SPECTRAL TYPES OF S AND SC STARS ON THE REVISED MK SYSTEM

Philip C. Keenan
Perkins Observatory, Ohio State and Ohio Wesleyan Universities
AND
Patricia C. Boeshaar
University of Oregon
Received 1979 November 13; accepted 1979 December 19

Abstract

The catalog of 101 stars provides standards of spectral type in the sequence from MS through \mathbf{S} and SC to the carbon stars with weak C_{2} bands. In addition to temperature types and C / O indices, intensities of $\mathrm{ZrO}, \mathrm{TiO}, \mathrm{Na} \mathrm{D}$ lines, YO , and Li 6708 are given whenever possible. For variables of large amplitude the observations at different dates are tabulated.

Subject headings: stars: carbon - stars: spectral classification - stars: S-type

I. INTRODUCTION-ABUNDANCE INDEX

The difficulties of classifying the stars of type S and the even rarer SC stars have been described by Boeshaar and Keenan (1979), who defined criteria for the revised MK system as applied to these stars. This catalog is designed to complete that work by making available a set of carefully determined types extensive enough to provide a network of standards for the classification of other stars of these groups, or for the selection of representative stars for detailed analysis.

The earlier scheme of classification for the \mathbf{S} stars developed by Keenan (1954) was based on the simplistic assumption that the change from type M to type S was due only to the replacement of iron-peak elements (represented by TiO) by s-process elements (represented by ZrO). For the stars showing both TiO and ZrO bands this worked fairly well, but with the gradual recognition that the SC stars, sometimes called D line stars (Gordon 1967), formed a group forming a continuous sequence connecting the \mathbf{S} stars to the carbon stars (Bidelman 1954; Stephenson 1965; Catchpole and Feast 1971; Greene 1971) it became clear that in these stars the amount of free oxygen available could be of even greater importance than the abundances of the metals in determining the strength of ZrO and other oxide bands. The computations of dissociative equilibrium by Tsuji (1965), Greene (1972), and Scalo and Ross (1976) showed that the ratio C/O was the dominant composition variable, the SC stars being those in which $\mathrm{C}=\mathrm{O}$ to within about 1%. This was explicitly recognized by Ake (1978, 1979), who introduced a C/O index which we have modified.

C/O Index-In the notation of the revised MK classification the temperature type is separated by a slant line from the new C/O abundance index. This index is explained in Table 1. In the first column \mathbf{X}
represents any temperature type from 0 to 9 , though it must be remembered that abundance differences can generally be estimated more accurately among the cooler stars. When the bands of ZrO and/or TiO are present their intensities are given also. This is done because it has not been established that the ratio $\mathrm{Zr} / \mathrm{Ti}$ is necessarily proportional to C/O. As C/O becomes greater than 1 , the C_{2} bands begin to appear faintly, and it is useful to add their intensity to the type. As long as the D lines remain very strong, however, it seems useful to classify the spectrum as SC, though at the interface with the carbon stars both designations could be used. Thus WZ Cas at mean brightness can be assigned to type SC 7/10 or C7, 2.
The column in Table 1 headed C/O gives estimates of this abundance ratio based on the calculations of dissociative equilibrium. It is included as a reminder of the extreme sensitivity of the abundance index to this ratio, but the actual numbers will undoubtedly need some revision as better abundance analyses become available.

II. TEMPERATURE TYPE

The problem in assigning types that will be consistent measures of temperature lies in finding criteria that are sensitive, and yet not too much affected by other physical variables.

In type MS, and in S stars with C/O indices of 4 or less, the bands of TiO remain useful just as in the M-stars. It is always safer to use ratios rather than individual band strengths. The ratios of bands arising from levels of different vibrational energy are best, and among those found useful in type M such ratios as TiO $\left[\alpha(1,3) \lambda 5810 / \gamma^{\prime}(1,0) \lambda 5847\right]$ can still be applied in weak S stars. In these stars VO $5737 / \mathrm{TiO} 5810$ is particularly useful in defining types later than S6, but
Classification Criteria for the Sequence MS-S-SC-C (X=Temperature Type)

