “ threshold ” 
frequency Av, ~ 2 x 10“ 8 Hz. As shown in Paper III, a 
random walk in frequency exhibits apparent (i.e., non- 
physical) frequency steps that have a Gaussian probabi- 
lity density function with standard deviation 
0Av ^ (Sfn Ai)1/2, where Ai is a typical sample interval of 
the measurements. In order to measure confidently areal 
step in frequency, its amplitude must be greater than 
Av, = 3(7Av (i.e., a three-sigma measurement). The quoted 
value for Av, above is obtained for Ai = lOd. 

We have considered several distributions of frequency 
steps that are monotonie in Av. Let/(Av) be the distribu- 
tion of frequency steps Av, defined such that 
J d(Av)/(Av) = 1. The rate at which steps with ampli- 
tudes between Av and Av + d(Av) occur is then 
R/(Av)á(Av), where R' is the rate at which all events 
occur. In terms of the different frequency ranges defined 
above, the random walk strength and the three rates for 

^8ii.ch = ^'J d(Av)/(Av). (2) 
^Avi969 

One distribution to consider is a power law of the form: 

/(Av) oc 
(Av0 < Av < Avx) 
(all other Av) (3) 

which has three unknown parameters (a, Av0, and Avj). 
Therefore, a total of four parameters must be determined 
from the four measurements or limits. For 1 < a < 3 we 
find, under the constraints Av0 Av, Av1969, that 

A good fit to SFN and Rgiitch is obtained for a = 2 over a 
range of values of Av0 and R' (these are not constrained 
other than R' > (Id)“1 because SFN and Rglitch depend on 
R' and Av0 in the same way). However, a = 2 implies that 
approximately 30 (±301/2 if steps occur with a Poisson 
distribution in time) intermediate-sized steps, 
Av, < Av < Av1969, should have been observed in the last 
10 years that the Crab pulsar has been observed. Of 
course, no steps have been observed in this amplitude 
range, suggesting that glitches and random walk steps 
are, in fact, part of a bimodal distribution of steps. A 
distribution steeper than a = 2 would allow a fit to the 
random walk steps such that intermediate-sized steps 
would occur with a rate R < (10 yr)“ \ but then glitches 
would be too frequent. Distributions with a < 1 and 
a > 3 also do not fit the data. Finally, we have considered 
an exponential distribution of steps, 

l/<Av> exp (-Av/<Av>) (Av > 0) 
0 (Av < 0) ’ 1 ; 

which also predicts, given a fit for the one parameter 
<Av> from SFN and Rgmch> a large number of 
intermediate-sized steps. 

On the basis of these constraints, we conclude that 
glitches are phenomenologically different from the 
frequency perturbations that are responsible for the 
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random walk. Empirically, any such distribution must be 
bimodal. Combining this result with the conclusion of 
Groth (1975) and Boynton and Deeter (1980) that 
random walk steps cannot have the same mathematical 
form as glitçhes, we concluded that glitches are caused by 
a different mechanism than that responsible for random 
walk steps. The same conclusion holds for the Vela 
pulsar. 

Having settled this we wish to point out a numerical 
coincidence that appears to lead to the opposite conclu- 
sion. Regarding the Crab pulsar glitches as a noise 
process in its own right, we may define its strength in the 
usual way, taking R„ntch = several per decade and 
^vgiitch = ^1969- We obtain a glitch strength the same 
order of magnitude as the noise strength. We do not 
understand why this should be so. It is not so for the Vela 
pulsar. Very likely, it is only a coincidence. But perhaps it 
is not. 

c) Noise Mixtures 
In Paper III it was found that, given an ample quantity 

of data, two of the three kinds of random walks we 
considered could be rejected, whereas one was not incon- 
sistent with the phase residuals of a given pulsar. These 
results encourage the view that one need not look further 
for a statistical model for the data. However, it is surpris- 
ing that “ pure ” random walks of one kind are sufficient 
to describe a given pulsar’s timing noise, especially since 
all of the various models we consider below suggest that 
timing noise should indeed be mixtures of several kinds of 
random walks. We quantify this point as follows. 

In Paper II it was shown that the ensemble-average, 
mean-square phase calculated over a time span T, 

V(r) = (^joW(i)), (6) 

is 

U sPNr (PN) 

<V(T) = UsFNr
3 (FN) (7) 

I TJqSsn T5 (SN) . 

In paper III strengths for PN, FN, and SN were cal- 
culated from estimates of <70

2(T) by essentially inverting 
equation (7), and consistency was demonstrated by 
determining whether the ratio (e.g., for FN), 

F = SpN(Tmax)/SFN(7Jnin) 

= ^2(^max)^max"2/^2(^min)^min~2
5 (8) 

was consistent with a value of unity. 
In order to consider a general mixture of timing noise, 

we will model the ensemble-average, mean-square phase 
as 

M 
°AT)=YJCjV. (9) 

;=i 
We do not include a / = 0 term because it would corre- 
spond to stationary noise in the phase (such as measure- 
ment errors due to finite signal-to-noise ratios, etc.), 
which we assume has already been accounted for. If a 
pulsar is assumed to have type k noise (e.g., k = 3 for FN), 
we would estimate a strength using SKcc CK = 
o(I)

2(T)T~k, from which we would obtain a F value 
M / M 

Fk=1 CjTmJ-K X CjTnJ-* . (10) 
7 = 1 / 7* = 1 

If it is found that FK is consistent with there being only a 
type k random walk, then 

(11) 
j + K 

for both T = Tmax and Tmin. For some models we may 
suspect there is only one other kind of noise, in which case 
we have a limit on individual coefficients, Cj < CK T

K~j. 
Finally, it is clear that whether Tmaxor Tmin should be used 
depends on the sign of k — j. We have, therefore, 

Cj<CKTmax-'*-» (j>K), 

Cj<CKTmJ
K-» (j<K) (12) 

as limits on the coefficients. 
In Table 2 we give limits on the coefficients for 

1 < / < 5 for the 11 pulsars analyzed in detail in Paper III. 

TABLE 2 

Limits on Noise Mixtures 

Cj C2 C3 C4 C5 
Pulsar Noise Type,/c (s-*) (s 2) (s 3) (s'4) (s'5) 

0329+54  FN,/c = 3 10“110 10'18-6 ... 10'34-6 10'43 0 

0531 + 21   FN, fc = 3 10'8-3 10“15 2 ... i0-3o.3 io'38-5 

0611 + 22  SN, k = 5 10“7-4 10“14 8 10'221 KT29-5 

0823 + 26    SN, ic = 5 10“81 10"16 0 KT23-9 10“318 

1133 + 16  PN, k = l ... IO“22 2 IO“30 6 IO“39 0 10“47-4 

1508 + 55    PN, /c = 3 10“10 9 10“18-4 ... KT34-4 10“42 8 

1915 + 13  FN, k = 3 10“97 lO“17-3 ... 10“331 10“41-2 

2002 + 31   FN, ü = 3 10“11-7 10“‘9-4 ... IO“351 10“43 3 

2016 + 28   FN,/c = 3 10“12 0 10“19 8 ... 10“361 KT44 5 

2020 + 28   FN, k = 3 IO“10 8 10“18-8 ... 10"35 0 10“43 2 

2217+42   PN, k = 1 ... IO“212 10“29-6 IO“38 0 10“46-4 
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It should be kept in mind that the limits we have derived 
(eq. [12]) are appropriate for the limit of an infinite num- 
ber of uniformly spaced samples. However, the errors 
associated with the application of these formulae to the 
data are probably no larger than the estimation errors 
(due to the stochastic nature of the random walks) that 
would be present even if a large number of uniformly 
sampled data points were available. Further discussion of 
noise mixtures can be found in Lamb et al. (1978a, b). 

d) Comparison with Length-of-Day Variations 
of the Earth 

It is instructive to contrast irregularities in the rotation 
of the pulsars with those in the only other astronomical 
object where they have been observed—the Earth. Figure 
1 exhibits variations in the length of the day over 
approximately the past 150 years. The Earth undergoes 
fluctuations in rotation period of the order AP/P ^ 10" 8 

over a time scale of At ~ 10 yr. Dicke (1966) has argued, 
on the basis of ancient eclipse observations, that these 
excursions in period show a strong tendency to return to 
their starting values; otherwise the derivative of the 
length of day would not have been as steady as deduced 
from eclipse records over several millenia. Each event 
then gives rise to a step in rotational phase of order 
A</> ~ (Av)(Ai). The steps recur at a rate R ~ 1 per every 
10 yr, implying phase noise in the Earth with a strength 
SPN = R<A</>2) ^ 10-17 s-1. Among the pulsars, there 
are two which also exhibit phase noise, although the 
strength is some three to four orders of magnitude larger 
in the pulsars than the Earth. 

Although the Earth apparently exhibits timing irregu- 
larities of the same statistical nature as do the pulsars, the 
observational situation with regard to these irregularities 
is entirely different. During the time interval shown in 
Figure 1, the Earth executed some 5 x 104 rotations. A 
typical pulsar executes this number of rotations in less 

Fig. 1.—Variations in the length of the day as a function of time. 
From Munk and MacDonald (1960). 

than a day. If we were to scale arbitrarily the behavior of 
the Earth to that of the pulsars, then the entire wealth of 
information contained in Figure 1 would be summarized 
in a single data point. The converse of this statement, 
however, is also true : during the 8 years in which pulsar 
timing noise has been carefully studied, a typical pulsar 
executes the same number of rotations that the 
Earth does in approximately 1 million years. That is to 
say, timing observations of the Earth regularly isolate 
examples of rotational anomalies but study these anoma- 
lies only over relatively short time scales. Pulsar timing 
observations, on the other hand, have not resolved the 
underlying anomalies, but are capable of studying their 
statistical behavior over relatively long time scales. In 
what follows we will discuss ways in which this latter 
feature may be able to provide important constraints on 
the underlying physics. 

