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Summary. In the following a simple and straightforward method
of orbit determination is discussed. It may be used for all types of
Kepler orbits (elliptic, parabolic or hyperbolic ones) and for any
given number N =3 of observations all of which are treated
symmetrically. This is advantageous if compared with the classical
(unsymmetrical) methods with N=3 both for theoretical and
practical reasons.

Furthermore the use of position and velocity at a fixed epoch as
orbital elements makes it unnecessary to discuss some special cases,
ase.g. small inclination or small excentricity, separately. Hence the
formulae of the text are easily transformed into a computer code.
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Introduction

This paper contains a short description of a very simple way to
determine the elements of the (Keplerian) orbit of a celestial body
around a given centre of attraction from N = 3 observations. In
contrast to the classical methods (GauB, 1891; Klinkerfues, 1899;
Bauschinger, 1928) which are designed for the use of logarithm
tables ours is rather well-suited for electronic calculators. This is
mainly so because we need not consider as special cases, say, orbits
of small inclination to the ecliptic or nearly circular or parabolic
orbits. In fact, the method works equally well for (minor) planets
and for comets, as was shown by carrying out several numerical
tests for objects with very different orbits.

1. Notation; Calculations of Position and Velocity

A certain disadvantage of the various known methods in celestial
mechanics lies in the use of the classical orbital elements a, e, i, Q,
o, T [with the usual meanings, see e.g. Stracke (1929), Bucerius
(1966)], for some of them are not always continuous functions of
position and velocity at a given moment. This makes a distinction
of several special cases (small excentricity, small inclination,...)
necessary. Mainly for this reason we suggest another possibility to
describe the orbit of a celestial object (called the “planet”) which
moves under the attraction of a centre (the “sun”) according to
Newton’s law

PR %r )

where r is the position of the planet relative to the sun, a dot means
a temporal derivative. u is the product of Newton’s constant of
gravitation and the sum of the sun’s and the planet’s masses, which
is assumed known. — From (1) we derive the well-known constancy
of the vectors

C=rxF 2

(“angular momentum vector”) and

- u
A=FrxC——r @3
rl )
(“Pauli-Lehz-vector”) which shows that both of them may be
expressed by the classical elements. The representation is

sin Qsini
C=C | —cosQsini |; C=|C|=Vup; p=all—e€>), @)

cosi

cosw cos 2 — sinw sin Q cosi
A=A | coswsinQ+ sinwcosQcosi |; A=|A|=pe. o)
sinw sini

The directions of C and 4 determine the normal to the orbital plane
and the perihelion direction respectively. From these formulae we
can find all the classical elements, except the perihelion passage
time T, from A4 and C, i.e. from r and r at any time. That C and 4
are equivalent to only five elements is expressed by the fact that
they are orthogonal to each other (C~4 = 0). T'is given by Kepler’s
equation and the fact that the true anomaly is the angle between 4
and r. So the position and the velocity at any time contain the same
information as the classical elements and we shall use them in the
further developments as parameters of the orbit.

For the sake of simplicity and symmetry we introduce a more
suitable notation:

Let aand b be the position and velocity vectors at time ¢, a* and
b* those at (another) time ¢*. Excluding the uninteresting case of a
straight line orbit passing through the sun, we see that a and b (as
well as a* and b*) span the orbital plane and are linearly
independent. So every vector in the orbital plane (especially a*, b*)
is expressible in a unique way as a linear combination of a and b.
We write

a*=aa+ fb; b*=vya+ b (6)

and, dually,

a=a*a*+ Brb*;  b=y*a*+ 5*b* )
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It should be remarked that by some authors the coefficients
a, B,y,0 are called f, g, f, &, respectively, but for reasons of
symmetry and simplicity in notation we prefer the present
nomenclature.