SPECTRAL TYPE	CRITERIA FOR C/O	$\begin{aligned} & \text { Estimated } \\ & \text { C/0 } \end{aligned}$	CRITERIA FOR TEMPERATURE
mxs	Strongest ZrO bands ($\lambda \lambda 6473$, 6345, 5718, 5551, 4641) just visible. A1so YO 6132.		Same bands and lines as in M-type stars.
SX/1	TiO \gg ZrO or Yo.	< 0.95	Same bands and lines as in M-type stars.
Sx/2	TiO > ZrO.	0.95:	Same bands and lines plus total intensity ZrO + TiO.
Sx/3	TiO $=$ ZrO. YO strong.	0.96	TiO + ZrO intensity. Sr I 4607/Ba II 4554 from SO to S5. Zro (?) 5305/ZrO 5551. Infrared LaO becomes strong after S 5 .
Sx/4	$\mathrm{ZrO}>\mathrm{TiO}$		TiO + ZrO intensity. Sr I 4607/Ba II 4554 from SO to S5. ZrO (?) 5305/ZrO 5551. Infrared LaO becomes strong after S 5 .
		0.97	
SX/5	ZrO \gg TiO		ZrO intensity. Same ratios as above.
SX/6	ZrO strong, No TiO.	0.98	Zro intensity. Same ratios as above.
$\mathrm{Sx} / 7=\mathrm{SCX} \mathrm{X} / 7$	ZrO weaker. D lines strong.	0.99	Same ratios as above. $\lambda 6456 / \lambda 6450$.
Sc $\mathrm{X} / 8$	No ZrO or C_{2}. $\mathrm{D}^{\text {dines }}$ very strong.	1.00	
SC $\mathrm{X} / \mathrm{9}$	C_{2} very weak. D lines very strong.	1.02	$\lambda 4607 / \lambda 4554 \quad \lambda 6456 / \lambda 6450$.
SC $\mathrm{X} / 10=\mathrm{C} \mathrm{X}, 2$	C_{2} weak. D lines strong.	1.1:	$\lambda 4607 / \lambda 4554$

as ZrO becomes dominant over TiO the VO bands rapidly disappear, and in nearly pure S stars are not seen at even the lowest temperatures.

The ZrO bands are so sensitive to abundance differences, both directly and through changes in the continuous opacity, that they are not as satisfactory as TiO for temperature criteria. However, the presence of strong ZrO absorption sets lower limits on the temperature type. We have searched for ratios of bands that can be used, and have found that ZrO (?) $5305 / \mathrm{ZrO}$ 5552 is extremely sensitive to temperature in pure S stars (Boeshaar and Keenan 1979). There is a question of the identification of the $\lambda 5305$ feature, which is never very strong in laboratory spectra of ZrO , but whatever the stellar contributors to the band may be, its rapid increase as the temperature goes down makes the ratio valuable as a practical criterion.

The YO bands at 6132 and $5972 \AA$ appear only in the cooler stars, but in MS stars and weak S stars they are so sensitive to heavy-element abundance that they are not very useful as temperature indicators.

For SC stars as well as for S stars in which C / O is approaching unity, the bands of metallic oxides, even if weakly present, tell little about the temperature. We must turn to atomic lines. The most obvious, of course, are the D lines of sodium, which have been used extensively as temperature indicators in the carbon stars (Keenan and Morgan 1941; Bouigue 1954; Gordon 1967; Yamashita 1972, 1975). Their equally great sensitivity to the opacity due to overlying bands of $\mathrm{TiO}, \mathrm{ZrO}, \mathrm{CN}$, etc. (and thus to the C / O ratio) has become generally recognized in recent years as largely responsible for the great scatter found when types based on the D lines are plotted against more direct estimates of temperature of either S or carbon stars. Whether luminosity effects also enter the picture remains to be established. In any case, we feel that it is dangerous to give dominant weight to the D lines as temperature indicators for S and SC stars. They must be taken into account, however, in assigning the total type, just as is the $\lambda 4227$ line of neutral calcium in classifying the stars that are not too red to be observed in the blue.

For all such stars in the earlier subdivisions of types S and SC the ratio $\mathrm{Sr} \mathrm{I}(\lambda 4607) / \mathrm{Ba} \mathrm{II}(\lambda 4554)$ is a valuable temperature criterion. Here again it would be dangerous to use this criterion alone, for this ratio should be sensitive to luminosity differences also (and may eventually prove valuable in establishing such differences). These lines are most useful in the SC stars, for they are obscured by bands of $\mathrm{TiO}, \mathrm{ZrO}$, and C_{2} in the stars in which these bands are strong.

In the red region there are two blended features which give the ratio $\mathrm{Ca}, \mathrm{Co}, \mathrm{V}, \mathrm{CN}(\lambda 6450) / \mathrm{La}, \mathrm{Ca}$, $\mathrm{CN}(\lambda 6456)$, which we have shown (Boeshaar and Keenan 1979, Fig. 2) to be an excellent temperature
indicator when observed with moderate dispersion in the SC stars. In that class it fails only for the members of the ${ }^{13} \mathrm{C}$ group, in which the peak between 6450 and $6456 \AA$ disappears because of ${ }^{13} \mathrm{CN}$ absorption. The low-level lines of lanthanum were suggested as temperature criteria by Gordon (1967), but La 6709, which she recommended, is badly blended with lines of Zr and Fe , and is hard to resolve from Li 6708 at very low dispersion.

