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ABSTRACT 
We have calculated the response of the outer atmospheres of cool, low-gravity stars to the 

passage of the mechanical energy fluxes of solar magnitude in the form of acoustic waves and 
Alfvén waves. The acoustic (or magnetic fast mode) waves dissipate through shock formation in the 
low chromosphere; while they can account for the temperature and density structure of chromo- 
spheres, such waves have damping lengths that are too short to be effective in driving mass loss. 
Alfvén waves are efficient in generating outflow, and can account for the order of magnitude of 
observed mass loss in late-type luminous stars. However, unless these magnetic waves undergo 
some dissipation within several stellar radii of the surface, the predicted terminal velocities of the 
resulting stellar winds are far too high. Frictional dissipation and the other mechanisms suggest that 
dissipation may occur, but the magnitude of the effect is not certain. Alfvén wave dissipation 
should give rise to extended warm chromospheres in low-gravity, late-type stars, a prediction which 
can be observationally tested. 

For fixed magnetic field strength and Alfvén wave energy flux, the mass loss rate increases with 
decreasing gravity. With assumed masses and radii typical of late type stars, and with energy fluxes 
of 3 X106 ergs cm-2 s-1 and field strengths —10 gauss, we find mass loss rates that are consistent 
with observational estimates. 

The temperatures of the extended chromospheres should increase with increasing stellar gravity. 
At high gravities the dissipation of Alfvén waves results in heating the outer atmosphere to coronal 
temperatures. Thus we cannot obtain self-consistent, low-temperature, low-velocity winds for 
logg>2. This constraint is consistent with recent work on the transition from solar-type winds to 
cool winds in the H-R diagram. It is suggested that Alfvén wave dissipation results in coronal 
heating at high gravities and mass loss at low gravities. 
Subject headings: stars: atmospheres — stars: chromospheres — stars: coronae — stars: late-type — 
stars: mass loss — stars: winds 

I. INTRODUCTION 

Mass loss from late type stars occurs in at least two distinct modes, depending upon the stellar gravity. The Sun 
ejects material in a high velocity, tenuous, hot flow. Supergiants, on the other hand, have massive cool winds with 
terminal velocities ~10-50 km s-1, well below the surface escape velocity (Deutsch 1956, 1960; Weymann 1962). 
The behavior of the winds of stars of intermediate gravity is not well understood at this time (cf. discussions by 
Reimers 1977a and Stencel 1978). Hartmann, Dupree, and Raymond (1980) have recently suggested that “hybrid” 
winds may occur, characterized by the presence of both hot gas and cold circumstellar material, and wind terminal 
velocities which are intermediate between solar wind velocities and cool supergiant ejection speeds. Recent 
ultraviolet observations suggest that late-type stars with logg<2 do not have transition region (T> 105 K) gas (Wing 
1978; Linsky and Haisch 1979). This division of temperature structures in the H-R diagram has been identified with 
the so-called “supersonic transition locus” of Mullan (1978), where wind properties are thought to undergo a 
fundamental change, and may mark the division between “hot” and “cool” winds. 

The solar wind is basically thermally driven (Parker 1958), although significant modifications of solar wind 
structure can arise from nomadial magnetic field geometry (Kopp and Holzer 1976) and from the pressure due to 
propagating Alfvén waves (see, e.g., Belcher 1971; Hollweg 1973; Jacques 1978). The apparent absence of 
high-temperature gas suggests that this cannot be true of supergiant winds. The most popular explanation of such 
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winds has been radiation pressure acting on dust grains formed in the outer atmospheric layers (Weymann 1960; 
Gehrz and Woolf 1971; Kwok 1975). However, this theory has difficulties. It is not clear whether mass loss and dust 
infrared radiation are empirically correlated (Hagen 1978). In theoretical calculations, it is typically necessary to 
begin the flow at some large distance above the stellar photosphere in order for the gas to cool sufficiently for dust to 
form (Kwok 1975), which raises the question of why the atmosphere expands significantly to reach the grain-forming 
point. Observationally, it has been shown that less than *20% of the dust radiation from a Ori comes from r< 12 R* 
(Sutton et al 1977), and that the outflow appears to be already underway in the chromosphere (Wilson 1960; Dupree 
1976), well before grains are likely to form. The most severe disadvantage of the dust-driven wind theory is that it 
cannot universally account for the observed mass loss in luminous late-type stars. Many stars are of such high 
effective temperature, or low luminosity (cf. Reimers 1977a), that it is extremely doubtful that dust can be 
dynamically important. 

Haisch, Linsky, and Basri (1980) have recently investigated a suggestion due originally to Wilson (1959), that La 
radiation pressure can drive mass loss, specifically for the K2 IIIp star a Boo. They calculate a La flux based on a 
radiative transfer solution, which neglects velocity gradients. Their results show that La pressure may be larger than 
gravity over a small region where La is optically thin, but that the total momentum added is insufficient to generate 
mass loss, so that Alfvén waves are ultimately responsible for driving the outflow. Neither mass loss rates nor wind 
terminal velocities were calculated in this work. The La mechanism is very sensitive to the ionization state of the gas. 
If the material is too cold, the La is so optically thick that the force is negligible; if the gas is too hot, insufficient 
neutral hydrogen is available to absorb radiation. Since the temperature distribution adopted by Haisch et al is not 
uniquely determined by the observations (cf. Linsky and Haisch 1979), it is unclear whether the atmospheres of cool 
luminous stars actually become supersonic from La radiation pressure. 

In this paper we wish to investigate the possibility that universal mechanisms of mechanical energy generation and 
deposition occur in all late-type stars, and that their specific effects on chromospheric temperature structure and 
mass loss are modified principally by surface gravity. The discovery of hybrid atmosphere stars (Hartmann, Dupree, 
and Raymond 1980), possessing a combination of solar and cool supergiant-type characteristics, encourages our 
application of solar mechanical energy fluxes to low-gravity situations. In particular, the discussion focuses on the 
behavior of acoustic and magnetic wave modes known to exist on the Sun. These modes can be much more efficient 
than radiation pressure in driving mass loss. Specifically, for a given energy flux, the wave momentum flux varies 
inversely as the mode speed, which is typically a factor ~104 smaller than the speed of light. In a sense this is a more 
direct accounting of the action of the wave modes, for the La emission presumably results from mechanical energy 
deposition by waves. 

Observations of chromospheric emisson losses in late-type stars suggest that the acoustic wave energy fluxes per 
unit area are roughly independent of gravity (Linsky and Ayres 1978). From this starting point we construct model 
chromospheres considering the energy and momentum deposition due to shock waves. Our results show that the 
behavior of shock energy deposition as a function of gravity may be important in determining the presence or 
absence of transition regions, and in setting the base temperature of cool winds. However, the distance scales over 
which shocks are dissipated are too short to be effective in driving mass loss for any but the lowest-gravity stars. The 
similarity of the magnitude of acoustic wave energy fluxes in the Sun and other stars suggests that Alfvén wave 
energy fluxes of solar magnitude (Jacques 1978) may also be present in supergiants. Our calculations show that large 
mass loss rates may be accounted for by the effects of Alfvén waves. A discussion of the physical circumstances 
under which these magnetic waves result in low velocity winds forms the final section of the paper. 

II. ACOUSTIC WAVE ENERGY DEPOSITION IN STATIC ATMOSPHERES 

It is generally believed that dissipation of acoustic waves heats the lower chromospheres of late-type stars (cf. 
Ulmschneider 1970; Renzini et al 1977; De Loore 1968). Ulmschneider et al (1977) and Ulmschneider, Schmitz, and 
Hammer (1979) have carried out detailed, time-dependent hydrodynamic calculations of chromospheric heating. 
From the wide variation of chromospheric activity at a given position in the H-R diagram, and from the correlation 
of solar surface activity with magnetic fields, it appears that magnetic activity is closely connected with chromo- 
spheric mechanical energy generation (cf. Skumanich 1972), and that magnetic waves should be present along with 
acoustic waves. However, Osterbrock (1961) has shown that for moderate field strengths in the low chromosphere, 
fast-mode magnetic shocks will dissipate essentially as acoustic shocks. Thus we ignore the possible magnetic 
character of these waves in order to avoid having to specify the magnetic field strength. 