To determine a* and b* from a and b and vice versa, it is only
necessary to know «, 8,7, §; a*, f*,y*, 6* as functions of a, b and
t* — t. By the constancy of C, see (2), we observe that

C=axb=a* xb*=C* ‘ ®)
and so
ad — By =a*o* — fry*=1. ®

The definition of the coefficients in (6) and (7) leads to

a B\ [o* ¥\ _[o* B*\(a B\ (10
<v 5) (v* 5*) - (V* 5*) (v 5) - (0 1) 0
or, explicitly,
o* =a*(a,b;t* — )= o(a*, b*;t — t*)=0(a,b; t* — 1) =6, (11)

B* = p*(a, b; t* — 1) = (a*,b*;1 — t*) = — Pa,b; 1* — 1) = — B,(12)
V*=y*(a,b;r* — ) =y(@*,b*; 1 — )= —yab;r* - )=—y, (13)
0* =6*(a,b; t* — 1) =6(a*,b*;t — t*)=a(a,b;t* — ) =q. (14)

To get a, B,7,0 from a,b and t* — ¢, we first determine C and e,
which are given by (4) and (5):

C=IC|; e=|A|/u (15

and then the true anomaly v at the time ¢, i.e. the angle between 4
and a. At the time #* the planet has the anomaly v* which is found
with the help of the Kepler-Barker-equation:

3 v*
t*——t=ﬂ—2j(l+ecosx)‘2dx. (16)
The integration can be carried out analytically, and then the
solution of this implicit relation may be effected by standard
methods, cf. e.g. Klinkerfues (1899) or Bauschinger (1928), so there
is no need to discuss it more thoroughly.

With the knowledge of C, e, v and v* it is easy to evaluate
o, B,y,6: We derive from the definition (6) of «, 8,7, J:

o OB

— ="

=V an

This and (14) allow us to calculate 0,00 =0* and y as soon as f is
known. § is found most conveniently via

Cla||a*|sin (v* —v)=C(axa*)=BC(axb)=pC%. (18)
Let '
A=v*—v. 19)
Then the result is
cosd —1
=1+ - 20
* + 14 ecosv* (20)
o sin4
== , 2
p #? (1+ ecosv)(1+ ecosv*) @)
2
Y =% (esinv — esinv* — sin4), (22)
cosd —1
o=14+ ——. 23
+ 1+ ecosv (23)

Although this is all we need for orbit determination (in fact only the
formulae for o and f are necessary), some other results may be
useful for taking into account perturbations (not considered here)
or for improving a given orbit by a least-square-method.

If we change a and b into a+ da and b+ db respectively — where
da and db are small — then position and velocity (e* and b*) at time
t* will be altered by amounts of, say, da* and db*. We have to
calculate da* and db* as functions of da and db (with given 7 and ¢*)
and vice versa. This may be done in the following way:

By assumption (nonlinear orbit) a, b, C are linearly inde-
pendent. Thus we may write down da and db as unique linear
combinations, e.g.,

da=ia+jb+kC, db=Ila+ mb+nC 24)
and analogously

da* =i*a*+ j*b*+ k*C*;  db*=I[*a*+ m*b*+ n*C*. (25)
One may easily prove that

*+m*=i+m; i+ m=i*+ m*, (26)
*42m* =a(i+ 2m) — B(Sj+ D),

i+ 2m=56(* + 2m*) + B(S*j* + I¥), 27
S*j* 4 ¥ = — y(i+ 2m) + 5(Sj+ D); '

Sj+ = y(i* + 2m*) + a(S*j* + I¥), (28)
J*==3(* =i+ m)+j+ J(i+ 2m) — J(Sj+ D);

J=30* = ) (@* + m*) + j* + T+ 2m*) — JE(S¥*+ 1*),  (29)
k*=ok+ fn; k=0k*— pn*, (30
n*=yk+dén; n=—yk*+an*, 31
where

*—t *—t
J,=2 _[ o(a,b; u)du; Jg=2 _[ B(a,b;u)du, (32)
) e 0
Ji==0J,+vJg Jy=pJ,—al, 33)
S=ulal™; S* = pla* |72, (349

These equations contain the same information as the Jacobian

d(a*,b*)
3(a,b)

(33%)

It should be noted that only for evaluating (16) and (32) a
distinction between elliptic, parabolic and hyperbolic orbits is
necessary. All the other equations are independent of the type of
the planet’s motion. This is especially true for the orbit
determination considered next.

2. Orbit Determination (/N = 3 Observations)

We are now prepared to solve our main problem, i.e. to determine
the elements of the planet’s (Keplerian) orbit from N = 3 obser-
vations. The following data are provided by the i’th (1 < i< N)
observation:

1. The time of the measurement ¢;;

X
2. The position vector E;= | Y; |of the observer at that time
relative to the sun; Z;

1
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3. The observed direction to the planet, given by a unit vector

Xi
€;= <yi 5
Z;

and

4. The weight p; of the observation.

Let r;be the position which is observed at time ¢;. The light from
the planet has to travel along a distance

di=|r—E;| ()

so r ;s the position of the planet at time #; — d;/c, where ¢ = velocity
of light (“planetary aberration”).