It is also among the SC stars that the presence of the red bands of CaCl sets an upper limit to the temperature. The O, O heads of the red system, $A^{2} \Pi-X^{2} \Sigma$, appear as a pair of roughly symmetrical bands which tend to obscure the CN head at about $6206 \AA$. At the same time the bands of the orange system develop, overlapping the D lines, as can be seen in Figure 2 of Boeshaar and Keenan (1979). It can be seen from the catalog (Table 2) that CaCl is normally observed with appreciable intensity only in types SC 6 or later. On the other hand, examples of discrepant behavior have been reported in Mira variables (Rybski 1973) and can be suspected in other stars (Keenan and Bidelman 1979). Again, we must conclude that the CaCl bands are a useful, but not infallible, temperature criteria.

In column (4) of Table 1 the ranges of usefulness of these temperature indicators are summarized.

III. PRACTICAL APPLICATION OF THE CRITERIA

In order to use all of these criteria it is necessary to record the spectrum of a star in both the blue and the red regions. This extra trouble is worthwhile in view of the complexity of the spectra and the comparative rarity of the S and SC stars. We have not been able to cover the entire spectral range for all of the stars in the catalog, but have tried to do so for as many as possible. Whenever there are entries in any of the last three columns of Table 2, it is an indication that spectrograms extending into the visual or red regions were available.

The recognition of the SC stars is quite easy if spectrograms showing the D lines are available, and we have found that it is not difficult to assign C / O indices. Between indices 6 and 7, where the interface between types S and SC occurs, there is more of a problem in deciding where to place a star, but the decision can be based on the degree to which the temperature type suggested by the ZrO band strengths agrees with that implied by the Ba II/ Sr I line ratio and the D line absorption.

We have seen that the criteria for temperature change rather rapidly along the C / O sequence because of the appearance or disappearance of the different band systems. Thus it is not feasible to present a simple table defining all the temperature types for all possible abundance indices. As in the classification of other
stars with complicated spectra, it is necessary to define the types by the examples, and we have tried to include in the catalog stars with a sufficient range of types to serve this purpose.

The zero points of the temperature types present another problem. In the original classification of the carbon stars (Keenan and Morgan 1941) C0 was assigned to spectra in which the C_{2} Swan bands were first clearly visible at low dispersion. It was then found that type C5 corresponded in temperature approximately to K5 or M0 for the giants. On the other hand, types MS 0 and S0 are naturally chosen to correspond to M0 as closely as possible. Thus there must obviously be some shift in zero point as we make the transition from S to C through the SC stars. The difficulty is increased by the scarcity of the transition stars, and the best that we could do was to establish the temperature types somewhat arbitrarily, and leave to later atmospheric analyses their calibration in terms of effective temperature.

It is possible to make some estimation of the equivalent types in the KM oxygen sequences. Thus the temperature type of CY Cyg is S2 in the catalog, and on coude spectrograms taken of the red region at Palomar Observatory nine pairs of temperaturesensitive lines of similar elements give an equivalent type of M2.2 ± 0.95. This assumes that CY Cyg has the luminosity of a normal giant, while actually it is probably more luminous (Culver 1971) than a typical S or SC star.

Nevertheless, it appears tht SC 0 is roughly equivalent in temperature to M0. When we get to the carbon side of the group, the equivalent C type should then be several subdivisions later than the stars of the earlier types. Apparently the difference is less for the cooler stars with heavily-banded spectra, and SC $7 \approx \mathrm{C} 7$.

IV. DESCRIPTION OF THE CATALOG

In the first column the variable star designation or the BD number or other identification is given, followed by the HD number in the second column. The type of variability in the third column is in the notation of the Russian general catalogue (Kukarkin et al. 1969 -1970).

The 1900 coordinates follow in columns (4) and (5). For variable stars of large amplitude (usually Mira variables) the date on which the type was observed is essential, and is given in Julian days in column (6), followed by the visual magnitude and the phase. The
latter data were obtained mainly from the American Association of Variable Star Observers (AAVSO) Reports, supplemented by a few observations from the Groningen Observations of Variable Stars, the Sonneberg Mitteilungen uber Veränderliche Sterne, and unpublished AAVSO observations very kindly furnished to us by Janet A Mattei, director of the AAVSO.

Column (9) contains the revised type. Intensity estimates for ZrO bands, TiO bands, the sodium D lines, YO bands (usually $\lambda 6132$), and Li 6708 are given in columns (9)-(13). An x indicates that the features are absent from spectrograms of our dispersion, while 0 indicates the lowest detectable intensity and implies that their presence is doubtful. The remarks in the last column include comments on emission lines when their appearance seems abnormal for the type of variables or the phase at which they were observed. For faint stars additional identifications are sometimes given, "Ste" referring to the Catalog of S Type Stars (Stephenson 1976) and "Vys" to the discovery lists published by Vyssotsky (1942, 1943). An asterisk refers to more extended notes at the end of the table.