In this section we consider an approximate, time-averaged treatment of acoustic shock wave damping which 
enables us to extend the heating calculations to supergiant gravities. This discussion is based on a newly available, 
accurate, solar radiative cooling law obtained from Dr. E. Avrett (private communication). From these calculations 
we can examine the behavior of shocks in low-gravity circumstances. 
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a) Radiative Cooling Rates 

In order to determine the temperature distribution, we must estimate the radiative cooling rate. The exact solution 
for the cooling is in general an iterative process, for optical depth effects play a role in the escape of radiation from 
such important lines as the Mg n and Ca n resonance transitions (cf. Giovanelli 1978). This would prevent us from 
simply integrating the hydrostatic equilibrium and energy equations outward from the temperature minimum. We 
adopt instead a cooling rate which is a function of density and temperature alone, based on a derived solar cooling 
rate; however, we adjust the cooling rates to take into account the larger Mg n and Ca n optical depths, and hence 
lower escape probabilities, encountered in low-gravity stars. 

The H~ cooling can be computed in the optically thin limit. Following Kalkofen and Ulmschneider (1979), we use 
the approximation that bound-free processes dominate the H~ heating and losses. Then the radiative losses are 

Ah- =4ttN^- J^dvab{(v)W(v, T) 1 + 
2hv ■A”) =N^-E, (1) 

where abf is the bound-free cross-section, W(v,T) is the Wien function, J(v) is the mean intensity of the 
photospheric radiation field, and N&- is the LTE H~ number density, given by 

N&- = 2.89 X \0~22NeNH j#1-5^1-736*, (2) 

with 0 = 5040/7’. Equation (1) results from the detailed balance relation between radiative recombination and 
photoionization. 

The heating due to absorption of photospheric radiation is 

TH-=4^NH- rdvabf(v)J(v) = bN^-H9 (3) 
*>0 

where b is the H“ departure coefficient. In order to calculate b, we require the photoionization rate R¿, and the 
recombination rate R, 

-00 
Ri=4t7r J dvabf(v) 

J(v) 
hv 

R — 47T 
W(v,T) 

hv 2hv3 

Then 

b = 
R + TNHl 

ä. + FAh,’ 

(4) 

(5) 

(6) 

whereJVjj , is the neutral hydrogen density and r = 2.1xl0 9 cm3 s 1 is the associative detachment coefficient 
(Vemazza, Avrett, and Loeser 1973). 

Because H“ is optically thin, for a plane-parallel geometry we may compute all of these quantities once for a given 
photospheric radiation field. For concreteness we have chosen reff=4250 K, so that /(»’) = ^ B(v, Tcfi), with B(v, T) 
the Planck function. Numerical integrations, using the cross section given by Gingerich (1964) as corrected by 
Ulmschneider and Kalkofen (1978), can then be matched by the following fits, which are accurate to within a few 
percent; 

3000 < T< 4500 K; E=3.266X 10-7(T/3000)4-8269 ergs s~1, 

/?= 1.581 X 105(7’/3000)4'4214 s-1; 

4500< T< 7000 K; £'=2.312x 10-6(r/4500)3'9769 ergs s"1, 

Ä = 9.495 X 105(r/4500)3 4941 s“1; 

(7) 

(8) 

(9) 

(10) 
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and 
//= 9.088X 10-7 ergs s_1; 105 s_1. (11) 

The net radiative cooling due to H~ is AH- -TH-, which is a function of T, NH „ and the electron density Ne. 
Avrett (1979, private communication) has recently used the PANDORA computer code (Vemazza, Avrett, and 

Loeser 1973 [VAL]) to calculate the radiative losses in the standard VAL solar model. The dominant losses for 
r< 104 K are mainly due to Mg n h and k, Ca n H and K, and Ca n infrared triplet lines; for T> 104 K, hydrogen 
continua and lines are most important. The resulting cooling function is summarized in Table 1. These calculations 
show that H“ is much less important in cooling than usually thought near the temperature minimum; presumably 
line blanketing processes, such as CO, become important. For simplicity we use the H “ cooling as representative of 
the low-temperature losses, since the treatment of line blanketing is complex and uncertain. In addition, the H“ 
losses in our models are much greater at, say, 5000 K than in the Sun, because of the much lower effective 
temperature adopted. 

While these cooling rates depend on optical depths, and hence on the assumed structure, as an initial approxima- 
tion we take this cooling rate to be formally a function only of density and temperature for the purposes of 
calculation. Then, for solar-gravity stars, the energy equation is 

dF 
= + (12) 

where AR =NeNHPRo(T) is determined from Table 1, and dFm/dz is the mechanical heating rate per unit volume (cf. 
§IIc). 

For low surface gravity giants and supergiants, we expect larger scale heights, and consequently larger chromo- 
spheric mass column densities (i.e., thicker chromospheres). Observationally, this is indicated by the Wilson-Bappu 
relation (Ayres, Linsky, and Shine 1975; Ayres 1979). Thus, colhsionally excited lines which provide the dominant 
cooling at T< 8000 K should have increased optical depths, and the cooling rate due to such lines will be reduced. 
Note that this should not affect H “, which remains optically thin in any case, nor should it affect the cooling rate at 
T> 8000 K (due to Lyman lines and continuum) since at these temperatures the Lyman continuum is optically thin. 
Ayres, Linsky, and Shine (1975) (see also Ayres 1979) deduced that the chromospheric mass column density at 
empirically scales as “1/2 in order to account for the Wilson-Bappu effect. We therefore assume that the optical 
depths of lines formed in the region 5000 < T < 8000 K scale as t—m—g-1/2. In this region, photons emitted in the 
optically thick line cores diffuse in frequency, ultimately escaping in the damping wings of the line, where the escape 
probability Pesc scales as Fesc~r-1/2~g1/4. This accounts only for direct escape of radiation. Thermalization effects 
may be important but are probably not greater than the uncertainties in our derived electron densities. To account 
for reduced line cooling in low-gravity stars at T7^ 8000 K, we correct the previously deduced solar radiative cooling 
coefficient P^ÇT) by a multiplicative factor of Pcsc, according to 

PR(T) = P^(T)(g/gQ)0 25, (13) 

for T<7160 K. For T>8000 K, the Mg n and Ca n lines in the Sun become optically thin, so that the escape 
probability increases rapidly outward. Furthermore, cooling in hydrogen becomes increasingly important with higher 
temperatures. Detailed calculations show that the Lyman continuum becomes optically thin near 8000 K for model 

TABLE 1 
Solar Radiative Cooling Rate 

r(K) /^(ergs cm3 s l) 

5030  5.77E-27 
5650  1.62E-26 
6040  4.57E-26 
6440  1.35E-25 
7160  3.22E-25 
8440  1.01E-24 
9500  2.16E-24 
10700.. .. 2.86E-24 
12300.. .. 6.60E-24 
18500.. .. 5.03E-23 
22500.. .. 5.90E-23 
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chromospheres with a wide range of log g, mainly because hydrogen generally becomes substantially ionized in this 
temperature region (cf. Bahúnas et al 1979). We therefore expect the cooling rate to be relatively independent of 
optical depth for T> 8000 K, and to approach the solar value with increasing temperature. The adopted cooling law 
for all gravities sets Pr = Pro(T) for T> 8440 K. At intermediate temperatures, PR(T) was determined from a power 
law fit through the values at T=7160 K and r=8440 K. 

b) Ionization Equilibrium 

Calculation of the cooling rates requires a knowledge of the electron density as a function of total density and 
temperature. For the purposes of these chromospheric calculations we develop a simple approximation consistent 
with the spirit of the approximate cooling law derived in the previous section. 

The electron population is assumed to arise from two components, the first being single ionization of metals. This 
is approximated by a constant contribution to the electron number density ^4mAH«l X 10"4AH, where Am is the 
metal abundance by number relative to hydrogen; this assumes solar abundances. The second component is due to 
the ionization of hydrogen. The proper calculation of this is complex, but simple approximations can be made which 
result in a reasonable balance. 

For temperatures well below 8000 K, the Lyman continuum and lines are very optically thick, and approach 
radiative detailed balance. Collisional processes then connect the n= \ and n = 2 levels, so that these level populations 
are related by the Boltzmann factor. (Model chromosphere calculations for the Sun and Arcturus bear out this 
argument [Avrett, private communication], showing that bl^b1 in this temperature range.) In this case ionization 
occurs by photoionization out of the n = 2 level due to the stellar photospheric radiation. On the other hand, for 
T> 8000 K the Lyman continuum is optically thin (cf. Bahúnas et al 1979), so Lyman continuum photoionizing 
radiation from underlying, denser layers will dominate the ionization. 