III. RANDOM PROCESSES FROM ENSEMBLES OF EVENTS 
a) General Considerations 

The central problem we address in this paper is how 
different types of idealized processes (e.g., PN, FN, SN) 
are produced or mimicked by various physical processes. 
In particular, we consider ensembles of events of the 
form: 

<£(4 = Z ajx K1 - 4) ; (13) 
j 

and determine the second moment of </>(f). The statistics 
of (j)(t) depend on: the shape of h(t) and its time scale Wh 
(either a pulse width or a rise time) relative to scales that 
characterize the data; the rate at which events occur, R; 
whether events occur independently; and the amplitude 
statistics of aj. We assume that events occur at indepen- 
dent times, thus allowing ease in computing the second 
moments (see Appendix). Although it is easy to imagine 
situations where this assumption is violated (e.g., periodic 
occurrence of starquakes or other perturbations), our 
results are unaffected so long as some quantity is indepen- 
dent from event to event, such as the amplitude aj (recall 
that the textbook approach to a random walk is a strictly 
periodic sequence of steps with independent amplitudes). 

b) Processes with Overlapping Events 

In calculations that follow, our general procedure is to 
calculate the rate R necessary to produce the measured 
strength of the random process and compare R with 
observational and theoretical constraints on its value. 
For some physical processes, events can occur indepen- 
dently in, e.g., different regions of the star such that 
considerable time overlap of events occurs: RWh^> 1. 
Examples are localized starquakes, pinning and unpin- 
ning of vortices, etc. Other processes, however, may not 
allow such overlap as a result of there being only one 
physical entity that can vary. An example of this is the 
case of radio luminosity variations. On time scales greater 
than approximately 1 hour, say, the pulse shape is 
invariable, implying that luminosity variations must 
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No. 3, 1981 PULSAR TIMING 1065 

occur uniformly over the pulse beam. In the model we 
consider below, we therefore argue that RWh< 1 for 
luminosity variations. 

c) The Time Origin Effect 

In general, the shape of h(t) determines the asymptotic 
type of random process produced by the ensemble. For 
example, if h(t) is a pulselike function, then 0(i) is white 
noise in the limit Wh-*0. Similarly, random walks in the 
phase, frequency, or frequency derivative are produced in 
the limit that h(t) behaves, respectively, as a step function, 
ramp function, or parabola over the time span of the data. 
If the random process were to commence fortuitously at 
the onset of data taking (i = td), then would ob- 
viously depend only on events that occur after td. Clearly, 
events have occurred prior to data taking, the con- 
sequence being that the type of process determined after td 
depends on events that occur prior, as well as subsequent, 
to td. In the Appendix we discuss this effect in detail. It 
proves to be difficult to produce a random walk in v (SN) 
from perturbations in the frequency that are predicted in 
most models. SN appears to require generally a random 
walk in the torque or that td (the time that data taking 
began) is much less than the rise time of frequency 
perturbations. 

To illustrate these comments, consider frequency per- 
turbations of the form 

ôv(t) = jt=Av(l-e-«')H(t), (14) 

where H(t) is the unit step function. If td<^T and T <^t 
(where T is the time span of the data), then h(t) oc 
and the random process will be SN because all events are 
evolving toward their asymptotic form, h(t)az tH(t). If 
td T, however, then events occurring prior to td* which 
have shapes between t2H(t) and tH(t), will influence the 
measured statistics; SN will not be produced in the limit 
T T. 

d) The Second Moment 

In the Appendix, we show that the second moment of 
(¡)(t) is 

<02(O> = + R<a2> I dzh2(z) (15) 
.0 

for a random walk commencing at i = 0. The net result of 
the time origin effect is to extend the integration limit 
from t to t + Wh where, again, Wh is the characteristic 
width or rise time for h(z). Finally, the quantity we 
compare with measurements is the integrated variance 
over an interval (í, i + T): 

V(t, T) = T-1 (+1dt'[ct>2(t')-^(t')y2] 
Jt 

,t' + wh 

= R(a2}T ^ df \ dzh2(z) (16) 

IV. PULSE-SHAPE CHANGES 

In order to relate arrival-time measurements to rota- 
tional phase, it must be assumed that the beam of radio 
emission is firmly attached to the star. Arrival-time 
measurements are made (Paper I) by averaging several 
thousand pulses together and convolving the resultant 
profile with a reference profile. Such average profiles 
show no indications of having changed over the last 10 
years, suggesting that the radio beam of a pulsar is 
determined by the strong (1012 gauss), frozen-in magnetic 
field whose diffusion time is expected to be in excess of 107 

years. Measured profiles deviate slightly from the refer- 
ence profile because single pulses are generally of different 
shapes and have an amplitude distribution that may have 
a long tail. Such deviations decrease with increasing 
integration time, as has been verified for nine pulsars 
(Helfand, Manchester, and Taylor 1975). Clearly, the 
resultant errors in arrival times will be much less than the 
temporal width of the average profile. Nonrandom, 
pulse-to-pulse fluctuations will also influence the conver- 
gence of a profile to the reference profile. Several pulsars 
show mode changes wherein the average profile jumps 
between two distinct shapes, the transition time between 
modes being less than one pulse period, and the duration 
of the less frequent mode being several hundred pulse 
periods. An integration that contains several mode 
changes will produce errors in arrival times, but there will 
also be less than the width of the average profile and, 
moreover, these are expected to have stationary statistics 
over the 1-year to 8-year spans of available data. Timing 
noise discussed in Papers I and III has nonstationary 
statistics (e.g., random walk behavior) and, for some 
pulsars, implies arrival time variations in excess of 
the average profile width. 

A possible source of nonrandom variation of the 
average profile concerns the altitude of the emission 
region. Emission at a given radio frequency may arise 
from a small radial range well within the velocity-of-light 
cylinder (see Cordes 1978). If the radius of emission were 
to vary with time, the rotational phase would vary as 
r(t)v/c. It is well known that pulsars exhibit intensity 
variations on time scales from microseconds to years, and 
it would not be surprising if the emission radius were also 
to vary in a correlated way because of, e.g., variations in 
the growth rate of plasma instabilities that establish 
coherent radiation. Upper limits on such radial fluctua- 
tions can be made because, at a fixed frequency, the 
average profile width varies as r1/2 if it is defined by the 
open field-line region of a dipolar field (Goldreich and 
Julian 1969; Cordes 1978). Since pulse shapes have not 
changed appreciably over the last 10 years, a conservative 
limit on radial variations is Ar/r = 2AW/W < 0.1, where 
W is the average-profile width, barred quantities are 
average values, and we place a 5% limit on width 
variations. Cordes (1978) has shown that r < 108 cm for a 
pulsar with a 1-second period. Consequently, an upper 
limit on such phase variation is Ar/c ~ 0.3 ms, much 
smaller than the timing noise observed. We conclude that 
measurement errors in and of themselves associated with 
pulse shape changes are not responsible for timing noise. 
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V. PHYSICAL MODELS INVOLVING CHANGES IN 
MOMENT OF INERTIA 

a) Crustquakes 

The slowing down of a pulsar results in a steadily 
decreasing centrifugal bulge at its equator. Eventually the 
resulting strain becomes sufficient to crack the crust. The 
bulge falls inward and the rotation rate increases (Ruder- 
man 1969). The subsequent, slow readjustment of 
the interior superfluid produces the observed post-glitch 
decay (Baym et al 1969). The characteristic signature of 
the frequency is given in Table 3, along with those for PN, 
FN, and SN, and is sketched in Figure 2, superimposed 
with the spin-down function. We assume that the precise 
moment in which the crust gives way in a quake is 
controlled by factors sufficiently numerous and complex 
(e.g., local fault planes, creep rate, etc.) that the rate of 
quakes can be considered a random variable. Starquake 
theory provides a relation between the magnitude Av of a 
frequency step and the time interval between it and the 
previous step (Baym and Pines 1971): 

tq = vq
2(M)Av/v2v (17) 

where v and v are the pulsar frequency and frequency 
derivative, and vq

2(M) is a structure-sensitive parameter 
whose value depends on the mass of the star. 

An ensemble of events of the form in Table 3 will 
produce FN or PN, depending on the values of t and Q. 
The variance of the phase is 

V(T) - R(ôv)2[Q(Q - 4)t3/2 + (Qt)2T/2 

+ Q(1 - Q)xT2ß 

+ (1 - Ô)2T3/12] (18) 

for a time span [id, id + T] with id t (i = 0 is the onset of 
events) and T > t. In the limit ß = 0, (T^2 x T3 as for FN, 
and for ß = 1, <7^2 x T as for PN. On the (t, ß) plane of 
Figure 3, we indicate the regions for which PN and FN 
dominate the variance. The dividing line between these 
regions is t/T = (1 - ß)/ß61/2, as indicated. Note that 
there is no way of directly producing SN in this model We 
discuss below, however, how SN is induced by starquake 
events and demonstrate that it is negligible compared 
to the PN or FN produced directly by the events. 