The observations of the stars south of -30° declination, and some between 0° and -30°, were obtained by one of us (P.C.K.) while a Visiting Astronomer at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

Many of the observations were made by one of us (P.C.B.) using the Carnegie image tube spectrograph on the 72 inch (1.8 m) Perkins and 42 inch (1.1 m) telescopes at the Lowell Observatory. This spectrograph was kindly made available by Dr. W. Kent Ford, Jr. Partial support for the observations of P.C.B. was made possible by a summer research grant from the Graduate School of the University of Oregon.

To the director and staff of the Hale Observatories we are grateful for the opportunity to classify spectrograms in their collection. To Dr. W. P. Bidelman of the Warner and Swasey Observatory we are greatly indebted for the loan of a set of spectrograms taken by him.

The publication of this catalog was supported by a grant from the National Science Foundation through the Ohio State University Research Foundation.

The arduous task of typing the tables for photographic reproduction was carried out by Delores Chambers.
TABLE 2-Continued

STAR	HD	VAR.	${ }^{\alpha} 1900$	δ_{1900}	$\begin{aligned} & \text { JD } \\ & 24+ \end{aligned}$	m_{v}	Phase	Type	Zro	Ti0	$\begin{gathered} \mathrm{Na} \\ \mathrm{D} \text {-Lines } \end{gathered}$	Y0	Li	Remarks
v365 Cas	5840	SRb	$0^{\mathrm{h}} 55^{\mathrm{m}} .0$	$+56^{\circ} 04^{\prime}$	-	9.5:	-	S6/3-	$4+$	6-	-	-	-	
BS 363	7351	-	108.6	+28 00	-	6.6	-	S3+/2-	1.5	3	2:	1:	-	
RZ Per	-	M	123.6	+50 20	34737	10.9	-96	S6/8e	4-	x	8	-	-	
					36220	10.3	-38	S6/8e	4-	x	9 :	3:	2	
					36812	(13.5	-145	S7/7e	4.5	0	10	3	2:	
					44086	9.0 :	+22	S3/7e	3	x:	6	3.5	-	
BD $+21^{\circ} 255$	-	-	148.8	+21 24	-	8.7:	-	S3/1	1	3	3	1-:	-	
BD $+51^{\circ} 471$	-	LP	155.7	+5205	-	9.4-10.0	-	S6/1	2	6-	2	1:	-	
W And	14028	M	211.2	+4350	22538	7.9	-19	S7.5/1-e	1	7.5	-	-	-	
					22976	8.5	+33	S7.5/1-e	1	7.5	-	-		
					32474	7.7	+12	S8/1-e	1.5	8	Wk.	-	-	
					37207	7.0	+ 1	S7/1e	2	6.5	,	8	-	Bright maximum
					41935	7.0	+ 5	S7.5/1e	1	7.5	-	-	-	Bright maximum
					42713	7.4	- 7	M7Se	0	7	-	-	-	(Ratio $\mathrm{ZrO} / \mathrm{TiO}$
					Normal Max.	7.5		S7.5/1-e	1	7.5				$\begin{aligned} & \text { varies with cyc1e, } \\ & \text { as in } \times \text { Cyg) } \end{aligned}$
Su Tri	-	Lb :	212.3	+31 17	-	9.0-9.6	-	S4.5/1+	2.5	4.5	1-:	1:	Wk.	
BI And	-	SR	219.8	+3741	-	9.8-11.2	-	S8/4.5 var.	7	4	5	5:	x	LaO strong.
BS 1105	22649	L	333.5	+62 54	-	5.1 var	.	S3.5/2	2+	3	3:	2:	x :	
WX Cam	-	Lb	341.5	+52 53	-	10.5 var	. -	S5-/5.5	$5-$	1	5.5	4-	-	
BD $+24^{\circ} 620$	-	-	359.9	+24 28	-	9.2:	-	S3+/3	$3-$	2.5	3 :	-	-	
BD- $2^{\circ} 891$	-	-	419.3	- 241	-	9.3:	-	S2/2:	$2-$	2	Wk.	2:	Wk.	
BD $+12^{\circ} 611$	-	-	430.1	+12 27	-	10.2:	-	S5.5/1	$2-$	5	Wk.	-	-	
T Cam	29147	M	430.3	+65 57	36319	10.2	-106	S5.5/5e	5+:	1:	4:	4	x:	
					39431	8.2	+ 7	S5/5e	5	2	-	-	-	
					39750	8.7	-46	S5.5/5e	5.5	3	-	-	-	
					42715	8.4	+15	S5/5e	5	2	-	-	-	
					43778	8.7	-45	S6/5e	6	2	6.5	4:		
BD $+79^{\circ} 156$	-	-	438.6	+79 49	-	9.7:	-	S4/2	$2-$	3-	2:	-	-	
BD $+38^{\circ} 955$	-	SRb:	445.7	+3820	-	8.8:	-	SC5/9 C_{2} 1:	x	x	11	1.5:	0:	MSB 10, KZP 6136
40^{1} Ori	30959	-	446.8	+14 05	-	4.24	-	$\begin{aligned} & \text { S3.5/1- } \\ & =\text { MS3.5S } \end{aligned}$	1+	$3+$, 2.5	$2-$	-	
TV Aur	-	SRb	450.6	+48 24	-	9.7 var	. -	S5/6-	2+	4	5.5	-	-	
R Ori	31798	M	453.6	+ 759	36510	9.6	+18	$\begin{aligned} & \text { SC5/9.5e } \\ & C_{2} 2:=C 6 / 2 e \end{aligned}$	x	x	-	-	-	$\mathrm{SiC}_{2} 2$:
					43201	12.9	-117	$\begin{aligned} & \text { SC8:/10: } C_{2} 2: \\ & =C 8,2 \end{aligned}$	-	-	11:	-	-	CaCl 3: Plate dark.
					43438	11.2	+110	$\begin{aligned} & \text { SC5/10e C } \quad 3 \\ & =C 6,2 \mathrm{e} \end{aligned}$	x	x	-	-	-	