Assuming as before that the stellar photospheric radiation field can be represented by a Planck function of 
radiation temperature TR, the photoionization rate from the nth hydrogen level (for a v~2 continuum opacity 
approximation) is 

ßn=^on0PnEx(<In/kTR), (14) 

where /„ is the ionization potential from level n, on0 is the threshold cross section, W=\ is the dilution factor, and Ex 

is the first exponential integral. From radiative detailed balance, the recombination rate is 

87raw( n2L 
a = 

c2 (2TrmekT)3/2 
eI'‘/kTEl(In/kT). (15) 

Ionization equilibrium, assuming only continuum processes operate, requires 

NHnNe = W / InmJcT \3/2 ^EJJJkTt) 

K n2\ h2 I " Ey(IJkT) ’ 
(16) 

where 7VH n is the number density of protons and Nn is the number density of neutral hydrogen atoms in the nth level. 
Asymptotically, 

K ~vl h2 ) Te 

We may express this result more conveniently in terms of the departure coefficient bn—Nn/N*, 

b = 
WTr 

exp Jn^-IsL 
kTR kT (18) 

In the lower chromosphere, when the Lyman continuum and Lyman and Balmer lines are in radiative detailed 
balance, In =/2 =(/1)/4, and with TB = Balmer continuum photospheric radiation temperature, 

WTr 
exp 

4A:\7’b T) 
= £>i. (19) 
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For high temperatures, where the Lyman continuum becomes optically thin, 

(20) 

where TL is the Lyman continuum radiation field temperature. We expect the Lyman continuum to become optically 
thin near —8000 K, as discussed earlier, with a radiation temperature therefore —7000 K. This suggests a transition 
between (19) and (20) in this temperature range. We adopt, for an effective temperature of 4250 K, a Balmer 
continuum brightness temperature of 3800 K (Bahúnas and Avrett 1979, private communication); then 

where 

(21) 

r< 6000, r* =3800, Ti = r, 

6000 < T < 8000, Tr =3800+ 1.60(r—6000), 

^=6000+0.5(7-6000), 

T>8000, Tr = Tx= 7000. (22) 

This formula has (19) and (20) as asymptotic limits. 
We have compared the predictions of this formula with detailed radiative transfer calculations for e Eri (K2 V) 

and a Boo (K2 III) (Bahúnas and Avrett 1979, private communication). The agreement is better than a factor of 2 
for T< 7000 K. At higher temperatures bx is substantially underestimated, because we have neglected other processes 
—e.g., nondetailed balance in Lyman lines. However, hydrogen rapidly becomes totally ionized in this temperature 
range, so the error is much smaller in the derived electron density, which is the only important quantity as far as the 
cooling law is concerned. We conclude that the above approximation, including metal ionization, yields a reasonable 
ionization balance. 

c) Mechanical Energy Dissipation and Method of Solution 

To completely specify the chromospheric energy balance, an expression for the rate of heating resulting from the 
dissipation of mechanical energy is required. We adopt the formalism of Kuperus (1965; see also de Loore 1968) for 
weak shock waves, in which the wave energy flux may be written 

7 = 
4 3(M2-1)2 

3 (y+l)2M 
(23) 

where M is the Mach number of the shock, p is the density, and y is the ratio of specific heats. For a gas with mean 
mass per particle p, a = {ykT/¡i)l/1 is the sound speed. The dissipation rate is then 

dFm _ _ 16 pa2 (M2—l)3 

^(y+1)2 M~4 

where Pw is the wave period. We neglect radiation damping (Ulmschneider, Schmitz, and Hammer 1979) because we 
consider only the low-density regions at and above the temperature minimum. 

The pressure distribution in the atmosphere is determined from the hydrostatic equilibrium equation, 

dP 
dz 

1 dFm 
= -p£+--^ a dz (25) 

where the second term on the right-hand side of (25) represents wave momentum deposition, neglecting the effects of 
reflection and refraction (Rosner and Vaiana 1977). 

With initial values for the total number density, wave period, and incident wave energy flux, equations (24)) and 
(25) can be integrated outward from the location of the temperature minimum in the following manner. At the base 
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of the atmosphere, the ionization state of the gas is calculated from the assumed density and a guess for the initial 
temperature. These results permit us to determine the net radiative cooling rate, and (using the initial value of to 
determine the shock Mach number. The mechanical heating rate can then be calculated from equation (24); in 
general, the value so obtained for dFm/dz will not satisfy equation (12). Accordingly, a new guess for the temperature 
is made, and the above steps are repeated until thermal balance is achieved. Equations (24) and (25) can then be 
integrated once to determine values for the gas pressure and wave flux at the next height. At locations different from 
that of the temperature minimum, the same procedure as outlined above is followed, with the exception that the local 
number density is calculated from the pressure and a guess for the temperature. 

d) Chromospheric Models 

We now require values for the initial wave energy flux and period. Linsky and Ayres (1978) showed that, in a 
sample of late-type stars, the Mg n surface flux behaved roughly as F(Mg ii)âî6x 10_5Xa7^fx(reff/5000)2'8±2. We 
will consider 7¡ff = 4250 K, to correspond to our H_ cooling law fits, so that F(Mg n)«l X 106(0.85)2*8±2. This 
presumably is a lower limit to the total mechanical energy flux incident on the temperature minimum. Because of the 
extremely uncertain exponent, and the fact that losses in other lines and continua are unknown, we simply adopt 
Fm0= 1 X 106 ergs cm-2 s-1 for most models here. The data of Linsky and Ayres (1978) show considerable scatter 
from the mean relation, but show no evidence for a systematic variation of Fm0 with g. 

Renzini et al (1977) assume that wave periods are restricted by the acoustic cutoff frequency <o>a(2/i)-1, where h 
is the local scale height. In general, they expect the period at which most flux is emitted to be ~10_1 the acoustic 
cutoff period. This results in a wave period which scales inversely with gravity, a scaling which we adopt for our 
basic chromospheric models. 

In Figure 1 we display the results of our calculations for three standard models (see also Table 2). The models all 
have the same acoustic wave energy flux of 1 X 106 ergs cm-2 s-1, and each is characterized by a temperature 
minimum density consistent with the Ayres, Linsky, and Shine (1975) scaling. A wave period of 20 s was adopted for 
solar gravities (Ulmschneider and Kalkofen 1978), and scaled according to R^ocg-1 for other gravities. More 
detailed studies of the solar radiative loss function indicate that although H _ is not as dominant a coolant as 
supposed by Ulmschneider and Kalkofen, 20 s wave periods are still indicated (Avrett, private communication). The 
resulting temperature distributions have been plotted as a function of z, the distance above the temperature 
minimum in units of the base scale height /î = yÆr//xg, with y = 5/3. It can be seen that the overall effect of lowering 
the gravity is to lower the temperature at a given z. This behavior is a result of the increasing importance of the force 

Fig. 1.—Temperature structures of the standard chromospheric models, A, B, and C, plotted as a function of the vertical height in 
units of isothermal scale heights. Details of the models are Usted in Table 2. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8O

A
pJ

. 
. .

24
2 

. .
2 

60
H 

No. 1, 1980 MOMENTUM AND ENERGY DEPOSITION 267 

TABLE 2 
Standard Chromospheric Models (F0 = 1 x lO6 ergs cm 2 s l) 

Model Aa Model Bb Model Cc 

Nt N. Nr NT N„ 

0.0. 
0.5. 
1.0. 
1.5. 
2.0. 
3.0. 
4.0. 
6.0. 
8.0. 

10.0. 
12.0. 
14.0. 
16.0. 

3660 
3715 
4107 
5000 
5367 
5776 
6023 
6316 
6613 
6960 
7472 
8304 
9280 

2.00(15) 
8.60(14) 
3.53(14) 
1.49(14) 
7.74(13) 
2.44(13) 
8.42(12) 
1.17(12) 
1.89(11) 
3.95(10) 
1.22(10) 
4.87(9) 
2.13(9) 

1.82(11) 
7.82(10) 
3.21(10) 
1.76(10) 
1.78(10) 
1.85(10) 
1.66(10) 
1.43(10) 
1.14(10) 
8.65(9) 
5.24(9) 
2.30(9) 
1.01(9) 

3729 
3802 
4088 
4594 
4842 
5130 
5346 
5704 
5968 
6168 
6402 
6998 
7426 

2.00(14) 
7.95(13) 
3.68(13) 
1.63(13) 
8.15(12) 
2.31(12) 
7.08(11) 
7.80(10) 
1.02(10) 
1.68(9) 
4.06(8) 
1.35(8) 
5.27(7) 

1.82(10) 
7.23(9) 
3.37(9) 
1.95(9) 
1.75(9) 
1.53(9) 
1.30(9) 
8.52(8) 
4.73(8) 
2.88(8) 
1.53(8) 
6.38(7) 
2.51(7) 