TABLE 3 

Frequency Steps from Physical Models 

Model Signature of Frequency Step [Av(i)] 

PN   ô<f)ô(t) 
FN      SvH(t) 
SN   0vtH(t) 
Starquake    ôv(Qe~tlz - 1 4- Q)H(t) 
Two-component model 

Hard superfluidity: 
case (1)   —ôvtH(t)H(A.T — t) 
case (2)   —ôvtH(t)H(AT - t) - 0vxH(t - Ax) 

Heat pulse  [<5Vl(l - e-'^ï) - ôv2(l - e~tlàtf)]H(t) 

Note.—H(t) is the unit step function. 

Fig. 2.—The classic signature of a glitch and of a starquake in the 
two-component model (Baym et al 1969). An initial frequency step of 
magnitude Avf decays to a final magnitude Av/ in time scale t. 

The strength parameter from an ensemble of quakes is 

SFN = R(Av)2 = (Av)2/tg = v2vAv/vq
2(M) (19) 

in the limit ß = 0, and 

SPN = R(Avt)2 = v2vAvt2/v9
2(M) (20) 

in the limit ß = 1. Note that ß = 0 (ß = 1) corresponds 
to the least (most) massive neutron stars. 

i) Frequency Noise 
A free parameter for the strength is Av, but the 

measured strengths yield an upper limit on Av if we also 
note that tq must be smaller than Tmïn, where Tmin is the 
smallest data block, analyzed in Paper III, in which 
the random walk is evident. We have 

Av < Avmax = (SFN Tmin)
1/2 (21) 

and, therefore, an upper limit on SFN is 

SFN < v2vAvmJvq
2(M). (22) 

We consider two different functions for vq
2(M). Follow- 

ing Baym and Pines (1971) we have 

vq
2(M) = A2/2n2BI, (23) 

if stresses on the crust are only partially relieved by the 
quakes, and where A = 3GM2/25R* and B are the 
coefficients for gravitational and strain energy, respec- 
tively; R* and / are the stellar radius and moment of 
inertia. In Figure 4a we plot normalized strengths 
P4SFN /P predicted by equation (22) versus Av for the full 
range of masses (using models of Baym and Pines [1971]), 
as shown in the cross-hatched region. We also plot 
measured values of SFN and Avmax for the seven pulsars 
that are consistent with FN. We see that starquake theory 
cannot be made to yield frequency noise of the observed 
magnitude for any of the long-period pulsars and will only 
work (as far as the strength is concerned) for the Crab 
pulsar if it is of the very lowest mass. We emphasize in this 
connection that strong theoretical and observational 
arguments indicate that low-mass neutron stars do not 
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Mass (units of Mq) 

Fig. 3.—Values of t, the crust-core coupling time, and Q, the fraction of the moment of inertia that is superfluid which produces phase noise, PN 
(shaded region), and frequency noise, FN (the remainder of the plane with t(61/2)/T < 1). Points are plotted for the two Crab pulsar glitches and for one 
of the four Vela pulsar glitches with values of t of ~ 5 days and 1 year, respectively (T = 8 yr was used in plotting the points). The relationship between 
Q and M has been taken from Pines and Shaham (1972). 

exist (Ruderman 1972). Furthermore, the production of 
frequency noise (as opposed to phase noise) and the 
observed value of Q (Fig. 3) for the Crab pulsar require a 
large-mass neutron star. Consequently, the starquake 
model appears to be invalidated for all pulsars we have 
studied. 

We note that the solution for the Crab pulsar implies, if 
starquakes are relevant, that its underlying frequency 

steps must be almost as large as the present observational 
upper limits. It seems worthwhile, then, to spend some 
time in improving this limit in order to search for 
the frequency steps. If not found, the starquake 
notion would be disproved for this last FN pulsar as well; 
if found, the Crab’s mass could be inferred, and we would 
be left with the intriguing question of why the theory 
works for this one pulsar only. 

Fig. 4b FIG. 4a 

Fig. 4.—Testing starquake theory. Observed noise strengths and limits on Av for the FN pulsars are plotted as arrows. The solid lines give the 
predictions of starquake theory for the indicated stellar masses. Cross-hatched regions show the full range of allowed values. Case (a): v^2 from the 
models discussed by Baym and Pines (1971 ). Case (b) : the limiting case, where quakes relieve all accumulated stress and the crust shape changes only via 
quakes. This case produces the maximum possible strengths (see text). 
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Why does the starquake theory fail for all the long- 
period pulsars? Formally speaking, the cross-hatched 
region in Figure 4a indicating the predictions of the 
theory could be moved upward to encompass the obser- 
vations if Vg2 could be reduced. Equation (17) indicates 
the physical meaning of this process: if v^2 is reduced, the 
time interval between quakes will be reduced. It is well 
known that starquake theory fails to account for glitches 
in the Vela pulsar in that it cannot be made to yield 
the observed, relatively small time interval between 
glitches of approximately 2 years; equation (17), if 
applied to the Vela glitches, yields tq greatly in excess of 
centuries. Reducing v^2 would solve this problem as well. 
Starquake theory cannot be made to account for noise in 
the long-period pulsars for precisely the same reason that 
it cannot be made to account for glitches in the Vela 
pulsar: the rate of buildup of strain in the pulsar is too 
small. 

In this connection we note the somewhat paradoxical 
fact that the observed strength of the Crab pulsar’s noise 
is far greater than that of any other pulsar. How, then, can 
star quake theory account for it? From equation (22) we 
see that the relevant quantity is not SFN, but P4SFN/P. 
This is smaller for the Crab than for any of the long- 
period pulsars. This is but one instance of an important 
general point: Within the context of a number of possible 
models, timing noise is stronger in the long-period pulsars 
than in the Crab. 

The above conclusions are not restricted to a particular 
equation of state. The effect of going to more recent 
models based on the tensor-interaction, Bethe-Johnson, 
Reid or mean-field equations of state, discussed by Pand- 
haripande, Pines, and Smith (1976), is to exacerbate the 
difficulty. 

ii) Phase Noise 

If T < (1 - Q)T/61/2Q is sufficiently small, then the 
signature of an individual event is a step in phase of order 
A</> ^ tAvQ. Thus starquakes can produce phase noise 
with a strength of order SPN = R(A0)2 ^ (AvQt)2/í4 
where tq is the time between events. We have two 
constraints: both t and tq must be less than Tmin ~ 1 year, 
the length of the minimum block analyzed in Paper III. 
Combining with equation (17), we find 

SpN = (Qtv)2vAv/vq
2(M) 

<[Qv2v/vq
2(M)]2Tmin

3 (24) 

as an upper limit to the strength of the phase noise 
allowed by starquake theory. The limit is largest for 
lowest vq

2(M), which in turn occurs for lowest mass. 
Taking v^2 from Baym and Pines (1971) and using Q = 1, 
we find the limiting strength for the PN pulsar PSR 
1133-1-16 to be SPN < 1.8 x 10~19 s_1, in contrast to an 
observed strength some five orders of magnitude larger. 
For PSR 2217-1-47, the limit is SPN = 5.4 x 10“17 s“ \ in 
contrast to an observed value a bit more than three orders 
of magnitude larger. We conclude that starquake theory 
cannot account for phase noise for all masses. 

iii) Slowing-Down Noise 
The signature of the frequency following a starquake 

(Table 3) does not allow the possibility of SN. That 
signature, however, does not include an additional effect : 
a random walk in v that arises because the torque is a 
function of v and the moment of inertia. We show here 
how SN is induced but that its rms phase is negligible on 
time scales of interest compared to the FN phase. 

If the torque is a function of v and the moment of 
inertia, ^ = ^(J, v), then it can be shown that 

where we have assumed that momentum is conserved: 
ôv/v = —ôl/l. Using the torque for magnetic-dipole rad- 
iation or for the homopolar generator (Goldreich and 
Julian 1969), 

3T oc B2R*6Q? , (26) 

we find that 

Sv/v = ôv/v=-ÔI/I . (27) 

Consequently, starquakes cause both SN and FN (for 
Q = 0), and the ratio of rms phase (cf. equation [7]) over a 
time interval T is 

g0SN 
^FN 

1 
(10)1/2 (28) 

Since T <is = v/v and ôv/v = ôv/v, it is clear that the 
induced SN is negligible compared to the FN. 

b) Corequakes 
An alternative to crustquakes involves similar quakes 

in a possible solid core (Pines, Shaham, and Ruderman 
1972) or crustquakes produced by a component of the 
deceleration torque perpendicular to the spin axis (Pines 
and Shaham 1972). We are able to put upper limits on 
these alternatives by considering a second form for 
vq

2(M). We imagine that immediately after a quake the 
star has its fluid shape (i.e., is entirely stress free), that it is 
infinitely rigid so that this shape does not alter as the star 
spins down, and that in the next quake the star again 
relaxes to its new fluid shape. It is clear that these 
assumptions overestimate the magnitude of each 
corequake, first because real quakes do not entirely 
relieve the accumulated stress, and second because real 
neutron star matter smoothly flexes somewhat as it spins 
down. Furthermore, unless the component of the deceler- 
ation torque perpendicular to the spin axis is orders of 
magnitude larger than its parallel component, the limit- 
ing noise strength derived from these assumptions should 
approximate that derived in this scenario as well. 

The oblateness of a fluid star is e = I0 Q2/4A and 
decreases at a rate é = J0 QÙ/2A. In a quake we have, by 
conservation of momentum, Av/v = Ac, and, therefore, 
the time between quakes, tq = Ae/é, is given by equation 
(17) with 

vq
2(M) = A/2n2I * GM/IOtc2#*3 , (29) 
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where the approximate equality holds for a sphere of 
uniform density. That is, the time between quakes given 
by this model is a minimum value, tq now being a factor 
B/A 1 smaller than the Baym-Pines (1971) value ob- 
tained by using equation (23). Therefore, the present 
model yields the maximum possible strength parameters. 