TABLE 2-Continued

Star	HD	VAR.	${ }^{\alpha} 1900$	δ_{1900}	$\begin{aligned} & \text { JD } \\ & 24+ \end{aligned}$	$\mathrm{m}_{\mathrm{v}} \quad \mathrm{P}$	Phase	Type	Zr0	Ti0	$\begin{gathered} \mathrm{Na} \\ \mathrm{D}-\text { Lines } \end{gathered}$	YO	Li	Remarks
R Ori	31798	M	$4^{\text {h }} 53 .{ }^{\text {m }}$ 6	$+7^{\circ} 59^{\prime}$	43516	12.6	+185	$\begin{aligned} & \mathrm{SC} 8 / 10 \mathrm{C}_{2} 2 \\ & =\mathrm{C} 8,2 \end{aligned}$	x	x	12	-	-	CaCe 2.5 Near min.
					43718	9.4:	+ 11	$\begin{aligned} & \text { SC6/10e C2 } \\ & =\mathrm{C} 6,2 \end{aligned}$	x	x	-	-	-	
					43923	12.9	-163	$\begin{aligned} & \mathrm{SC} 8 / 9.5 \quad \mathrm{C}_{2} 2- \\ & =\mathrm{C} 8,2 \end{aligned}$	x	x	12:	1:	1.5:	
GP Ori	-	I?	457.1	+15 11	-	9.6 var.	. -	SC7/8-	0 :	x	13	1:	1:	
$\mathrm{BD}+42^{\circ} 1159$	-	-	458.1	+4210	-	9.3:	-	S2/2+	1+	$1-$	$3+$	0.5:	x :	
RZ Lep	34738	SRb	514.5	-22 19	-	8.3-8.4	-	S4/4	4.5	2	2.5	2	x	
	35155	-	517.6	- 845	-	7.0:	-	S3/2	2	2.5	Wk.	1:	x	
BB Tau	-	Lb	546.1	+25 48	-	11: var.	-	$\begin{aligned} & \text { SC7/7e } \\ & =\mathrm{S} 7 / 7 \mathrm{e} \end{aligned}$	2.5	x :	11	2:	1:	Weak Balmer em. Possibly SRa variable.
FU Mon	44544	SR	617.2	+ 329	-	8.8 var .	.	S6.5/7.5	1	x	12	2:	3	
$\mathrm{BD}+15^{\circ} 1200$	-	-	621.3	+15 57	-	9.6:	-	S4/2	$2+$	3.5	2:	-	-	
BD $+2^{\circ} 1307$	-	-	631.0	+ 202	-	9.4:	-	S3/2	2	3	3.5:	2:	x :	No Balmer em.
CX Mon	-	Lb	632.1	+ 100	-	11: var.	-	S6:/5+	4	1:	12	4:	0 :	*
v372 Mon	-	SR	636.5	- 430	-	11: var.	-	SC7/7.5	1:	x	12	3:	-	
v613 Mon	49368	SRb :	643.0	+ 539	-	7.6-7.8	-	S3/2	2.5	3	3:	-	-	
R Lyn	51610	M	653.0	+55 27	33005	9.0	-21:	S6/6e	6.5	0	9	-	-	
					36555	10.3	+95:	S6.5/6e	6.5	x :	5:	4.5	2	
					39491	8.1	+ 3	S4/5e	4	1:	,	.	-	
					39847	8.0	-10	S4.5/5e	4.5	1:	-	-	-	
					43924	12.5	(-99)	S6/6-	6:	0 :	-	4	x	No Balmer em.
R Gem	53791	M	701.3	+22 52	29278	7.3	-19	S5/6e	5	x	-	-	-	
					29649	7.6	-36	S5.5/6e	6	x	-		-	
					32230	7.4	+17:	S4/6e	4:	x	8		-	
					33379	8.5	+30	S6/6e	6	x	10-	-	-	
					33710	7.4	+25	S4.5/6e	4.5	x	8 -	-	-	
					34047	7.7	-38	S6/6e	6	x	-	-	-	
					35197	6.9	+37	S4/6e	3.5	x	4	2.5:	x	
					35528	8.4	-32	S5+/6e	$5+$	x	7:	3:	x	Very Wk. Balmer em.
					36307	7.4	- 3	S5/6e	5	x	-	4-	x	
					39607	6.9	+ 4	S3.5/6e	$3+$	x	-	-	-	
					43188	12.8	-191:	S6/6e	5.5	x	10	$2+$	-	
					43922	13.0:	(-153)	S6.5/6-	6	1	-	4	1:	No Balmer em.
R CMI	54300	M	703.2	+10 11	22748	8.3	+17	SC5/10e	x:	x	-	-	-	
					24456	8.1 :	-7	SC4/10e	x :	x		-	-	
					32181	8.0:	-34	SC5+/10e	,	x	$8:$	3:	-	
					34809	10.0	-71:	SC6.5/10e	x	x	11	-	-	
					35198	9.3	-62:	SC6.5/10e	x	x	-	-	1+	
					36308	8.5	+33	SC4.5/10e	x		8:	-		