3803 
3922 
4154 
4429 
4600 
4821 
4999 
5331 
5666 
5953 
6228 
6674 
7255 

6.00(13) 
2.64(13) 
1.18(13) 
5.51(12) 
2.75(12) 
7.46(11) 
2.17(11) 
2.09(10) 
2.42(9) 
3.73(8) 
9.01(7) 
2.96(7) 
1.08(7) 

5.46(9) 
2.41(9) 
1.11(9) 
6.47(8) 
5.44(8) 
4.16(8) 
3.30(8) 
2.10(8) 
1.33(8) 
7.17(7) 
3.69(7) 
1.40(7) 
5.16(6) 

Note—Numbers in parentheses indicate the power of 10 by which to multiply the preceding number. Z is the distance above 
the temperature minimum region in units of the base isothermal scale height h. 

aModel A: M/Mo = 0.64; Ä/Äo = 0.80; logg=4.44; ¿>„=20 s; A=1.44xl02 km. 
bModel B: M/M0= 1.33; R/RQ = 21; logg= 1.70; Pw = 104 s; A = 8.05x 104 km. 
cModel C: M/M©= 16; Ä/Äo = 400; logg=0.44; =2x 105 s;/i= 1.52X 106 km. 

due to wave dissipation at low gravities. Heating dominates momentum deposition at high gravity, while the waves 
tend to extend the density distribution and enhance radiative cooling of the gas at low gravity. 

The effects of changing wave fluxes and periods are considered for the dwarf gravity case in Figure 2. Increasing 
the incident wave energy flux changes the temperature structure by a relatively small amount. However, increased 
dissipation at low heights (and therefore high densities) results in reduced wave fluxes and consequently lower 
temperatures at large heights. Changing the wave period makes a much greater difference in the temperature 

Fig. 2.—Atmospheric responses to differing input shock wave fluxes and wave periods for dwarf gravities. For comparison the solar 
empirical temperature structure determined by Vemazza, Avrett, and Loeser (1973) has been included. 
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distribution. For longer-period waves, the dissipation length L=Fm/{dFm/dz), is larger (cf. eqs. [23] and [24]). As a 
result, more flux is available for heating at large z, and the temperature is increased. 

Also plotted in Figure 2 is the Vemazza, Avrett, and Loeser (1973) solar chromosphere model. The agreement 
between the empirical model and our 20 s wave model is excellent, except for the extremes of the temperature range. 
Because the effective temperature is different, and because we have neglected important line blanketing processes 
near the temperature minimum, we cannot expect the low-temperature calculation to be consistent with observations. 
Above 7000 K, where the gas becomes substantially ionized, other heating processes may become important. 
Moreover, we make no provision for treating either wave reflection or heat conduction, which undoubtedly play 
important roles in determining the occurrence of a transition region. While we cannot therefore determine the 
position of the transition region, it is clear that a rapid increase in temperature will occur when the calculation is 
carried to great enough heights. These models, which are similar to the solar results of other authors considering only 
H” cooling (Ulmschneider et al 1977; Ulmschneider, Schmitz, and Hammer 1979, and references therein), give us 
confidence that the approximations made in our treatment are sufficiently accurate to warrant their extension to 
low-gravity atmospheres. 

In Figure 3 we display similar calculations for the giant case. The 1X 104 s period calculation is comparable to the 
empirical model temperature structure constructed for a Boo by Ayres (1975). Note, however, that, unlike the results 
for dwarf gravities, these models exhibit lower temperatures at large z for increasing wave periods. This is caused by 
the force due to wave momentum deposition which becomes comparable to the gravitational acceleration. This 
extends the density distribution, permitting the gas to cool more efficiently and attain thermal equilibrium at lower 
temperatures. Model chromospheres for supergiant gravities show similar properties, as can be seen from Figure 4. 

An approximate test for the overall consistency of these chromospheric models can be performed through an 
analysis of observed chromospheric line widths. Ayres, Linsky, and Shine (1975) and Ayres (1979) have suggested 
that the modified Wilson-Bappu relation for the Ca n line width AA(A)) results from a dependence of the 
chromospheric mass column density on gravity in the form mocg'1/2. Since P=mg in hydrostatic equilibrium, this 
relation is equivalent to Pocg1/2, which predicts that in going from log g=4.44 to log g=0.44, the pressure at the 
temperature minimum should decrease by a factor of 100. The actual result of the calculations is a factor —30. In 
terms of the observed line width, using AAocm1/2 (Ayres 1979), we find A\ocg“0-31 whereas Ayres (1979) found 
AAocg-0-23±004

i (Note that the calculated variation of the column density with gravity is not exactly consistent with 
the cooling law [eq. (13)]; however, the effect on the temperature distribution will be small.) 

Fig. 3.—Responses of a giant chromosphere to shock waves of differing periods. An empirical chromospheric model which matches 
the Ca n fluxes has been taken from Ayres (1975). Long-period waves generate momentum deposition comparable to gravity at large 
heights, which flattens the density distribution and therefore flattens the temperature distribution as well. 
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Fig. 4.—Responses of a supergiant chromosphere to different shock wave periods. 

We emphasize that Basri (1979) has found that the increasing column density is not capable of reproducing the 
Wilson-Bappu line widths by itself, but must be accompanied by a turbulent velocity field which is barely supersonic. 
Such a velocity field may be the result of the shock waves envisaged here, although no quantitative calculations have 
been made. Despite these complications, it appears that the mass column density must increase with decreasing 
gravity, and that the Ayres (1979) scaling laws should be a rough guide to the actual behavior of stellar 
chromospheric column densities. 

The approximate consistency of the chromospheric column densities in our models with the observational results 
can be shown to be primarily due to the scaling of the wave periods with gravity. Consider stars with approximately 
the same temperature at the temperature minimum. The temperature will begin to rise at a point where the 
mechanical energy dissipation rate becomes comparable to the background radiative equilibrium terms in the energy 
equation. If the temperature minimum occurs when dFm /¿/z is a fraction / of the background radiative losses, then 

dF 
fNnNePR(Tmin)a:fP2PR(Tmiti)o: , (26) 

where we have assumed Ne = 10-4AH, and a constant, given temperature (Tmin). 
At Tm{rx we may approximate dFm/dz by Fm0/L, where L is the local damping length. L is a function of Mach 

number and is linearly proportional to the wave period Pw (see eq. [24]). If / is a given constant, then from (26) we 
have 

P^m'g'ctFnJP". (27) 

Since we have assumed Pwo:g~l and *m0 = constant, we arrive at the desired result woe g 1/2. The calculations 
depart from this relation somewhat because the initial Mach number varies for different stellar gravities. This 
analysis is similar to that of Ayres (1979), but differs in emphasizing the importance of the variation of the 
dissipation length L. 

The results of these chromospheric calculations suggest that the g “1 scaling for Pw is approximately correct, both 
in terms of the comparison of the giant model with the semiempirical Arcturus model and in the rough agreement 
with the Wilson-Bappu effect. This conclusion is relatively independent of the form of the adopted cooling law, for 
waves with L<^h will dissipate too rapidly to form an outward temperature rise, while waves with extend the 
density distribution and reduce the temperature gradient. This scaling law for acoustic shock wave periods has 
important implications for the ability of shock waves to drive mass loss, as discussed in the following section. 

The treatment of this section has neglected the effect of mass loss, which will extend the density distribution and 
modify the temperature profile at large distances. For example, a typical estimated supergiant mass loss rate is 
æ 10 _6M0 yr -1; assuming a sonic point near the surface, the sonic density would be —4X109 cm-3 for the adopted 
supergiant parameters. This density occurs in the standard supergiant model at 7.2 scale heights above the 
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temperature minimum, with 7=5580 K. It is therefore clear that any discussion of temperatures >6000 K in 
supergiant chromospheres is inadequate without consideration of the effects of mass loss. A similar conclusion may 
apply to the giant chromospheres, based on the mass loss estimates of Chiu et al (1977). 

Observations show that there is a considerable range of chromospheric activity for stars at a given position in the 
H-R diagram (cf. Linsky and Ayres 1978). The level of activity is related to rotation, which presumably affects the 
chromospheric heating through its influence on the magnetic fields (Skumanich 1972). Similarly, solar active regions 
are of course associated with regions of enhanced fields. The discussion of wave chromospheric heating is therefore 
incomplete without consideration of MHD modes which must be present along with pure acoustic modes. 
Osterbrock (1961) has shown that fast mode waves will steepen and shock in a very similar manner to that of the 
pure acoustic shocks discussed above, as long as the Alfvén speed ^4 is <a. For moderate field strengths < a few 
gauss, this condition is satisfied ih the low chromospheres of all the models, so that we expect the basic 
chromospheric structures derived on'the basis of pure acoustic modes to be representative of the results for magnetic 
shock heating. However, at larger heights and lower densities, a fast mode will change its character from that of an 
acoustic mode, so that the derived temperature structure will differ in the upper chromosphere. 