Figure 4b compares the strength parameters (again 
normalized as P4SFN/P) with measured values as a 
function of Av using the stellar models described by Baym 
and Pines (1971). We conclude that the model can be 
made to work in the case of the Crab pulsar for any mass, 
but, in the case of the long-period pulsars, it will not work 
except, possibly, for PSR 1915 +13 for a star of low mass. 
Again, more recent stellar models yield similar conclu- 
sions. We conclude that corequakes, and presumably the 
Pines-Shaham (1972) model as well, cannot account for 
frequency noise in general. 

We conclude by noting that X-ray observations of the 
Crab pulsar may yield important constraints on the 
starquake model. In a quake the strain energy released is 
of order AE ^ jIQ2 (Av/v), most of which is converted to 
heat within the star. The heating rate is then 
L = R(AE) ^ 2n2IvSFN/Av, which, for sufficiently low 
temperatures, we equate with the blackbody luminosity 
of the star. Thus, 

Av = 
2n2IvSFN 

AnR^oT* ’ 
(30) 

and an upper limit on the surface temperature of the star 
translates into a lower limit on Av. For the Crab pulsar 
7^ < 3 x 106 K (Toor and Seward 1977), corresponding 
to Av > 6.7 x 10-10/45/(R6)2 Hz (where /45 is the 
moment of inertia in units of 1045 g cm2 and R6 the radius 
in units of 10 km). Conversely, Table 1 lists a lower limit 
of Av < 2.3 x 10 9 Hz for this object. Already, Av is 
narrowly constrained by the observations. A modest 
improvement in the upper limit on the Crab pulsar’s 
surface temperature—say, by a factor of 2—would yield 
significant constraints on the radius and moment of 
inertia of this object within the context of the starquake 
model. Unfortunately, this model appears incapable of 
explaining the observations, so the procedure outlined 
here is only of academic interest. 

VI. PHYSICAL PROCESSES INVOLVING FLUCTUATIONS IN 
CRUST-SUPERFLUID COUPLING 

a) “Hard” Superfluidity 

Anderson and Itoh (1975) have noted a resemblance 
between pulsar timing noise, on the one hand, and flux 
migration in “ hard ” superconductors on the other. The 
phenomenon occurs in the penetration of a hard super- 
conductor by a magnetic field; bundles of flux tubes pin 
and unpin in an erratic fashion, resisting the penetration. 
Anderson and Itoh (1975) proposed that the analogous 
phenomenon in neutron stars would be the random 
pinning and unpinning of vortex lines (or bundles of 
vortex lines) as they migrate outward through the crust 
and that this effect would cause the pulsar angular 
velocity to fluctuate in an erratic fashion. 

We can develop an order-of-magnitude analysis of this 

process as follows (see also Lamb et al 1978a, b). The 
slowing down of the rotation of a neutron star is accom- 
panied by an outward migration of the vortex lines 
threading the superfluid. Formally speaking, the lines 
migrate away from the rotation axis via the Magnus effect 
in response to the azimuthal friction force on them from 
the charged-particle component. If the system has a rota- 
tion period P and period derivative P, then the migration 
velocity i; of a line lying a distance r from the spin axis is 
v = rP/2P = r/2is, where ts is the spin-down time. For a 
typical, long-period pulsar, v is of the order of 1 cm per 
year, about the velocity of continental drift. 

As a result of this motion relative to the background 
superfluid, the line exerts a decelerating torque upon the 
superfluid, again via the Magnus effect. This is the torque 
that slows the rotation of the superfluid. It is easy to show 
that, if v is as given above, then the net decelerating 
torque, summed over every line in the system, is just 
sufficient to slow the superfluid at the same rate as the 
charged-particle system. The star then decelerates 
uniformly. 

From time to time in its outward motion, a given 
vortex line will encounter a pinning site within the crust. 
It will hang up there for some length of time. During this 
time, it no longer migrates outward and no longer exerts a 
decelerating torque upon the superfluid. The superfluid 
slows more slowly. To conserve angular momentum, the 
crust—i.e., the pulsar—slows more rapidly. Thus the 
observable consequence of the pinning of a line is an 
increase in slowing-down rate of the pulsar. 

The total number N of vortex lines within a neutron 
star of radius R* rotating with angular velocity Q is 
N = (7üRsií

2)(2Ü/r) ^ 1016/P, where F = h/mp is the 
quantum of circulation for a Cooper pair with mass 
mp = two times the neutron mass. If one line pins, the net 
decelerating torque ^ on the superfluid is reduced by 
A^~, where AZTIZT % 1/iV. If a bundle of n lines as a unit, 
and all pin and unpin at once, then AZTIZT = n¡N. If each 
line is of length L, but only some fraction of the line is 
prevented by pinning from moving outward, then 
A^7^~ = (l/L)(n/N) where / is the length of line that does 
not move. Thus the signature of the onset of pinning is a 
step in the frequency derivative of the pulsar of magnitude 

Av ^ /s / n 
T*Tcln’ 

(31) 

where Is and Ic are the moments of inertia of the 
superfluid and charged-particle system, respectively. 

i) Phase Noise 
For termination of pinning, we imagine there to be two 

possibilities. In the first, we assume that the line remains 
pinned for a time At and, upon unpinning, it jumps back, 
essentially at the same instant, to the configuration it 
would have had if it had never pinned at all. 

For example, if only part of the line had been prevented 
by pinning from moving outward, than upon unpinning 
the “bent” portion would oscillate about this 
configuration, just as a plucked string vibrates about its 
ultimate equilibrium state. We assume that the time scale 
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for damping of this transient motion is sufficiently small 
that it can be neglected. Alternatively, we note that a 
perfectly uniform vortex array minimizes the free energy 
of the system and that pinning disturbs this configuration, 
thus raising the free energy. Without inquiring into the 
precise nature of the mechanism, we imagine that, upon 
unpinning, the vortex array rapidly readjusts itself to its 
lowest energy state. 

Under these assumptions, the signature of an indivi- 
dual event has the form of case (1) in Table 3 and is 
sketched in Figure 5a superimposed with the spin-down 
function. The time between successive pinnings is t; 
therefore the event rate is R = N/t pinnings per second 
throughout the star. The variance over a data interval (i, 
t -f T) will have the form 

V(T) = ÍR(Av)2(At)4(T + 2At/5) . (32) 
For At T, this has the form for phase noise with 
strength parameter 

= ÍR(Av)2(At)4 = 

P2 

^ 2.5 x KT17-, p3 

N vls In (At)2 2 

ICLN 
2(At)4 

T 
(33) 

We have several constraints on the various parameters 
in the problem. First, by definition, the length of time At a 
line remains pinned is less than the time t between 
successive pinnings. Second, At must be less than Tmin ^ 1 
year, the minimum block length analyzed in Paper III; 
otherwise the signature of an event is not a pulse in phase. 

Finally, / < L. Thus we have an upper limit to the phase 
noise strength predicted by the model: 

SpN = 2.5 X 10 iriin3 

=7-8xl°5F(ï:n)2- (34) 

For the PN Pulsar PSR 1133 + 16, the predicted limit is 

SPN = 6.1 x 10“ 24|^n| s“1 , (35) 

in contrast to an observed noise strength of 1.5 x 10"14 

s"1. It is immediately obvious that the choice n — 1 fails 
to reproduce the observations, by approximately 10 
orders of magnitude. If each vortex line acts alone, pinning 
and unpinning independently of all the others, the noise 
produced by the Anderson-Itoh mechanism is orders of 
magnitude too small. It is easy to see why this should be so. 
From equation (33) the predicted noise strength varies 
inversely with iV, the total number of lines in the star. 
Because iV is so very large, the effects of the erratic motion 
of a single line are very small. 

The observed noise strength for PSR 1133 +16 can be 
reproduced by the theory if it is assumed that bundles 
containing n ^ 105 lines act as a unit. It is very difficult to 
see how the bundles could be so large. For example, the 
diameter of such a bundle is approximately 5 cm, and it is 
required by the solution to pin, unpin, and then pin again 
in approximately 1 year. However, its outward migration 

Fig. 5—Illustrating the characteristic signature of a pinning event. If, upon unpinning, the line returns to the position it would have had if it never 
pinned at all, (a) applies; (b) applies if it does not. 
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velocity carries it, in this year, by only 1 % of its thickness. 
If we go to solutions in which the bundle repins only after 
moving by significantly more than its thickness, we are 
forced to still larger bundles. For example, a solution in 
which a bundle containing n ~ 106 lines remains pinned 
for At ~ 1 year and then repins approximately 103 years 
later reproduces the observed strength. However, with 
this choice the difficulties in understanding how the lines 
could act coherently over such great distances (approxi- 
mately 20 cm in this case) are exacerbated. 

ii) Frequency Noise 
We now consider a second possibility for the behavior 

of a vortex line when it unpins. Namely, we suppose that, 
rather than flipping out to its undisturbed position , the 
line simply resumes its outward migration. The signature 
of such an event is given as case (2) in Table 3 and is 
sketched in Figure 5b. The variance now becomes 

°AT) = ^(AvAt)2T3[1 + 3(At/T)3/5] , (36) 
which implies FN behavior for At < T with a strength 
parameter 

,10-,e£(^)’(Aü! (37) 

Since / < L, At < t, and Is ~ Ic to the order of magnitude, 
we have an upper limit 

SFN < 3 x Kr9PVATyr/P
3 , (38) 

where ATyr is At in years. Combined with the measured 
strengths, we obtain the lower limits on n2(AT)yr given in 
Table 4. 