TABLE 2-Continued

TABLE 2-Continued

STAR	HD	VAR.	${ }^{\alpha} 1900$	δ_{1900}	$\begin{aligned} & \hline \text { JD } \\ & 24+ \end{aligned}$	m_{v}	Phase	Type	Zro	TiO	$\begin{gathered} \mathrm{Na} \\ \mathrm{D} \text {-Lines } \end{gathered}$	Yо	Li	Remarks
S UMa	110813	M	$12^{\text {h }} 39 .{ }^{\text {m }} 6$	$+61^{\circ} 38^{\prime}$	36265	8.4	-24	S5/6e	5	x	-	3.5	1:	
					39643	8.3	-18	S3/6e	3	x	-	-	-	
					39657	7.5:	-4	S0.5/6e	1:	x	-	-	-	
					39920	8.5	+35	S2.5/6e	2.5	x	-	-	-	
					43310	7.9	+11	S2/6+e	$1+$	x	-	-	-	
					Normal. Max.	7.8		S1.5/6e						
KZP 1995	114586	?	1306.3	-56 28	-	8.9-9.3:	-	S5+/2.5	3	4	-	-	-	
UY Cen	115236	SR	1310.7	-44 11	-	7.7:	-	S6/8-	1:	x	10.5	3	-	
TT Cen	-	M	1313.3	-60 16	41713	9.6:	?	SC5:/8+	x :	x	12	2:	$3-$	Possibly Wk C_{2}
BD $+44^{\circ} 2267$	-	?	1316.9	+44 31	-	9.3 v	-	S3/4	$3-$	1.5	3	2:	x	
R Cam	127226	M	1425.1	+84 17	33374	8.2	- 5	S2/6e	2	x	3:	-	-	*
					35237	9.2:	-51	S6.5/3e	5	4	1:	-	-	
					35276	8.7	-12	S5/6-e	5	x	4:	4	1:	
					35283	8.7	- 5	S3/6e	3	x :	2:		-	
					38561	8.3	- 1	S3.5/4e	2.5	$2+$	-	-	-	
					38565	8.3	+ 3	S4.5/5.5e		1:	-		-	
					39645	8.3	- 3	S3/3+e	2-	1.5	-	-	-	
					39656	8.2	+ 8	S2/3e	1	1	-	-	-	
					39659	8.2	+11	S2/4: e	2-:	-	3:	1.5:	-	
					39922	9.4	-19	S4.5/2.5e	4-	5	-	-	-	
					41834	8.5:	(+14)	S3.5/3e	2.5	2.5	-	-	-	
					42937	9.6 :	(+50)	S6.5/3e	5	5	-	-	-	
					43673	8.7:	(-16)	S4/4e	3.5	3	-	-	-	
					Normal Max.	8.2		S2/5: e						
ST Her	142143	SRb	1547.8	+48 48	-	6.8-8.5	-	M6.5S	1	$6+$	$3-$	-	-	
RR Her	144678	SRa	1601.5	+50 46	33118	8.9:	-	SC5.5/10	x	x	8 -	-	-	$\mathrm{C}_{2} 2$
					33443	8.4 :	-	SC5/10e	x	x	6	-	-	$\mathrm{C}_{2} 2$
					40735	8.8:	-	SC5/10e	x	x		-	-	$\mathrm{C}_{2} 2$:
					42941	9.1:	-	SC6+/9.5e	x	x	9	2	-	$\mathrm{C}_{2} 1.5$
	149511	SRa	1630.2	-3102	-	7.8-9.7	-	S8/4.5 var.	7.5	5	6:	4:	3:	
V635 Sco	156957	Lb	1715.3	-4139	-	8.4-8.8:	-	S6/3+	4	3.5	-	-	-	
$\mathrm{BD}+23^{\circ} 3093$	-	-	1718.0	+23 25	-	10.2:	-	S3.5/2.5	$3+$	4	-	-	-	
v812 Oph	-	-	1736.7	+ 647	-	10.8:	-	S5+/2.5	$3+$	$5-$	-	-	-	
BP Sct	-	Lb	1825.7	- 926	-	12:	-	S5.5/5.5	5	2:	9	4-	-	
$\mathrm{BD}+36^{\circ} 3157$	170970	-	1827.1	+36 11	-	7.6	-	$\begin{aligned} & \text { S3+/1 }=\text { M3+5S } \\ & \text { III: } \end{aligned}$	1+	3 var.	-	-	-	
V2003 Sgr	-	SRb	1827.1	-19 51	-	12:	-	S5.5/5	5	3	8	4	-	
v679 Oph	172804	Lb	1837.1	+643	-	9.0-9.3	-	S5/6-	5	0	5-	4-	1:	
vx Aq1		M:	1854.9	- 143	-	$14 \text { or } 15$		Sc-/8		x	-	-	$-$	
						11	Max.?	SC5-/8e	x	x	12	-	-	