III. WAVE-DRIVEN WINDS 

a) Acoustic Waves 

The observational evidence reviewed in § I indicates that the winds associated with low-gravity late-type stars are 
fundamentally different from the presumed thermally driven mass loss characteristic of dwarfs like the Sun. We have 
also noted that none of the proposed mechanisms for driving winds from these stars appear to be capable of 
accounting for their physical properties in a manner consistent with observation. The results of the previous sections, 
however, suggest that momentum deposition due to shock wave dissipation may be able to initiate mass loss in 
low-gravity stars, since the inclusion of this force in the hydrostatic calculations gave rise to extended chromospheric 
density distributions. 

We have investigated this mechanism, and conclude that it is unlikely to lead to a continuous outflow of mass. 
Specifically, we find that shocks which result from the steepening of propagating waves with periods less than the 
acoustic cutoff period have dissipation lengths L typically — a few scale heights. The distance L approximately 
characterizes the size of the region over which waves are effective in accelerating the flow, and is considerably 
smaller than the stellar radius R for all but the lowest gravity stars. As a result, the force due to shock dissipation is 
significant only in a narrow (thickness <R) zone of high-density gas near the base of the atmosphere, and becomes 
small before the flow has attained escape velocity. Thus it appears that the primary dynamical effect of propagating 
acoustic waves and the shocks that develop from them is to extend the essentially hydrostatic portions of the lower 
atmosphere, rather than to drive a steady stellar wind. 

We note that the above conclusions do not, in general, apply to large-amplitude compressional disturbances which 
are not subject to period restrictions arising from the acoustic cutoff. In particular, propagating shocks generated by 
pulsation have been shown to produce mass ejection from low-gravity long period variable stars (Wood 1979; 
Willson and Hill 1979). 

b) Alfvén Waves 

Observations of large amplitude, outwardly propagating Alfvén waves in the solar wind (see, e.g., Belcher and 
Davis 1971) suggest that such modes may be present in the outer layers of late-type stars with mechanically heated 
chromospheres. In the case of the Sun, several authors (Belcher 1971; Alazraki and Couturier 1971; Hollweg 1973; 
Jacques 1977, 1978) have noted that these waves do work on the expanding solar corona, thereby modifying the 
dynamical structure of the solar wind. More importantly, it has been shown that undamped Alfvén waves can drive a 
wind from stars with atmospheres too cool to undergo thermally driven mass loss (Belcher 1971). These results 
motivate us to consider the effect of an Alfvén wave energy flux of magnitude comparable to solar values on the 
dynamics of winds from cool, low-gravity stars. 

i) Equations of Motion 

Following the treatment of Jacques (1977), we neglect stellar rotation and assume that the wind can be represented 
as a steady, radial flow. The magnetic field B is taken to be radially directed with strength R = R0(r0/r)

2, where r is 
the distance from the center of the star and r0 is the location of a reference level in the stellar atmosphere (the 
subscript zero denotes evaluation at r0). Under these conditions, conservation of mass yields an expression for the 
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M=47rr2pu, (28) 

where p and u are, respectively, the mass density and wind velocity at r. 
We consider small amplitude (SBcB), outwardly propagating Alfvénic fluctuations with wavelengths short 

compared with the scale lengths over which the physical properties of the wind vary. For waves with propagation 
vectors k parallel to w, the dispersion relation is given by co = /c(w+T), where co is the (constant) wave frequency and 
A=B(4ttp)~x/2 is the Alfvén speed. In the solar wind, linear Alfvén waves of energy density € = ôB2/Sirr are 
undamped, and the wave action density S, defined as 

5= 
e 

co — ku 
€ u+A 
co A (29) 

is conserved (Jacques 1977). Unlike the solar case, however, the physical conditions in the expanding atmospheres of 
low-gravity stars suggest that propagating Alfvén waves can be appreciably damped. For example, the inferred cool 
temperatures (T< 104 K) of supergiant winds imply the presence of neutral gas which does not interact directly with 
the fluctuating magnetic field. As a result, linear Alfvénic disturbances are subject to dissipation arising from the 
friction between the ionized and neutral components of the outflowing material (see below). Characterizing this and 
other possible dissipation processes by a damping length L, the condition of wave action density conservation is 
replaced by (Jacques 1977) 

V-(vgS)=-vgS/L, (30) 

where vg =doj/dK = u+A is the group velocity of the waves. Equations (28) and (29), together with the assumption 
that u, B, and k are all radial, permit equation (30) to be rewritten in the form 

¿[£MA(l+MA)
2] = -IeMA(l+MA)

2, (31) 

in which Ma=u/A is the Alfvénic Mach number. In deriving (31), we have made use of the fact that MA = 
^ao(Po/p)1/2> where MA0 and p0 are the reference level values of the Mach number and density, respectively. Note 
that in the absence of dissipation (L—>oo), equation (31) yields the well-known expression for the wave energy 
density in the WKB approximation, ccc[MA(l + AfA)2]-1 (Parker 1965; Belcher 1971; Jacques 1977). 

With wave properties as described above, conservation of momentum for the outflowing gas take the form 

du \ dP GM 1 de 
"À"-?*- —“2¿dP (32) 

where M is the stellar mass, P is the thermal pressure, and fw = de/dr is the time-averaged force per unit volume 
due to the waves. An explicit expression for fw can be obtained from equation (31) by performing the indicated 
differentiation and using conservation of mass; the result is 

f = — — — _1_ -l e / 1 \ / 2 \ du \ 
2 dr 2 L 4\1 + MA / \ /• u dr )' (33) 

Assuming a polytrope relation between P and p, i.e., Pocp* with y the constant polytrope index, equations (32) and 
(33) can be combined to obtain the wind equation of motion 

.,2 ~2 € / 1+3A/a\| _ 2u 
4p\ 1+Ma )\ dr r a— — 1 GM 

2 r (34) 

where a = (yP/p)l/1 is the sound speed. 

ii) Wind Solutions 

To illustrate the dynamical properties of winds driven by Alfvén waves, we have numerically integrated the 
equation of motion (34), assuming for simplicity that the outflow is isothermal (y= 1) and that the wave dissipation 
length is constant. The second of these assumptions enables us to obtain an expression for the wave energy density « 
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TABLE 3 
Alfvén-Wave-Driven Wind Models 

No. M{M0) R{R0) T(K) N0(cm-3) ]li(Mh) X B0(G) F0(ergs cm"2 s'1) A/(M0 yr"1) ^(kms"1) 

1 . 
2 . 
3 . 
4 . 
5 . 
6 , 
7 , 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 

1.33 
1.33 
1.33 
1.33 

10 

400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 

1000 
1000 
1000 

27 
27 
27 
10 

1330 

104 

104 

104 

104 

104 

104 

5000 
5000 
5000 
5000 
5000 
5000 
5000 
5000 
5000 

104 

104 

5000 
5000 
5000 

1011 

10u 

1011 

10u 

1011 

1011 

1011 

1011 

1011 

1012 

1012 

1012 

1011 

10n 

1011 

1011 

1011 

1011 

1011 

1011 

0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
1.2754 
1.2754 
1.2754 
1.2754 
1.2754 
1.2754 
1.2754 
1.2754 
1.2754 
0.667 
0.667 
1.2754 
1.2754 
1.2754 

00 
00 
00 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

00 
1 
1 
1 
1 

1 
5 

10 
1 
5 

10 
1 
5 

10 
1 
5 

10 
1 
5 

10 
10 
10 
10 
10 
10 

3.36 XlO3 

4.20 X105 

3.36 XlO6 

3.36 XlO3 

4.20 XlO5 

3.36 XlO6 

2.43 XlO3 

3.04X105 

2.43 XlO6 

7.68 XlO2 

9.60X104 

7.68 XlO5 

2.43 XlO3 

3.04X105 

2.43 XlO6 

3.36 XlO6 

3.36 XlO6 

2.43 XlO6 

2.43 XlO6 

2.43 XlO6 

1.09 X10 _ 10 

4.32 XlO"8 

5.47 XlO-7 

5.83X 10-11 

3.14X10"8 

4.51 XlO"7 

2.23 XlO"11 

1.32 XlO"8 

2.02 XlO”7 

2.29 XlO"12 

1.38X10"9 

2.15X10"8 

6.45 XlO"10 

3.57 XlO"7 

5.22 XlO"6 

1.77 XlO"9 

1.46X10-9 

6.67 XlO"10 

2.03 XlO”11 

3.08 XlO"5 

822.8 
508.1 
407.8 

31.61 
47.65 
50.97 
57.65 
57.39 
54.30 
54.72 
58.31 
58.32 
28.53 
32.35 
32.49 