We introduce a fixed epoch ¢, as the weighted mean of the
observational times:

N
Z pit;

o=k @
21 bi

and call the planet’s position and velocity at that time a and b. By
Eq. (6) of Sect.1 we may write

r=o,a+ ;b 3)
with the coefficients given by

o;=o(a,b; t,—t,—djc), @)
B:=B(a,b; t,— 1o —difc). ®)

Because the planet in #; is seen from E; in the direction e; at a
distance d;, we find with help of the fact that e; is a unit vector:

d=cfe=xl+ )i+ =1 ®)
a second expression for r;, namely
r,.=E,~+die,~. (7)

We are not interested in r;, so we eliminate it from (3) and (7),
getting

o;a+f;b—d.e =E; ®

for alli=1,..,N. With (2) we have to find the unknown quantities
o;, B;,d;; @ and b from the nonlinear system (4), (5), (8).

The solution is by iteration. We begin with an estimation of ¢;
afid B;, then solve the linear system (8) for a,,a,,as; by, b,,bs;
dy,...,dy. By (4) and (5) we get a new approximation for o; and f;.
We repeat this calculation until convergence occurs (normally only
very few steps are needed). The linearity of (8) is most useful,
because it allows to use any given number N = 3 of observations
and to pin down the normal equations immediately. We postpone a
more thorough discussion until later on (Sect. 3 and 4).

The initial values of «; and 8; may be derived by developing o;
and B; into a power series of the time interval

T=1— 1. )
We find easily from the definitions

o; = a(a, b; 1, — djjc) ~a(a,b; 1) =1+ O(z?), 10)
an

So the relative error is only of order tZ (i.e. the square of the —
usually small — heliocentric arc the planet moves along between

B:=pB(a,b;t;— dj/c) ~f(a,b; ) =1, + o(z}).

(PR3 |
az'l
o231

61
t, and t,), if we put

Bi=t—t,

as the first approximation (this is the limiting case of linear
unaccelerated motion). Of course, if we know something about the
orbit in advance of the calculation, other choices could be better,
but we shall not go into the details here.

The only step of our iteration scheme which should be
discussed more thoroughly is the solution of (8). This is done in
Sect. 3 (for the somewhat simpler case N = 3) and 4 (for general
values of N).

(12

ou=1;

3. The Special Case N=3

The case N =3 is of special interest because

1.3 is the minimum number of observations needed to
determine a and b;

2. There are as many conditions as unknowns (9), so an exact
solution is possible, while for N >4 we have to apply a least-
square-method;

3. The calculations are simpler than in the general case.

We introduce some additional notation. Let E and e be the
(3,3)-matrices S

X, X X
E=(E,E),Ej)= Y, Y, Y3 );

Z, Z, Z,
X1 Xz X3
e=(e,e,8)= |y V2 V3 ()]
Zy Zp 23

while a, f and ¢ are the 3-vectors

231 B4
a= <°‘2>; ﬁ=<ﬁz>;
*3 B3

(2 oy B3 — Baros
‘P=<¢’z>=¢xﬁ= <°‘3ﬂ1—/33°‘1>' 2
?3 aify— By

We shall assume that ¢, , ¢,, 5 are all different from 0. Otherwise
the planet would have moved between two of the three times ¢
along a heliocentric arc which is an exact multiple of 180°, a case of
little practical interest. We also exclude the possibility

dete=-e;(e; X e3) =0 3)

which corresponds to coplanar e; (all the directions lie on a great
circle), for then there could be more than one solution of (2.8), cf.
Klinkerfues (1899). Under these circumstances the classical
methods of (e.g.) GauB and Lagrange (see Bucerius, 1966) are not
applicable either. — From these hypotheses it follows that the
determinant of (2.8),

Det=— ¢, p,¢p;dete 4

does not disappear, so the system (2.8) admits a unique solution.
Written down in full, (2.8) becomes

ﬂl ‘1 — € 09 0 a) _bll,
By-1 0, —e, 0 bl=\E 6))
:33'1 09 03 —e3 d E3

where 1 and 0 are the (3, 3) unit matrix and the 3-dimensional zero
vector, respectively, while d=(d,,d,,ds)".
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Multiplying from the left by

(@1 ] 021 | @3°1) ©
we arrive at a system of 3 equations for d,,d,,ds:

~@1X; —@yX; — @33\ /4, 01X+ 02X+ 03 X5
—01Y1 =02y —03Y3 | =\ 0 Y1+ @Y+ 03Y;5 |=E¢
CP1Zy — P22, —P323/) \d3

@121+ 92Z,+ 9325 0)
or, more explicitly,

©,d,
0.4, =R ®
®3d;

with the (3, 3)-matrix R given by

R=—e¢V'E )

which may be evaluated once and for all before the iteration,
because it is independent of «; and f; (and o).