The choice n = 1 (each line acting alone) forces us to 
values of At, the time a line remains pinned, that are 
unphysically large; in every case these values are larger 
than the spin-down age of the pulsar. In one spin-down 
age, each line migrates outward by approximately the 
stellar radius, and we would find it difficult to believe any 
physical model of pinning in which this “ migration 
distance ” exceeds microscopic dimensions—the distance 

TABLE 4 

Lower Limits on n2(AT)yr
a in the Anderson-Itoh 

Pictures15 

FN Pulsar Limit 

0329 + 54. 
0531 + 21 . 
1508 + 55. 
1915+13. 
2002 + 31 . 
2016 + 28. 
2020 + 28 . 

2 x 1011 

5 x 106 

5 x 1010 

5 x 109 

6 x 108 

6 x 1011 

7 x 109 

a The quantity (Aik,, is the length of time (in years) 
a bundle of lines remains pinned; n is the number of 
lines in a bundle. 

b Anderson and Itoh 1975. 

between pinning sites, for example. Alternatively, if we 
require At to be sufficiently small to meet this require- 
ment, the number of lines per bundle is forced to unac- 
ceptably large values. 

b) Vortex Loss at a Boundary 

Campbell (1979) has conducted detailed numerical 
studies of the deceleration of a vortex array and noted 
striking glitchlike behavior as the vortices are lost at the 
outer boundary of the system. We may estimate the FN 
strength that could arise from this process as follows. 

In uniform rotation the circumferential velocity F of a 
superfluid is proportional to the number N of vortex lines 
it contains. If one line is removed from the array, V drops 
by AF/F = 1/N. The pulsar suffers an accompanying 
frequency increase Av = vIJIcN. Vortex lines encounter 
the outer boundary of the system at an average rate 
R?z N/ts where ts is the spin-down age. The strength, 
then, SFN * (P/P3N)(IS/IC)

2 « 10- 16(P/P2)(IS/IC)
2. 

Adopting /s % Ic we obtain strengths in the range from 
10" 29 to 10"31 Hz2 s"1 for the FN pulsars, four orders of 
magnitude too small. Alternatively, if a bundle containing 
n lines annihilates at the boundary, n must be adjusted to 
be of the order 102 to 103 to reproduce the observed noise 
strengths. We conclude, in agreement with Campbell 
(1979), that some mechanism must be invoked to cause 
the abrupt loss at the outer boundary of a very large 
number of lines acting coherently in order to reproduce 
the observations. Finally, we emphasize the important 
constraint played by the spherical geometry of the star. In 
a cylindrical geometry, vortex lines annihilate suddenly 
upon reaching the boundary. In a spherical geometry, 
they shorten continuously as they migrate outward, 
ultimately disappearing “ not with a bang but a 
whimper.” 

c) Response to a Heat Pulse 

Greenstein (1979) has studied the dynamical response 
of a neutron star to a heat pulse and noted that timing 
irregularities can result. He proposed that occasional 
large perturbations to pulsar temperatures yield glitches; 
more frequent (and random) smaller perturbations yield 
pulsar timing noise. 

If the interaction between the superfluid and crust of a 
neutron star is purely frictional in nature, the superfluid 
will lag behind the crust in its steady deceleration. The 
superfluid, then, rotates more rapidly than the crust. The 
frictional coupling between the two is a strongly increas- 
ing function of temperature. A heat pulse then makes 
the star tend to “seize”: the superfluid slows down and 
the crust—the pulsar—speeds up. We will refer to this 
process as a “ spin-up.” 

The most important theoretical uncertainty in this 
analysis concerns the question of vortex pinning. It is 
clear that in certain density regimes vortices pin strongly to 
the crust (Alpar 1977). Within these regimes none of the 
above ideas apply. However, it is equally clear that in 
other regimes the pinning force is weak or absent, and the 
dominant interaction is in fact frictional in nature. 
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Fig. 6.—Illustrating the characteristic signature of a spin-up. 

However, no satisfactory theory of the junction between 
these regimes exists, and it is unclear to what extent the 
one affects the other. We will assume that the vortex 
tangle generated at this junction does not migrate 
significantly into the frictional regime, in which case 
the above ideas will be applicable. 

Figure 6 illustrates the characteristic signature of a 
spin-up. The pulsar rotation frequency rises in a time Áí¿ 
to an initial offset Avt and then decays more slowly to a 
final offset Avf in time Atf. Depending on the initial 
temperature, the magnitude of the perturbation, and, to a 
lesser extent, the mass of the star, the two time scales can 
range from minutes to decades, and the final offset can 
range from close to the initial offset to very much less than 
it. An approximate analytical expression for the perturba- 
tion is given in Table 3 where Av^ ~ ¿v1? and 
Avy ^ (Sví — <5v2 for Aiy > Ai*. 

We can easily obtain important constraints on this 
picture with the help of the two-component model, in 
which the superfluid is supposed to be rotating uniformly 
(Baym et al 1969). Within this model the torque equa- 
tions for the superfluid and crust are : 

IcÚ=I-j^(co-Q)-¿r-, (39) 
IT 

where œ is the angular velocity of the superfluid and Q 
that of the crust; Is is the moment of inertia of the 
superfluid, Ic of the crust, and / of the star as a whole ; is 
the radiation torque (which equals —IÙ in the steady 
state); and t is the crust-core coupling time. From these 
equations it is easy to show that, if t changes from ti to xf 

essentially in an instant (as the result of a heat pulse), then 
the immediate change in slowing-down rate is an increase, 

Av 
v 

(40) 

(valid for times much less than Aif). The ultimate offset 
Av/5 obtained from equation (25) and by conserving 
angular momentum, will be 

where ts = Q/Ù is the spin-down age. For the coupling 
time, wè adopt Feibelman’s (1971) result 
t = (A/T) exp (Ta/T); where A is a complicated function 
of density only; T is the internal temperature of the star; 
and Ta = A2/ef k, where A is the superfluid energy gap, ef 
the neutron Fermi energy, and k the Boltzmann constant. 
If, in the perturbation, the temperature changes by 
e = AT/T 1, we obtain to the first order in £, 

for t < Ath and 

Av = _ hja 
v ict

£ (42) 

Avr = Is t 7^ 
v IctsT

e (43) 

for t > Atf. 
For application to realistic neutron stars, we need to 

choose values of A and Ta representative of that region of 
the star in which the moment of inertia peaks. For a 1 M 0 
star, this occurs close to or below the base of the crust, in 
which regime 

t ^ (1.3 x 104/T) exp (107/T). (44) 

If the event that triggers the spin-up liberates an energy 
AE as heat, then AT = AE/C, where C is the specific heat 
of the star as a whole. The expression C = 1030T(M/Mo) 
ergs K"1 closely approximates Tsuruta’s (1979) detailed 
computations of the specific heat. Then the perturbation 
£ = AT/T = AE/[1030T2(M/Mo)]. X-ray observations 
provide us with an upper limit to AE. If the triggering 
events occur at a rate R, then, for sufficiently low tempera- 
tures, an upper limit on pulsar temperatures sets an upper 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8l

A
pJ

. 
. .

24
5.

10
 6

0C
 

No. 3, 1981 PULSAR TIMING 1073 

limit on the blackbody luminosity and hence the heating 
rate : 

AE < 4nR*2aTe4/R 

< 4nR^Te
4Tmin < 2 x 1040 ergs , (45) 

where Tmin ^ 1 year, and we have adopted an upper limit 
Te < 106 K (Helfand, Chanan, and Novick 1979). Con- 
versely, for any assumed rate of events in excess of l/Tmin, 
we may find the corresponding upper limit on AE. 

i) Frequency Noise 
We have calculated ö>2(T) for heat-pulse perturba- 

tions, yielding a result of the form of equation (18) for the 
starquake model, but not one sufficiently illuminating to 
reproduce here. When T $> Atf > At* and 

Av¡ = Avy-( 1 - Ati/Atf)- \ 

the response to a random series of heat pulses will be 
frequency noise. According to the above results, the 
magnitude of the steps Av depends on the temperature of 
the star and the energy supplied by each triggering event. 
Because the time scale Atf is of the order of the coupling 
time, i must not exceed 7^in ~ 1 year. In Figure 7 we plot 
the magnitude Av, the noise strength SFN, and the cou- 
pling time i for various choices of the temperature and the 
rate of events. 

If one triggering event occurs per year, the maximum 
allowable energy released by the event is fairly large: 
AE = 2 x 1040 ergs. This is sufficient to produce large 
spin-ups and to yield noise strengths as large as observed. 

The constraints on Av and t force us to go to temperatures 
T > 2 x 106 K. The predicted noise strength decreases 
with increasing temperature: the limit on T translates 
into SFN < 2 x 10" 26 Hz2 s"1, comfortably within the 
observed range for the long-period pulsars so long as the 
pulsar temperature is not too high. However, if we go to 
one triggering event per week, the energetics forces us to 
much lower energies AE = 4 x 1038 ergs. This is not 
sufficient to produce the observed noise: if T is adjusted 
so as not to violate the constraints on Av and t, the 
predicted noise strength is SFN < 6.3 x 10"28 Hz2 s"1, 
which is too close for comfort to the bottom of the 
observed range. 