484.1 
56.30 
61.50 

110.0 
22.5 

by direct integration of equation (31), namely 

(35) 

where, if 8B0 is the wave amplitude at r=r0, €0 =8Bq/Sir. Mass loss rates and terminal velocities (measured at 
r=150 R) for wind solutions corresponding to a variety of values for the stellar surface gravity, reference level 
number density and magnetic field strength, gas temperature, and wave damping length are listed in Table 3. In all 
cases, the gas temperature is sufficiently low that in the absence of waves the thermally driven mass loss rate is 
negligible. Since the wind velocity at the reference level location (chosen to be r0=R) is generally small compared 
with A0, the initial Alfvén wave energy flux is 

= -g^4o = 1.12X10- 1<xBqp0 
1/2 ergs cm 2 s " (36) 

with a=(8B0/B0)
2. Adopting a= lO“1 for each of the solutions listed in Table3 results in values for F0~103 to 106 

ergs cm-2 s_1, in reasonable agreement with the range of values suggested for the Sun (see Jacques 1978, and 
references contained therein). 

The topology of solutions to this equation of motion is exceedingly complex. In the Appendix we present an 
analysis of the critical point behavior of model 6, which can be generalized to the other models with damping. 

For a typical supergiant gravity (M = 16 Af0, R = 400 R0)> solutions 1 through 6 exemplify the effects of variations 
in the initial magnetic field strength B0 for damped (X=L/R= 1) and undamped (A= oo) waves, assuming T= 104 

K. Since each solution is characterized by the same values for the initial number density (N0 = 1011 cm-3), mean 
mass per particle (ju = 0.667 MH), and a(= 10 -1), varying B0 is equivalent to varying the initial wave energy flux F0. 
Note that in the absence of dissipation (solutions 1-3), increasing F0 leads to higher initial velocities (and 
consequently, to larger values of M) and lower terminal velocities, in agreement with the results of Belcher and 
Olbert (1975). However, since undamped Alfvén waves persist in the flow out to large distances from the star, they 
are capable of accelerating the gas in the low density portions of the wind (rælOR), resulting in terminal velocities 
which are unacceptably large in comparison with those inferred from observations. When wave dissipation is 
included (solutions 4-6), the mass loss rate M again increases with increasing F0, attaining a value Mæ5 X10 ~7 Af© 
yr -1 for F0 «3 X 106 ergs cm~2 s~l. More importantly, depletion of the wave energy flux due to damping in the high 
density region of the flow within a stellar radius of the surface gives rise to terminal velocities an order of magnitude 
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Fig. 5.—Velocity structures of Alfvén wave-driven winds. High terminal velocities occur for no wave dissipation (model 3 in Table 3); 
low wind speeds occur for damping lengths of a stellar radius (À= 1, model 6). 

or more below the corresponding solutions for undamped waves. Furthermore, examination of solutions 7-9 
(r=5000 K, N0 = 1011 cm-3) and 10-13 (77=5000 K, N0 = 1012 cm-3) reveals that to within differences in the values 
of Fq, these results are relatively insensitive to changes in T and, to a lesser extent, to changes in N0. Thus, for energy 
fluxes not unlike those suggested for the Sun, the force due to Alfvén waves can account for the magnitudes of both 
the mass loss rate and terminal velocities of supergiant winds, provided the waves are damped with a characteristic 
dissipation length of the order of the stellar radius. 

For comparison, Figure 5 depicts the wind velocity profiles corresponding to solutions 3(À= oo) and 6(À= 1) (see 
also Fig. 6). Many of the features of these profiles can be qualitatively understood by noting that, in each case, the 
force per unit mass due to Alfvén waves is a nonmonotonic function of distance from the surface of the star. In 
particular, near the base of the wind where u/a and u/A are both <1, the wave force per unit mass is given by (cf. 
eq. [33]) 

p 2p\L 2p dr ) 2p\L 2h)' 
(37) 

where the first term in parentheses is absent in the case of undamped waves (L=oo). For rær0, the density 
distribution is close to hydrostatic, and the local scale height h (determined by the balance between the forces due to 
gravity, thermal pressure, and Alfvén waves) is considerably smaller than the stellar radius. From equation (35), 
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c«€0(MA0/Ma) = €0(p/p0)
1/2, so that/„/p varies approximately as p_1/2 and the wave force per unit mass 

increases outward from the surface of the star. Since the magnitude of fw/p for r in the immediate vicinity of r0 

is nearly the same for solutions 3 and 6, and consequently both solutions have similar initial velocity profiles and 
mass loss rates. 

At large distances (r»R), the flow in the case of undamped waves is characterized by = constant, 
du/dr^O, and MA->oo. In this limit equations (33) and (35) imply that €^€0(MAO/MA) = (co/MAO)(p/p0)

3/2 and 
yW/pæ(3€/2pr)ocr_2. Thus, the magnitude of the wave force per unit mass approaches zero as r—>oo, but its 
decrease is sufficiently gradual that the wind can still be accelerated at large distances from the star. In the specific 
case of solution 3, fw/p is greater than either the gravitational or thermal pressure force at distances as large as the 
location of the Parker critical point (r = GM/2a2^31R) appropriate to isothermal flow in the absence of waves. 

When dissipation is included, the exponential decay of the wave energy density causes fw /p to decrease rapidly in 
magnitude for distances > L. Thus, after an initial increase,/w/p becomes smaller than the gravitational and thermal 
pressure forces within several stellar radii of the surface. The resulting peak in the wave force distribution gives rise 
to the presence of multiple critical points in the topology of solutions to the wind equation of motion (34), unlike the 
case of undamped waves for which a single critical point exists. For the present discussion, it is sufficient to note that 
the wind solution satisfying the boundary conditions of subsonic flow at r=r0 and vanishing gas pressure at infinity 
passes smoothly through the first critical point. At larger distances, the flow continues to be accelerated until the 
wave flux is sufficiently depleted that the gas begins to be gravitationally decelerated. In the case of solution 6, the 
onset of gravitational deceleration occurs at ræ4.6R, where the sum of fw/p and the thermal pressure force per unit 
mass (æla1 /r) first becomes smaller than GM/r2. Deceleration of the gas continues until the location of the Parker 
critical point is attained (ræ3\R), beyond which 2a2/r> GM/r2 and the wind is thermally reaccelerated. 

iii) Alfvén Wave Dissipation 

The results of the preceding section indicate that the mass loss rate due to a wind driven by Alfvén waves is 
primarily determined by the initial wave energy flux F0, while the terminal velocity is controlled by the damping 
length L. In view of the extent to which wave damping can affect the dynamical properties of the wind, we now 
enumerate some potential dissipation mechanisms for linear waves and, where possible, estimate the magnitudes of 
the associated damping lengths. 

As noted previously, collisions between ions and neutral atoms cause small-amplitude Alfvén waves in a partially 
ionized gas to be damped by friction. For a gas consisting of a single ion species and a single species of neutral 
atoms, each characterized by a Maxwellian distribution function with the same temperature T, the neutral-ion 
collision time Tni is given by (Braginskii 1965) 

IrriiNiOni Í 2kT nii +mn \1/2 

m,. +mn \ 7T mimn j ’ (38) 

where m, and mn are, respectively, the ion and neutral particle masses, Nt is the ion number density, and oni is the 
velocity-averaged collision cross section. When the plasma is composed of a single ion species and several types of 
neutral atoms, we confine our attention to waves having periods Pw such that Pw »Tm for each type of neutral partical 
present in the gas. Under these conditions, the average neutral-ion collision time Tni can be defined as 

Tni 2 ( P/i /Tm')/ P/i > 
n n 

(39) 

and the ionized and neutral components of the gas move together in the wave (ôf^æôJ^). Moreover, the phase speed 
of a wave propagating in the direction of the ambient magnetic field is the Alfvén speed calculated using the total 
mass density of the gas, 

f> = Pi+'2Pn’ 
n 

and the dissipative effect of ion-neutral friction causes the wave energy density to decrease by a factor of e in a 
distance LF given by 