We next insert the d; from (8) into (5), which then splits into
three subsystems (k=1,2,3):

a By a Ex+die
a B (bk)-'—' Eyt+ dyeyy |-
a3 B k Eswt dyess

Multiplying from the left with the transpdsed matrix we find aftera
little bit of manipulation

(10)

4. Solution for General N> 3

In principle it would suffice to have a method for orbit
determination using three observations, for one could select three
measurements, calculate an orbit passing through them and
improve it afterwards by a least-square-method.

This, however, is neither elegant nor the most effective way to
proceed, for we do not know a priori which three observations give
the best approximation. An unlucky choice leads to additional
(and unnecessary) labour. So it is desirable to use all the obser-
vations according to their weights from the very beginning. Of
course, for N = 4 the system (2.8) only allows for a least-square-
solution, because there are more Equations (3N) to be fulfilled
than unknown numbers (N + 6). —

To begin with, let us pin down (2.8) explicitly:

o' 1] B 1| —¢, 0 -~ 0 a_ E;
a1 | Byl 0, —e, ', 0 b_ El

: o |=1"| o
ay-1 ] By-1 0, 0, ', —ey)ldy Ey

To get the set of normal equations we have to multiply from the left
first with the weight matrix

<A C) (ak> _ (Hu“l + Hyy0,+ Hk30t3) 1) Diag(p,,p1,P15 P2:P2:P25 "5 PNsPNs>PN) 2
C BJ\b Hy B1+ HipBo+ His B3 and then with the transposed to the (3N, N + 6)-matrix in (1). The
result is (summation always over i from 1 to N):
A4-1 C1 —P1%1€, =, —pyoyey | @ . ZPi“iEi
C-1 B-1 —plﬁlela Y _pNBNeN b ZPLBIE
—Pp10€4 —piBi1 €} Pis 0, -, 0 d, -p:Eie
0, I Z T 0 d, |= ] —p:Eje, )
L _PN“Néfv —DnBnel 0, 0, -, PN dy | —pnEjen
where
with the abi)revizationzs ) A=Y pio?, @)
A=da=a*=a;+ a5+« 12)
s B=Yp:fi. ®)
B=ﬂ'ﬂ=ﬁ =pi+ B3+ B3 13) C Z B ©)
=Y p;o;B;- «
C=a'f=Pla=ou,f+aBs+ a3, (14) P
i 0 0 If we introduce the (3,3)-matrices
1
H=E+ e“<0 d, 0>= (Hyp)=(E;; + djey) s x2—1  xy; X;Z;
0 0 d; FE=eel—1=| x5, y'—-1 gz > @)
The determinant of (11) is xz  nzo ozi—1
4 C . 2 we derive from (3) the following six equations for the orbital
det(c B>=AB_ C=a*p?—(@ p’=¢’ elements a,,a,,as; by,b,,b;:
— 2 2 2 __ .02
=¢it et o3=:9">0 (16) piotF; Zpi“iﬁil'} a\_ ZpiaiEEi [ LPi%€ X (E;xe)
so the solution is unique, namely YraBF YpBiF J\b) \XpiBFE) \LpiBie; x (E; xe)
a=p PH (Bx¢) b=¢ *H (pxa) (17),(18) ®

Thus we can find the values of a, b and d,,d,,d; in (5) by the
formulae (8), (17), and (18) in turn, where the auxiliary matrices ¢,
R, and H are defined in (2), (9), and (15), respectively. —

Note that only once (before the iteration) the (3,3)-matrix e has
to be inverted while all the other operations are trivial.
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not discuss this point further. Once a and b are known, it is quite
trivial to calculate the d; from (3). We find

di=¢(v;a+f;b— E;) : (€)

which completes the solution of (1) or (3). ((9) might equally well be
found from (2.8) directly). —

Of course, this method is applicable to the case N =3 too, but
the calculations of the last section are simpler. The reason for this is
that only three distances are to be found, therefore the d; should be
obtained first.