TABLE 2-Continued

TABLE 2-Continued

STAR	HD	VAR	${ }^{\alpha} 1900$	δ_{1900}	$\begin{aligned} & \hline \hline \mathrm{JD} \\ & 24+ \end{aligned}$	m_{v}	Phase	Type	ZrO	TiO	$\begin{gathered} \mathrm{Na} \\ \mathrm{D} \text {-Lines } \end{gathered}$	YO	Li	Remarks
CV Cep	-	SR?	$22^{\mathrm{h}} 45 . \mathrm{m} 9$	$+59^{\circ} 08^{\prime}$	$\begin{aligned} & 43811 \\ & 44088 \end{aligned}$	$\begin{aligned} & \text { 10.5: } \\ & \text { 11: } \end{aligned}$	-	$\begin{aligned} & \text { S7/1.5 } \\ & \text { S5/2+ } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 7- \\ & 4 \end{aligned}$	$\overline{2} .5$	$\overline{3-}$	-	*
BS 8714	216672	-	2249.7	+16 24	-	6.5	-	S4+/1+	1.5	4	3	2	x:	
BD $+28^{\circ} 4592$	-	-	2324.8	+28 43	-	9.5:	-	S2/3:	1+	1:	5:	2-:	-	
bG And	-	M	2326.2	+4243	$\begin{aligned} & 33883 \\ & 4.1201 \end{aligned}$	$\begin{array}{r} 9.3: \\ 10.5 \end{array}$	$\begin{array}{r} - \\ +9: \end{array}$	$\begin{aligned} & 55-/ 3 e \\ & S 7 / 3 e \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6- \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	2+	5	-	
WY Cas	-	M	2352.9	+55 56	$\begin{aligned} & 43376 \\ & 43811 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 8.7 \end{aligned}$	$\begin{aligned} & +24 \\ & -19 \end{aligned}$	$\begin{aligned} & \text { S6/6-e } \\ & \text { S6.5/6-e } \end{aligned}$	$\begin{aligned} & 5+ \\ & 6- \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	-	-	-	
WZ Cas	224855	SRa	2356.2	+59 48	$\begin{aligned} & 35708 \\ & 36218 \\ & 37373 \\ & 41937 \\ & 42281 \\ & 43776 \\ & 44132 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 7.95 \\ & 7.8: \\ & 7.0: \\ & 7.1 \\ & 7.8: \\ & 7.3: \end{aligned}$	$\begin{gathered} \text { Near }{ }^{-} \text {Min. } \\ \text { - } \\ \text { Max.? } \\ - \end{gathered}$	$\begin{aligned} & \text { SC7/10e } \\ & \text { SC8/10e } \\ & \text { SC7/10e } \\ & \text { SC6:/10e } \\ & \text { SC6:/10e } \\ & \text { SC7/10 } \\ & \text { SC7/10 } \end{aligned}$		$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & \bar{x} \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 15: \\ & 16 \mathrm{bl} . \\ & - \\ & - \\ & 14 \\ & 14+\mathrm{bl} . \\ & 15 \mathrm{bl} . \end{aligned}$	$\begin{aligned} & 0: \\ & 1: \\ & \mathrm{x} \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & - \\ & \hline 8 \\ & 7 \end{aligned}$	CaCl 1: * CaCl 4 CaCl 0 No SiC_{2} CaCl 0 $\mathrm{CaCl} 1+$ CaCl 2:
W Cet	224960	M	2357.0	-15 14	34668 36458 39366 Normal Max.	$\begin{array}{r} 8.0 \\ 8.4 \\ 10.5: \end{array}$	$\begin{aligned} & -17 \\ & -\quad 2 \\ & +86 \end{aligned}$	$\begin{aligned} & S 5.5 / 2+e \\ & S 6 / 3 \mathrm{e} \\ & \text { S7/1.5e } \\ & \text { S5.5/2e } \end{aligned}$	$\begin{aligned} & 4 \\ & 5: \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 5: \\ & 6.5 \end{aligned}$			-	
IW Cas		M	2357.6	+48 10	$\begin{aligned} & 34283 \\ & 43437 \end{aligned}$	$\begin{array}{r} 8.6: \\ 10.7: \\ \hline \end{array}$	$\begin{gathered} \text { Max.? } \\ {[+31:]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { S4+/6e } \\ & \text { S5.5/6e } \end{aligned}$	$\begin{aligned} & 4+ \\ & 5 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	9	$\overline{3}$	-	