__ A?* 1 +£ 
F £ 

(40) 
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n 

(Piddington 1956; Osterbrock 1961; Kulsrud and Pierce 1969). 
To obtain an estimate of the frictional damping length for Alfvén waves in late-type stellar winds, we adopt 

physical conditions (A=10n cm-3, T=5000 K, Æ= 10 gauss) representative of those at the base (ræR) of a 
supergiant wind (solution 9 of Table 3), where shock wave dissipation is expected to be the dominant heating 
mechanism and the density distribution is nearly hydrostatic. For simplicity, we assume that the gas is composed of 
hydrogen and helium N=Nn + AHe +Ne, where helium is taken to be completely neutral and the electron number 
density is due to hydrogen ionization. The presence of singly ionized metals has been neglected because, for the 
assumed conditions of temperature and density, metal ions are less abundant than protons and the neutral-metal 
collision time is correspondingly greater than the time for neutral-proton collisions. Application of the ionization 
analysis of § \lb for N^JN^ =0.10 and Am =0 yields Ne =NH „ =2.18x 108 cm“3, NH , =9.05x 1010 cm"3, and 
AHe =9.07x 109 cm-3. The frictional damping of Alfvén waves is due to collisions of neutral hydrogen and helium 
atoms with protons, for which approximate cross section values are a(H,H+)æ5x 10“15 cm2 and a(He,H +)æ8x 
10"16 cm2, respectively (Osterbrock 1961). From equations (38) and (39), the individual collision times associated 
with these processes are r(H,H+)âî1.27 s and T(He,H+)æ25.03 s, and the average neutral-ion collision time in the 
gas is Tn¡ âî 1.74 s. With £=(pH i +Phc)/Ph h and the previously adopted magnetic field strength, the resulting value 
for the frictional damping length is 

LFæ8.93 X IO4/*2 cm. (41) 

Thus, LFæR for a wave with period 7^ æ 1.77 X 104 s, a value sufficiently long to ensure that í>
h>»t(H,H+), 

r(He,H +). 
Small-amplitude Alfvén waves propagating through a partially ionized gas also dissipate energy by Joule heating 

(an effect arising from the finite conductivity of the plasma) and by the effects of viscosity (due primarily to ion 
collisions in the plasma). However, we find that the damping lengths due to these processes are very much longer 
than the typical frictional damping length, and thus are unimportant. 

In addition to the mechanisms discussed above, Alfvén wave dissipation can also occur via mode conversion and 
nonlinear wave-wave interactions. Each of these processes is characterized by the conversion of a fraction of the 
Alfvén wave energy into a propagating compressional disturbance which is subsequently damped. For example, an 
Alfvén wave traveling through a region of inhomogeneous magnetic field will be partially transformed into a 
fast-mode wave if the field bends in the direction of the Alfvénic velocity fluctuation 8 V (Wentzel 1974). Although 
our models assume for simplicity that the magnetic field is radially directed, comparison with the solar case suggests 
that in reality the field near base of the flow may exhibit appreciable curvature. As a result, some conversion of 
Alfvén waves to fast mode waves must take place over a distance comparable to the field radius of curvature, so that 
if the magnetic field curves on a typical scale of a stellar radius, it is possible to arrive at dynamically satisfactory 
values of the damping length L. In the absence of a specific model for the field geometry and distribution of wave 
vector directions, we cannot calculate the efficiency of this process. Similarly, several authors (Sagdeev and Galeev 
1969; Chin and Wentzel 1972; Wentzel 1974) have shown that when A>a, an Alfvén wave propagating parallel to 
the background magnetic field can decay into a sound wave traveling in the same direction and an oppositely 
propagating Alfvén wave (provided some amplitude of the resulting waves exists prior to the decay to initiate the 
interaction). As before, we note that while such processes probably contribute to, and could well dominate, the wave 
dissipation near the base of the wind, the assumptions inherent in our treatment of wave propagation prohibit us 
from calculating the effective damping length. 

We conclude this section by considering the dissipation of Alfvén waves by frictional damping at large distances 
from the surface of the star. Toward this end, we evaluate the frictional damping length at ræ2R in the model 
supergiant wind given by solution 9. At this point in the flow, wæ44 km s_1, AH«3.06x 107 cm“3, Bæ2.43 gauss 
and the wave energy flux has decreased from its reference level value to Fæl.90x 105 ergs cm“2 s“1. Assuming 
T= 5000 K, the hydrogen ionization equilibrium and neutral-ion collision times can be calculated according to the 
procedure described above. The lower density at r=2R causes fm to increase by a factor ~102, leading to a larger 
phase lag between the ion and neutral motions and an enhanced wave dissipation rate. Consequently, for a wave 
with period Rwæl.77xî04 s having LFæR at the base of the wind, the frictional damping length at r=2R has 
decreased to a value 1^^0.087/?. We note, however, that the local heating rate due to Alfvén wave dissipation 
implied by these results is approximately F/LFæ7.83x 10“8 ergs cm“3 s“1, a value several orders of magnitude in 
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excess of the local radiative cooling rate for T»5000 K, estimated using the cooling coefficient of Table 1. We 
therefore conclude that the gas temperature at r=2R must be greater than the assumed value. 

An approximate determination of the temperature at this distance can be obtained by assuming that the 
gas is sufficiently hot that hydrogen is essentially fully ionized, but that helium remains neutral. In this case, 
NHæNH u =Aeæ3.06x 107 cm-3 and fmær(He,H +)æl.26x 104/T1/2 s. With £=PHe/PHn> the frictional damping 
length is (cf. eq. [40]) LF«5.69 X102T1/2P2 cm, so that, for a given wave period, the heating rate F/LF is a function 
only of T. Using the values of the solar cooling coefficient listed in Table 1 to estimate the radiative losses, the 
thermal balance equation F/Lp^NjPR(T) (neglecting the effects of heat conduction and adiabatic cooling, which 
are both small) can now be solved for the equilibrium gas temperature T. For a wave of period Pwæ\.ll X104 s, we 
find Tæ 13,300 K with LFæR at r=2R. Thus, if the force due to long-period Alfvén waves is responsible for mass 
loss from late-type low-gravity stars, the frictional dissipation of these modes should give rise to the presence of 
warm (T~104 K) gas within several stellar radii of the surface. Note that it is unlikely that a flux of acoustic waves 
of magnitude sufficient to account for such heating could survive to these distances in the wind because of their short 
damping lengths. 

Finally, we point out that the existence of a temperature increase at larger distances should not result in significant 
modifications to the dynamical properties of the calculated isothermal wind model. Since the heating rate due to 
Alfvén wave dissipation is small in comparison with the radiative cooling rate at 5000 K for densities 
characteristic of ræR, the mass loss rate corresponding to the model should not be affected. Furthermore, because 
the initial acceleration of the wind is due almost entirely to the wave force, the wind properties are relatively 
insensitive to changes in the gas temperature, provided such changes do not lead to substantial variations in the 
damping length. In this regard, we note that the temperature of the outflow is in fact limited by the behavior of the 
damping length. At a temperature sufficiently high that helium becomes appreciably ionized, the frictional damping 
length will increase in magnitude, thereby reducing the wave heating rate and lowering the temperature. 

iv) Temperature Structure of Winds and the Transition from Coronal to Cool Mass Loss 

In the previous section we showed that there are several mechanisms by which Alfvén waves may be expected to 
dissipate. We are unable to predict the damping length even in the case of frictional dissipation for lack of 
knowledge of the wave period. However, if we regard F0 and L as set by observations of the mass loss rate and 
terminal velocity, respectively, then the heating rate F0 /L is fixed. An estimate of the cooling rate then yields the 
temperature, for radiative cooling and wave heating dominate the energy balance through the equation 

F/L~AR(T)NHNe. (42) 

We find that the other terms in the energy equation, involving the wind expansion, are small when compared with 
the radiative cooling term. 

In order for the models to be self-consistent, the thermal pressure gradient must be unimportant; in effect this 
means that the gas temperature must be «:105 K. The heating implied by F/L for model 20, intended to represent a 
Ori, results in a temperature ~5 X 103 K, extending over a region of ~5 stellar radii. We caution that the 
temperature determination is very approximate from the uncertainties in the cooling law and ionization balance. The 
wind temperature rises with increasing stellar gravity, principally because the wind density drops. Model 18, with 
logg= 1.7 has a temperature ~2x 104 K at the critical point and a temperature range ~20,000-30,000 K from 
about 1.1 R* to about 7 R*. This still indicates little thermal expansion. 

However, the wave heating in model 19, with log g=2.56, implies temperatures in excess of 105 K near the critical 
point. Therefore model 19 is not self-consistent. We infer that low-velocity winds cannot be generated by Alfvén 
wave pressure for log g>2. Wave dissipation at high gravity results in thermal expansion and coronal winds. If no 
dissipation occurs, the wind speeds are too high. 