We conclude that spin-up theory is capable of yielding 
frequency noise of the observed amplitude. Within the 
theory a number of specific predictions can be made. For 
example, with our particular choices for A, Ta and M, the 
interior temperature of the star is constrained to lie 
between 2 and 4 million degrees, and the individual events 
cannot recur very much more frequently than once a year. 
A modest improvement in the timing observations should 
be able to test this latter prediction. The former translates 
into predicted surface temperatures lying between 
3 x 104 K and 4 x 105 K, depending on the mass of the 
star. The upper limit of this range lies close to the best 
presently available limits on pulsar temperatures 
(Helfand, Chanan, and Novick 1979); the lower limit is 
hopelessly far below it. We emphasize, however, that the 
particular numerical values we obtain depend quite 
sensitively on A, Tfl, and M, not to mention the equation 

Fig. 7.—Testing spin-up theory. Solid lines: the predicted noise strength. Dashed lines: the magnitude Av of the frequency step. Dotted lines: the 
crust-core coupling time t (of the order of the time scale of the spin-up). We have specialized to a one-second pulsar with spin-down age 5 x 106 yr, a 
one-solar mass star, and we have assumed Is ~ Ic. A£ has been taken to be the maximum allowed by the observations. One event per year reproduces 
the observations. One event per week does not. 
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of state of the star. Realistic predictions will only become 
possible when detailed models are constructed which 
include some realistic treatment of the vortex tangle 
generated at the boundary of the pinning regime. 

We are not able to account for the observed noise if we 
go to choices for A£, the thermal energy involved in each 
triggering event, significantly below the upper limits set 
by X-ray observations. This places important constraints 
on the physical nature of the triggering mechanism. For 
example, Greenstein (1979) argued that strain energy 
release from starquakes could provide the necessary 
perturbation to pulsar temperatures. This is indeed 
sufficient, when amplified by the resulting spin-up, to 
account for the giant Vela pulsar glitches. Paradoxically, 
it is not enough to account for pulsar timing noise. The 
reason is that the energy released in a quake is propor- 
tional to the initial rotational energy of the star; this is so 
low in the slower pulsars that we are driven to impossibly 
large quakes. We had reached an analogous conclusion 
earlier in this paper in our discussion of star quake theory : 
in an important theoretical sense timing irregularities are 
stronger in the slow pulsars than in the fast ones. 

We emphasize that starquakes are ruled out as possible 
triggers only if their released energy is spread uniformly 
over the entire star. If so the thermal energy is so diluted 
that it cannot produce much of a perturbation to the 
temperature. If a significant fraction of this energy release 
is concentrated at the fault plane, however, we reach an 
entirely different conclusion. The thermal conductivity 
within a neutron star (Ray 1979; Flowers and Itoh 1976) 
is sufficiently low that a local “ hot spot ” can persist for 
time scales approximately on the order of years. In such a 
circumstance, the same AE produces a significantly larger 
AT and a correspondingly larger spin-up. To go further in 
this direction would require an analysis of the way in 
which the released strain energy is converted to heat and 
of the full three-dimensional, hydrodynamical spin-up 
problem. 

According to equation (43 ), the magnitude of a spin-up 
is proportional to the period derivative of the star (since 
ts = P/P). Thus, even if the triggering mechanism itself 
were to be independent of P, the observed correlation of 
timing noise with P can be understood. 

ii) Phase Noise 
If the characteristic signature of an event as sketched in 

Figure 5 involves a considerable “ overshoot,” Avf Avf, 
then the random process will have a phase noise 
component. In the limit of T > Atf > A^ and Avy = 0, 
pure phase noise will result, with a strength parameter 

SPN = R(A</>)2 ^ R(AviAtf)2 . (46) 

Applying the observational constraints, R"1 < Tmin and 
At/ < Tmin ~ 1 yr, we require Av, > 2-6 x 10"11 Hz for 
the two PN pulsars, PSR 1133 + 16 and PSR 2217 + 47. 
Such frequency steps are easily accommodated in the 
heat-pulse model. 

Finally, we note that whether a spin-up will or will not 
exhibit an appreciable overshoot, and hence PN, depends 
within this model on the detailed form of the rotation 

curve within the star. There is no simple formula, analo- 
gous to that which obtains in the starquake picture 
(Baym et al. 1969), from which the mass or temperature 
of the star can be inferred from the ratio of Av¿ to Av^, that 
is, whether it is an FN or PN pulsar. 

iii) Slowing-Down Noise 
Only if the “ build-up ” time scale Aí¿ in Figure 5 is long 

compared to the time elapsed since the noise process 
commenced will the consequence of a heat pulse be an 
apparently permanent step in the frequency derivative 
and the noise process be SN. Because Aif is of order t, and 
because the noise process has presumably been operating 
for a significant portion of the entire history of a pulsar, 
this implies values of t in excess of 105-107 years. 
Although we cannot rigorously exclude this possibility 
we find it unnerving, to say the least, and we will not 
consider it further. 

d) Crust-Breaking by Vortex Pinning 
Ruderman (1976) has noted that, when vortex lines pin 

to the crust, the are pinning to something rotating at a 
different angular velocity than the background 
superfluid. Under these circumstances, a shearing 
Magnus force is transferred to the crust. He argues that, in 
certain density regimes, the pinning force is sufficiently 
strong that the lines never unpin but rather the crust 
ultimately fractures. Upon breaking free in this manner, 
the lines suddenly migrate outward, yielding a pulsar 
frequency jump. 

If, immediately following a fracture, the crust and fluid 
essentially corotate, then the mismatch c)Q in angular 
velocity between them builds up at a rate <50 = Oí within 
this model. When <50 reaches 

<5Qcrit ~ em^GM/2pRt
3Ci, (47) 

fracture will occur (Ruderman 1976; note we have revised 
his eq. [19]), where 6m is the maximum strain angle before 
fracture, p ^ 1030 dynes cm" 2 is the shear modulus, and p 
is the pressure at the base of the crust. Upon fracture, the 
angular momentum in the pinned vortex lines is suddenly 
transferred to the crust, resulting in an increase of crust 
rotation frequency, 

Av/v = (IJI)(ÔÇlcrit/n). (48) 

An ensemble of fractures will yield a frequency noise 
strength 

Sfn = (Av)2/At, 

or 

SFN = (P/P2)(Is/I)
2(0Qc,J2n) 

= ts-
1(Is/I)

2(empGMßn2pR^), (49) 

where 7S is the moment of inertia of the superfluid that 
penetrates the crust, and ts is the spin-down time scale. 

In Ruderman’s (1976) first scenario (where normal 
neutron fluid exists interior to superfluid neutrons), 
p ^ 7 x 1032 dynes cm" 2 and /s// ^ 10" 2 ; in the second 
(where vortices extend throughout the star or terminate 
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at a stellar core), both p and IJI are approximately 10 
times larger. Adopting M = M0> Æ = 10 km and the 
canonical value 6m= 10"5, we obtain predicted noise 
strengths six to seven orders of magnitude larger than 
observed. The problem within this model is not why pulsar 
timing noise is so large: it is why it is so small 

We can reproduce the observed strengths by going to 
values of the maximum strain angle 6m of the order 
10“ 11-10”13, depending on the pulsar and the scenario. 
Such values are very much smaller than expected (Smo- 
luchowski 1970). However, these values of 0m are also 
required in order to make Ai be as short as one year for 
the longer-period pulsars. Alternatively, Ruderman 
(1976) notes that, within the long-period pulsars, the crust 
may not be expected to crack before the vortex lines 
unpin or pull individual pinning nuclei from their lattice 
positions. It remains to be seen whether an intermediate 
situation, capable of yielding strengths neither too large 
nor too small, is possible. Ruderman’s estimates assume 
that the moment of inertia of the crust is unaltered in the 
fracture. It seems likely, however, that the crust will be 
deformed when it is broken, although whether an increase 
in the moment of inertia is produced is not clear. An 
increase would cause a decrease in Av, which would lessen 
the increase in Av due to the angular momentum im- 
parted to the crust. 

The model outlined above is expected to yield phase 
noise or frequency noise according to the same conditions 
as were discussed for the starquake model. Slowing-down 
noise is again not possible for the physics we have 
described above. One possibility, however, is that v will 
vary in time because the crust lattice will creep (Smoluch- 
owski and Welch 1970; Ruderman 1976), thereby allow- 
ing vortex lines to move outward at a slow rate. The 
resultant v(i) is proportional to temperature (eq. [31] in 
Ruderman 1976) so temperature fluctuations may cause 
the requisite variations in v to produce SN. 

VII. PHYSICAL PROCESSES INVOLVING TORQUE 
FLUCTUATIONS 

a) Accretion From the Interstellar Medium 

In the binary X-ray sources, accretion from the com- 
panion produces period fluctuations. We ask whether 
accretion from the interstellar medium could produce 
analogous effects in the isolated pulsars. The classical 
expression for the accretion rate, pnRa

2v g s“1 (where p is 
the density of the interstellar medium, v the pulsar space 
velocity, and Ra = 2GM/f2, the accretion radius), works 
out to approximately 109 g s“1 for the plausible numbers. 
A rough estimate indicates that such a rate may in fact be 
sufficient to produce timing irregularities of the observed 
magnitude. 

We emphasize, however, that most of this “ accreted ” 
matter never reaches the magnetosphere of the star. 
Rather, it is blown away by the pulsar radiation. Bland- 
ford et al (1973) have argued that, if the rotational energy 
loss of a pulsar is eventually converted to relativistic 
particles, then the pulsar will “blow a bubble” in the 
interstellar medium of an approximate 1 pc radius. The 

fact that this radius is very much larger than the accretion 
radius implies that the isolated pulsars never accrete 
anything. However, it has not been demonstrated that 
the radiation flux is isotropic; if the interstellar medium 
could find “holes” down into which to fall, the effect 
could be important. 