5. Remarks

At last we want to discuss the precision of the results of our
method. Of course, the orbit which is determined in Sect. 3 passes
exactly through the three observed positions. But (Sect. 4) if N = 4
the problem is overdetermined and only a least-square-solution of
(2.8) is possible. That means that the observed direction ¢; and the
direction to the planet derived from the elements a and b (given by
r;— E;) may be different by an angle of, say, ¢; (i=1,..., N).
It can be shown that the calculations of Sect. 4 are equivalent to
the solution of the minimum problem
N
Y p;d?sin*¢; = min! 6))
i=1
(i.e.: (1) leads to just the same system of normal equations).
The difference between the sine of ¢; and the angle itself is
completely negligible, so (1) is very nearly the same as

N
2. p:di e} =min! @)
i=1
The error ¢; of the i-th measurement is thus given a weight p,d?
instead of p;. We may correct for the very slight error introduced by
this simply if we replace p; during the iteration by p,d; 2.
Finally it is to be noted that — to the best of my knowledge — our
method is the first one which allows to determine an orbit from N
observations directly, without first choosing 3 measurements
(cf. Sect. 4). So — as far as perturbations are vanishingly small — a
further improvement of the orbit is not needed if we use all of the
observations from the outset.

6. Conclusion

We construct a very simple procedure of orbit determination using
N = 3 observed directions. If compared with the classical methods
it has some advantages:

63

2. All the observations are treated in a symmetrical way. This is
not true for most of the classical methods.

3. It does not make any difference between elliptic, parabolic
and hyperbolic orbits. In fact, numerical tests show that it works
equally well for (minor) planets and comets.

4. It is easily translated into a computer program.

On the other hand, the results of the calculation are the initial
values of position and velocity from which the classical elements
have to be found afterwards. But this never causes any trouble.

Because the coefficients «; and §; do not depend strongly on the
elements a and b, the iteration should normally converge quite
rapidly. Several numerical examples (one is given in the appendix)
of known orbits of minor planets and comets show that this is
indeed the case, even if the heliocentric arc the planet moves along
during the observation is rather large.
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Appendix: A Numerical Example

As an application of our method we calculate the orbital elements
of Ceres. We use the observations of Olbers, Harding and Bessel
which are given in GauB (1871, Chap. 159)

1. It allows taking into account more than 3 observations with ~ Obs. Date (Paris Mean Time) o (1806.0) 4 (1806.0)
their weights and hence avoids the problem of selecting three N
measurements. If perturbations of the major planets are to be 1 1805, Sep. 5, 12719™14¢  95°59'23710 +22°21°27708
neglected, there is no need to improve the resulting orbit. 2 1806, Jan. 17, 10"15™ 2¢ 101°18'40738 +30°21'2420
3 1806, May 23, 9B33m18s 121°56’ 8797 +28° 2'47704
For the vectors e and E we find
Obs. x y z X Y Z
1 —0.0964172  0.9951904 —0.0173129 0.9628573 —0.2958452 —0.0000001
2 —0.1692467  0.9773990 0.1266754 —0.4499487 0.8750783 —0.0000001
3 —0.4670685  0.8741417 0.1331285 —0.4760567 —0.8944019 0.0000008

(Lengths in a.u., unit of time: 1 day)

Iterating 7 times we get
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It. a, a, a, b, b, b,

1 —0.6869997  2.4097041 0.1927119  —0.0102365 —0.0034614  0.0018869
2 —0.7019348  2.4963064 0.2041542 —0.0102740 —0.0036318  0.0017872
3 —0.6999414  2.4845916 0.2026191 —0.0102653 —0.0036135  0.0017966
4  —0.7001787  2.4859854 0.2028020 —0.0102663 —0.0036158  0.0017954
5 —0.7001498  2.4858160 0.2027797 —0.0102661 —0.0036155  0.0017955
6 —0.7001533  2.4858365 0.2027824 —0.0102661 —0.0036156  0.0017955
7  —0.7001529  2.4858340 0.2027821 —0.0102661 —0.0036155  0.0017955

These values lead to the classical elements:

semimajor axis: 2.7715064 a.u.
excentricity: 0.0823315
longitude of the perihelion: 65°36'39"
ascending node: 80°58'58"
inclination: 10°37'24"
mean anomaly (1806.0): 325°21'42"
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