[^0]
REFERENCES

Ake, T. 1978, Thesis, Case Western Reserve University.
Bateson, F. M. 1974, Pub. Var. Star Sec., R.A.S., New Zealand No. 2, 20.
Bidelman, W. P. 1954, Liege Inst. Ap., Mem. 8°, No. 357, 402.
Boeshaar, P. C., and Keenan, P. C. 1979, Richerche Astronomiche, 9, 39.
Bouigue, R. 1954, Ann. D'Ap., 17, 104.
Catchpole, R. M., and Feast, M. W. 1971, M.N.R.A.S., 154, 197.
Culver, R. B. 1971, thesis, Ohio State University.
Gordon, R. C. P. 1967, thesis, University of Michigan.
Greene, A. E. 1971, thesis, Ohio State University.
1972, Perkins Obs. Contr., 2, No. 31.
Greene, A. E., and Wing, R. F. 1975, Ap. J., 200, 688.
Keenan, P. C. 1954, Ap. J., 120, 484.

Keenan, P. C., and Bidelman, W. P. 1979, Pub. A.S.P., 91, 365.
Keenan, P. C., and Morgan, W. W. 1941, Ap. J., 94, 501.
Kukarkin, B. V. et al. 1969-1970, General Catalogue of Variable Stars, 3d ed. (Moscow: USSR Academy of Sciences).
Nassau, J. J. 1964, Pub. A.S. P., 76, 94.
Rybski, P. M. 1973, Pub. A.S.P., 85, 653.
Scalo, J. M., and Ross, J. 1976, Astr. Ap., 48, 219.
Stephenson, C. B. 1965, Ap. J., 142, 712.
1976, Pub. Warner and Swasey Obs., 2, No. 2.
Tsuji, T. 1965, Ann. Tokyo Astr. Obs., Ser. 2, 9, 1.
Vyssotsky, A. N. 1942, Pub. A.S. P., 54, 153. 1943, Pub. A.S.P., 55, 245.
Yamashita, Y. 1972, Ann. Tokyo Astr. Obs., Ser. 27, 13, 169.
. 1975, Ann. Tokyo Astr. Obs., Ser. 27, 15, 47.

Patricia C. Boeshaar: Department of Physics, University of Oregon, Eugene, Oregon 97403.

Philip C. Keenan: Perkins Observatory, Delaware, Ohio 43015.

[^0]: NOTES TO TABLE 2

 observations precede the fainter maxima by the phases tabulated. The 1973 observation was made near a deeper minimum. vX Aq1 = Case 621. Greene and Wing (1975) called attention to the absence of the bands of both ZrO and C C_{2} in the spectrum of this star., T Sgr. At the 1966 maximum Palomar coude spectrograms by Greenstein and Keenan showed the strongest Li 6707 line yet observed in a star of type S . x Cyg. The data indicate a real variation in the strength of the ZrO bands in different cycles.
 RZ Peg. This is a difficult star to classify, not least because of the erratic behavior of many of the spectral feature.
 always present, but its correlation with phase is not consistent. The assigned types must be regarded as approximate.
 bands between the 1978 and 1979 spectrograms. No trace of hydrogen emission was visible on either date.
 variations of CaCl (Keenan and Bidelman, 1979) and some other spectral features. The temperature types are uncertain because the D-1ine strengths
 are affected by the CaCl bands on some dates, and because there is enough 13 CN present to distort the 1 ine ratio $6450 / 6456$.