A stronger argument against this possibility is based on 
the fact that, in a sample of 48 pulsars, no correlation is 
found between timing noise and altitude z above the 
galactic plane (Paper III). For example, PSR 1508 + 55 
has z = 730 pc but nevertheless has a perfectly reason- 
able noise strength. Among the pulsars listed in Table 1, 
the mean z is approximately 190 pc. The pulsar distribu- 
tion as a whole has a scale height of 230 pc (Manchester 
and Taylor 1977). In contrast, molecular clouds are 
confined to within roughly 50 pc of the galactic plane 
(mid-point to half-power of the distribution: Sanders, 
Solomon, and Scoville 1979) and H i to within 120 pc 
(Burton 1976). Furthermore, this model predicts an 
inverse correlation of timing noise with space velocity. In 
the sample of 25 pulsars for which interferometer veloci- 
ties are available, this correlation is not observed. We 
strongly doubt, therefore, that the effect could be 
significant. 

b) Torque Fluctuations 
Pulsar spin-downs occur as a consequence of an elec- 

tromagnetic torque which derives from two sources: 
magnetic dipole radiation and a stellar wind. Angular 
momentum is carried away mostly by electromagnetic 
fields, but a small amount is in particles which convert 
some of their energy to coherent radio emission. Radio 
emission is variable on time scales from microseconds to 
years, and it is plausible that the associated particle flow 
may vary correspondingly, thus causing timing noise. We 
consider here the details of such fluctuations and the 
prospects for observationally linking luminosity varia- 
tions with timing noise (see also Lamb et al 1978a, b). 

i) Current and Mass Flow in Pulsar Magnetospheres 

Cheng and Ruderman (1980) have argued that particle 
flow from the magnetic polar cap has two components: 
(1) a positive current composed of ions and positrons; (2) 
a secondary electron-positron plasma generated from 
y-rays emitted by primary positrons. 

The current and plasma interact as a beam-plasma 
system that is unstable to charge-bunching via a two- 
stream instability. Hence both components are required 
for producing coherent radio emission. In this model, the 
current flow is essentially constant; it is fixed by the 
rotation rate and magnetic field of the star to the extent 
that those quantities are constant. The current can fluctu- 
ate only on time scales smaller than approximately 10 ps, 
the time necessary for the polar cap region to become 
unstable to pair production if the ion flow were inter- 
rupted. The plasma flow can vary on any time scale, 
however, because it originates from the primary posi- 
trons, whose number may change so long as the ion 
number varies such that the current is constant. Ions are 
produced by thermionic emission and, therefore, the 
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quantity that controls fluctuations is the polar cap 
temperature. Cheng and Ruderman (1980) demonstrate 
that the temperature is self-regulated by back heating of 
electrons accelerated into the polar cap. 

In this model (and in any model that is similar to that of 
Goldreich and Julian 1969), most of the work done 
against the star is by the current (viewed as a 7 x B force). 
The neutral plasma is less important in the spin-down, 
but the energy it carries can vary, as does the radio 
emission for which it is responsible. 

ii) Timing Noise from Plasma Variations 

The energy loss rate in particles is 

Èp = ymc2Ñ , (50) 

where Ñ is the number of particles exiting the magneto- 
sphere per second. The radio luminosity is at the expense 
of particle energy, so 

L = Áyme2Ñ . (51) 

Compared to the spin-down loss rate, È = /QQ, Èp is 
negligible according to theory while L is observationally 
miniscule. Indeed L/É ranges from 10“9 5 for the Crab 
pulsar to 10"2 for PSR 1819-22. Remarkably, however, 
LIÈp is of order unity, implying that the radiation 
efficienciy e = Ay/y is large. The level of fluctuation of È 
which can appear as timing noise is, therefore, 
ÔÈp = ÔL/e. 

Frequency noise will be produced if luminosity varia- 
tions of amplitude ÔL occur in pulses of width W such 
that t^> W. These pulses produce steps in frequency with 
amplitude 

ôv = W0L/4n2dv . (52) 

Therefore, the strength parameter is 

SFN = R<(ôv)2y = R((W0L)2y/(4n2eIv)2 . (53) 

Assuming nonoverlapping events (RW ~ 1) and adopt- 
ing the values ôL ~ L ~ 1028L28 ergs s- \ / = 1045/45 g 
cm2, and W = Wd days, we have 

SFN = 10-22 3(0L2S/I45v)2Wde~2 . (54) 

Comparison with measured values shows that SFNf0L is 
too small by four to six orders of magnitude. The deficit 
can be made up by assuming that fluctuations with 
Wd ~ 102 occur and appear as timing noise in the least 
massive neutron stars, with J45 =0.1 and ôL28/e = 10. 

It is interesting to note that L is not measurably cor- 
related with period derivative. In the Goldreich-Julian 
(1969) model, however, 

P = 4n2c-3P-1B2R6/I . (55) 

Therefore, all other things being equal, the least massive 
stars will show the largest values of SFN and P, a 
correlation that is established in Paper HI. Whether this 
model is viable or not depends on whether the luminosity 
does, in fact, vary by 100 %. The radio luminosity has only 
been inferred from narrow-band intensity measurements 
by assuming that the shape of the radio spectrum is time 

invariant. The narrow-band intensity, indeed, varies by 
large fractions on time scales from microseconds to years, 
but there is evidence that such variations are not cor- 
related over the whole radio spectrum (Cole, Hesse, and 
Page 1970; Backer and Fisher 1974; Rankin, Payne, and 
Campbell 1974; Helfand, Fowler, and Kuhlman 1977). 
Suppose that intensity variations with characteristic time 
T are correlated over a radio frequency range, 
Afcor(T) < A/ where A/is a characteristic bandwidth of the 
spectrum. We have 

<5L(t)/<L> « m/(T)[A/cor(T)/A/]1/2, (56) 

where m^t) is the modulation index (ratio of rms to 
mean) of narrow-band measurements and may be 
conservatively estimated to be unity. At present there are 
no good estimates of A/cor. 

iii) Timing Noise from Current Fluctuations 
The current is steady as long as the rotation rate and 

magnetospheric structure are constant. Average pulse 
shapes, which are probably determined by the magnetic 
field, are measureably constant on time scales of years 
(Helfand, Manchester, and Taylor 1975). Observations 
do not preclude pulse-shape fluctuations of 10% on short 
time scales, however. In the Cheng-Ruderman (1980) 
model (and polar cap models in general), the size of the 
polar cap, and hence the current, is governed by the 
global structure of the magnetosphere, particularly that 
near the Alfvén radius. We therefore consider torque 
fluctuations caused by variations of the polar cap size. 
This involves, of course, closed field lines temporarily 
opening. Observationally, this suggests average profile 
fluctuations at some level. 

Variations in current flow imply ôv/v =/< 1. Imagin- 
ing pulselike variations with width W, we obtain a 
random walk in frequency with strength 

sFN = R((ôvw)2y = (Rwy2v2w. (57) 

Adopting the values v = 10_15v15 and RW = 1 (non- 
overlapping events), we have 

SFN = 10"3Ov15
2/2IF Hz2 s"1 . (58) 

Note that the strength is a factor Èfe/L larger than that for 
luminosity fluctuations. 

To achieve random walk strengths equal to those 
measured requires f2W= 10“3,4 s for the Crab pulsar, 
and values ranging from 3.0 s for PSR 1915-1-13 to 
approximately 103 s for PSR 2016 + 28. Therefore, except 
for the Crab, the torque varies by 100% on time scales of 
seconds to minutes, or it varies by smaller fractional 
amounts on larger time scales. We note that pulse-timing 
measurements do not preclude such variations. In order 
to measure v, a time scale ôt ^ 0.05v“1/2 ^ lO6^“^2 s 
is necessary (we assume arrival time measurements are 
accurate to 1 ms). Consequently, even 100% variations of 
v on the required time scales would not be directly 
detectable because several thousand pulses are required 
to form an average profile stable to approximately 5%. 
The required values of W are smaller than the time for 
achieving a stationary average profile. Therefore, 
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RW > 1 if different parts of the open field-line region 
fluctuate independently. The result is that W is decreased 
from values mentioned above. 

For the Crab pulsar, there is the interesting possibility 
that giant radio pulses are associated with timing noise. 
Giant pulses have VF ^ 0.1 ms and R = 1/30 s (Hankins 
1980). From equation (58) and the measured strength, we 
find / ^ 360. Whether torque variations with 
/= ôv/v = 360 can occur will not be discussed here. 
Considerably smaller values of / may suffice, however, 
depending on the nature of giant pulses. If such pulses 
represent temporal fluctuations that would be observed 
in the corotating frame of reference, then VF = 0.1 ms, as 
above, but R may be greater than observed if some giant 
pulses occur when the pulsar beam is not pointed at the 
Earth. Alternatively, a giant pulse may be caused by a 
rotating beam with a lifetime in the range of 0.1 ms to 
P = 33 ms. Therefore the giant pulse may persist for a 
time 0.1 ms < VF < 33 ms. If VF = 33 ms, then/~ 13 is 
required to produce the observed timing noise. 

iv) Phase Noise 

We cannot imagine how torque variations could pro- 
duce phase noise because torque variations that appear 
asymptotically as the derivative of a Dirac delta function 
would be required. 

v) Slowing-Down Noise 

Torque variations will produce SN if they are of the 
form of step functions. The strength parameter becomes 

SSN = R<(<5if>*R(v/)2, (59) 

where/ = ôL/eÈ for the case of plasma fluctuations, and/ 
is arbitrary for current fluctuations. Assuming the former 
case, the strengths are equal to those measured if 
Re~ 2 ^ 10 s"1 for both pulsars PSR 0611 -b 22 and PSR 
0823 + 26. Physically, we see no reason why torque 
fluctuations should appear as SN in these two pulsars and 
FN in others. 

vi) Pulse Nulling and Timing Noise 

In some pulsars a dramatic form of luminosity fluctua- 
tion occurs: the radiation at all frequencies shuts off for 
one to several hundred pulse periods (Backer 1970; 
Ritchings 1976). According to the model outlined above, 
such nulls can only be interpreted as a termination (or 
major perturbation) of the plasma flow. In that context, 
the time scale for nulls is too small to produce measur- 
able timing noise (cf. eq. [54]). It is nonetheless of 
interest to ask whether pulsars that display pulse nulling 
are also those with considerable timing noise. Ritchings 
(1976) determined the fraction of null pulses for 27 
pulsars for which timing data were also available. We find 
that the activity parameter (a logarithmic measure of the 
strength parameter; see Paper III) for pulsars with 5 to 
55% null pulses is not statistically different from pulsars 
with a strong upper limit (< 5%) on the fraction of null 
pulses. 

VIII. PROSPECTS FOR THE FUTURE 

We close by outlining those areas of further work 
which we believe would be the most helpful. 

Two improvements in the timing observations—finer 
time resolution and observations extending over longer 
baselines—are called for. With regard to the first, it is 
obviously a serious problem that no timing observations 
have ever succeeded in isolating an example of the 
underlying event responsible for the noise process. Never- 
theless there are a variety of reasons for believing that 
these events may lie not far below the present threshold of 
detectability. For example (§ II), the amplitude of the step 
size for the SN pulsars can be determined if the noise 
process has a nonzero mean. As indicated in Table 1, the 
step size so obtained is fairly large. Secondly, as em- 
phasized in § Va, if crustquakes are relevant, the under- 
lying steps in the Crab pulsar must be almost as large as 
the present observational limit. Finally (§ Vic), it is easier 
to understand the noise process with the heat-pulse 
model if the process is of a moderately slow rate: one 
event per year as opposed to one per week. 

The presently available data are sufficient in only 11 
out of 50 pulsars to allow a classification of the noise 
process into PN, FN, or SN. More pulsars could be added 
to the data set if timing observations of them were to be 
extended over longer baselines. We also note that it might 
be possible to obtain a handle on the signature of the 
underlying events in this way. As indicated by equations 
(18), (32), and (36), as the time span of the observations T 
is varied, o>2(T) changes its T-dependence. Thus a given 
pulsar is expected to change the character of its noise 
process from, for example, PN to FN as the observations 
are carried out over successively longer and longer 
periods of time. We emphasize that, in most of the 
theoretical models that we have considered, we are 
already in the large-T limit. However, we do recommend 
this consideration to anyone wishing to propose new 
mechanisms for timing noise. 

X-ray observations of blackbody radiation from the 
pulsars can also be used to place important constraints on 
the underlying mechanism. For example, we have been 
able to relate the surface temperature of the pulsar to the 
amplitude of its frequency steps in the starquake picture 
in equation (30) and to various parameters appearing in 
the heat-pulse model in § Vic. 

None of the models we have considered are able to 
account for all three types of noise as the relevant 
parameters are varied over their respective ranges. The 
crust-breaking model of Ruderman (1976) appears to be 
capable of yielding PN and FN strengths far greater than 
observed, at least in the young pulsars; it remains to be 
seen, however, whether this mechanism can be made to 
operate at the observed level in the long-period pulsars. 
The heat-pulse model of Greenstein (1979) also appears 
to be capable of accounting for the PN and FN pulsars. 
Within this model the most important unresolved prob- 
lems are that of the hydrodynamics of the boundary 
between the vortex pinning and the frictional regions of 
the star, and that of the degree to which the vortex tangle 
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generated at this boundary migrates into the frictional 
region. 

We believe that SN can be understood only in terms of 
variations in the torque acting on the star. For this 
reason, and because they have not been explored as fully 
as models involving processes internal to the star, we urge 
a more complete study of such models. 

We thank J. Arons for a conversation on luminosity 
variations. This research was supported by grants MPS 
75-03377 and ATS 75-23581 from the National Science 
Foundation and by the National Astronomy and Iono- 
sphere Center, which is operated by Cornell University 
with the National Scicence Foundation. This is contribu- 
tion 445 of the Five College observatories. 

APPENDIX 

MOMENTS OF AN ENSEMBLE OF EVENTS WITH UNKNOWN TIME ORIGIN 

The moments of an ensemble of events, 

0(0 = - 4) > (Ai) 
j 

can easily be calculated by using the procedures for shot 
noise if the tj are independent and Poisson distributed. In 
Paper II it was shown that the first and second moments 
of 0 are 

<#)> = R<a> (A2) 
•'o 

<02(t)> - (my=R<y> - o, (A3) 

where R is the rate of events, and it is assumed that the 
events commence at i = 0 (i.e., (¡)(t) = 0 for i < 0). 

Measurements of a moment involve an integral over 
some interval [íd, íd + T]. If we consider such an integral 
to be an estimate of a moment, then the ensemble-average 
of that estimate is, for the second moment, 

^2(íd, T) = f'+Tdfmf ) - <0(O>2]) • (A4) 

For nonstationary random processes (those for which 
h(t) ^ 0 as t-> oo ), <t^2(í, T) will depend on r, the un- 
known time elapsed since the onset of the random 
process. In this paper, we do not know the value of t, but 
we are interested in comparing data in the interval [td, 

+ T] with a random process of a particular form. To do 
so, we will divide the events contributing to the random 
process into three groups: (1) those events that occurred 
between 0 and td and whose time-dependence h(t — tj) has 
reached an asymptotic form [e.g., a power of (f — i,*)]; (2) 
those events that occurred in [td— Wh9 td] such that 
h(t — tj) has not reached an asymptotic form; and (3) 
those events that occur in [id, td 4- T]. It can be shown that 
events in the first group will contribute only low-order 
polynomial components to the phase. Events in the third 
group constitute a random process commencing at the 
time id. Events in the second group occur prior to t but 
have shapes that evolve in [td9 td + T] toward the asymp- 
totic forms of those of the first group. Events in the second 
group will, therefore, influence the form of the random 
process. 

In the following, we ignore events in the first group 
mentioned above because, for event signatures that we 
are interested in, they contribute only low-order polyno- 

mial components to the phase. These components are 
indistinguishable from those associated with the steady 
spin-down, which are removed from the data before 
analyzing the timing noise. To demonstrate this, suppose 
that event signatures assume the following form for 
large i: 

m 
lim h(t)= £ Cnf , (A5) 
t>Wh n = 0 

where m is a small integer. For events produced by 
starquakes (Table 3), for example, C„ is 0 for n > 2. The 
phase produced by events in the limit t^> Wh can be 
written as 

0iW= ïtk (A6) 
k = 0 n = k \KJ j 

which is clearly a low-order polynomial in time. All the 
sums over j, which are over events tj < td— Wh, are con- 
stant over the data interval. Consequently, (j)(t) is a mth- 
order polynomial that is removed along with the spin- 
down polynomial. Therefore, the events contributing to 
0! do not contribute to the phase fluctuations in the data 
interval. 

The analysis in Papers II and III essentially compared 
the T dependence of the phase variance of the data with 
(7</)

2(ííí, T) for the case that td = 0; i.e., that the random 
process commenced at the beginning of the data acquisi- 
tion. If this were the case, then the type of random process 
would be determined by the shape of h(t) for those events 
that occur only in the interval of the data. If the random 
process commences at the time of onset of data taking, 
then 

^2(í)=o2(t)> - (my2 = ko2> Í dzh2(z), 
Jo 

(A7) 

from which it is clear that the t dependence of ^(t) wiU 
depend on the form of h2(z). 

More realistically, however, we will assume that events 
with a characteristic time Wh have occurred such that 
¿d ^ Wh. It is then clear that, as far as the form of the 
random process is concerned, we must consider those 
events that occur with tj e [td — Wh, td] as well as those 
that occur with tj e [td9 td+ T]. We can write the phase as 

0(0 = 0/t(O + 0fl(O , (A8) 
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where 

«MO = Z cijh(t - tj) (A9) 
tj e[td-Wh,td] 

Mt) = I aJh(t - tj) • (Aio) 
tje[td,td+T] 

The events contributing to are in a time interval that 
does not overlap the interval containing events of </>£. 
Therefore, the second moments of (¡)A and </>B add, 

<02(i)> = <^2(0> + <0b2(í)> > (A11) 
and it can be shown that 

»t+Wh-td 
H2(t) = R(a2} [ dzh2(z). (A12) 

Comparison with equation (A7) indicates that the effect 
of events prior to td is to extend the integration interval 
from [0, t — td] to [0, i + Wh — td]. This extension strongly 
limits the kinds of random processes that can be expected 
from ensembles of events. For example, suppose pertur- 
bations in the frequency of the form 

Av(t) = a(l — e~tlx)H(t) (A13) 

occurred. For t t, Av(i) ^ (a/r)tH(t), and if equation 
(A7) were the valid equation (i.e., events commence when 
data sampling begins), then the random process would 
appear as a random walk in rotation-frequency derivative 
for which ju2(i)oc t5- Using the realistic equation (A12), 
however, yields fi2{t) oc t , i.e., the dominant term is 
independent of i if i t. 
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