This result is compatible with observations, which indicate a transition in wind behavior near log g~2 from 
coronal winds to cool, low-velocity flows (Reimers 1977a; Mullan 1978; Linsky and Haisch 1979). The exact value of 
log g at which the transition occurs will depend on the details of dissipation and on the exact amount of wave flux 
available. 

Models of the solar corona require mechanical energy fluxes ~105-106 ergs cm-2 s-1 in order to balance 
radiative losses (Rosner and Vaiana 1978). A similar flux of energy appears to be required for mass loss; wave 
dissipation will result in coronae (with L assumed to be of the order of the stellar radius) for logg>2 as required by 
observation. This suggests that the same mechanism, dissipation of Alfvén waves, accounts for coronae in 
high-gravity stars, as well as for extended chromospheres and mass loss in low-gravity stars. 
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At this point we may comment on the relationship of the Haisch, Linsky, and Basri (1980) (HLB) model for 
Arcturus to our models. In general we have much different temperature and density structures than assumed in HLB, 
and it is not clear how dependent the HLB results are on the assumed chromospheric structure. For example, our 
supergiant models never achieve temperatures greater than ~ 10,000 K, in contrast to the 20,000 K plateau assumed 
in the HLB model. Even in model 18, representative of Arcturus, our heating calculations indicate that T =20,000 K 
is formed at a much larger distance from the star (r> 1.1 R*) than in the HLB model. At this distance the flow is 
already expanding at a few km s-1 from the effects of the Alfvén wave force, indicating that the Alfvén waves are 
dominating the flow before the La pressure becomes appreciable. It is hard for us to see how a force which 
contributes ~3 X 10 ~4 of the momentum deposition of the Alfvén waves can control the nature of the wind solution. 
In this connection we point out that HLB have not formally integrated through critical points, as they do not 
conserve mass to better than a factor of 4. In any event our low-gravity models will have such low temperatures that 
the La line will become optically thin far out in the wind; since HLB indicate that the La force is appreciable only 
at small line optical depths, we expect that this force will not become important interior to the critical point as in the 
HLB models. 

v) Predictions of Extended Chromospheres and Magnetic Fields 

Studies of chromospheric gas near the stellar surface are difficult to pursue in terms of the usual optical 
circumstellar shell lines. Models of such shells are parametrized by inner shell radii at large distances from the 
surface (cf. Bemat 1977); the inner physical conditions are not well understood. Weymann (1962) has suggested that 
a Ori has an extended warm chromosphere, based on the anomalous strength of Ha. Some chromospheric lines 
appear to be far from the surface, based on the fact that they do not follow the radial velocity pulsations of the 
primary (Goldberg 1979). 

Recently Altenhoff, Oster, and Wendker (1979) have interpreted the radio emission of a Ori at frequencies below 
20 GHz as rising from an extended photosphere-chromosphere region extending to about two or three stellar radii 
(see also Bowers and Kundu 1979). Further radio measurements, including angular diameter determinations, will be 
fruitful in identifying the extended chromospheres predicted by wave dissipation. The measured brightness tempera- 
tures are predicted to be ~5000 K over a distance of a few stellar radii, based on our model 20. 

Other promising objectes for study are the £ Aur binary systems, where the early-type companion may be used to 
probe the chromosphere of the primary. In their classic study of £ Aur, Wilson and Abt (1954) found generally 
increasing excitation temperatures with increasing height. The primary of £ Aur has Afæ22 Af0, Ræ200 R0, so that 
our supergiant results are well suited for comparison. We pursue the following discussion in units of the scale height 
h, which compensates for the different gravities of £ Aur and our supergiant model. Wilson and Abt (1954) found 
that the excitation temperatures ranged from ~4000 K to ~7000 K over a distance corresponding to ~140 ÂæO.30 
R*. The corresponding density at 4000 K was found to be ~10n cm-3, with a density scale height ~lh increasing to 
~35h at the largest observed heights. The large observed scale heights suggest that a wind is causing departures from 
hydrostatic equilibrium for N< 1011 cm-3, in agreement with our models. 

The derived values of excitation temperature are in qualitative agreement with what one would expect for Alfvén 
waves dissipation. Acoustic wave heating is unlikely to maintain these temperatures at —80 scale heights from the 
temperature minimum. However, the analysis is not simple. Wilson and Abt conclude that the B star dominates the 
ionization balance, even though it cannot ionize the chromosphere appreciably through the Lyman continuum 
emission. They derive electron densities of the same order of magnitude as the neutral hydrogen density, which 
indicates substantial hydrogen ionization and temperatures > 7000 K. This analysis is very uncertain; the electron 
densities are derived indirectly through an approximate ionization balance equation. The result requires pockets or 
clouds of material —102 denser than the surrounding gas, which may be questionable. We expect that direct 
ultraviolet observations, such as the IUE study of W Cep by Hagen et al (1980), will specify the ionization balance 
and excitation of temperatures more clearly, and permit a separation of the effects of the radiation field of the 
early-type companion from the intrinsic chromospheric excitation. At present the most that can be said is that the 
observations are compatible with the notion of wave heating in an extended chromosphere. 

Reimers (1975) has inferred the presence of an inner Ca m zone extending outward a few stellar radii in M giants, 
based on the observed circumstellar line strength-radial velocity relation for different spectral types and for stars 
with variable CS Unes. Reimers attributes this second ionization of Ca to photoionization by chromospheric 
radiation. However, it may also be due to heating from the dissipation of wave energy envisaged here. The 
hypothesis of photoionization should be reexamined in the light of IUE observations of ultraviolet fluxes. 

Another important assumption of this theory is that stellar magnetic field strengths of a few gauss are present, in 
order to obtain reasonable mass loss rates. Reid et al (1979) have observed circular polarization in the circumstellar 
maser emission of the Mira variable U Ori. The magnetic field inferred from these observations is —10 milligauss, 
which, when extrapolated back to the stellar surface using a scaling of r“2, implies a surface magnetic field 
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~10 gauss. Thus there is evidence for magnetic fields of the order assumed in these calculations on at least one 
late-type, luminous star. 

It should be emphasized that the lowest-gravity stars, such as Mira variables, may well have winds which are 
strongly modified or even produced by pulsation and radiation pressure on grains rather than Alfvén waves. Our 
primary interest is in explaining the mass loss from the majority of late-type, luminous stars for which such 
mechanisms are not important. 

vi) General Behavior of Winds in the H-R Diagram 

The properties of the solutions listed in Table 3 permit some general comments to be made on the expected 
behavior of winds with constant surface magnetic fields and energy fluxes for various gravities. For magnetic fields 
«5-10 gauss we find mass loss rates which are generally within observational estimates. Although the details of 
dissipation, which we cannot describe at this point, determine the terminal velocity, for X > 1 the mass loss rate is not 
greatly affected, so we may make predictions for the behavior of mass loss rates in the H-R diagram. (For 1, mass 
loss ceases in these models). Goldberg (1979) has shown that several possible scaling laws for mass loss are equally 
compatible with the data; one very simple law is M=2.6X 10-12 R2 M0 yr _1, where R is given in solar units. Using 
models 6, 15, and 17 from Table 3, we obtain an approximate relation M~1.6X 10-13 R224 M© yr-1, in rough 
agreement with the aforementioned empirical law. We have not chosen to pursue this question further because of the 
very large uncertainties in empirical mass loss rates (Bemat 1977). 

The variation of terminal velocities remains an open question. For a constant value of X, the terminal velocity 
decreases with decreasing gravity, in agreement with observations. A damping length which scales with the stellar 
radius might arise from a suitable variation of wave periods, or possibly through the scaling of the magnetic field 
curvature. Observations of the inner wind temperature structure could yield estimates of the dissipation length 
without requiring a detailed understanding of the damping mechanism. 

IV. CONCLUSIONS 

We have shown that it is possible to understand the magnitude of mass loss from luminous late-type stars if it is 
assumed that they possess Alfvén wave surface fluxes of the same order of magnitude as the Sun. The main 
uncertainty in this theory is the predicted terminal velocity, which is a sensitive function of the detailed wave 
damping mechanisms which operate at the base of the wind and of the (unknown) wave periods. Coronal heating 
and low-velocity mass loss may result from the changing atmospheric response as a function of gravity to the same 
basic energy deposition mechanism. Observational searches for extended, warm chromospheres around late type 
supergiants have been suggested to test the theory. 

We would like to acknowledge useful conversations with I. Lerche, E. Parker, R. Rosner, and E. Avrett. This work 
was supported in part by NASA grants NGL 14-001-001 to the University of Chicago and NSG 5370 to the Harvard 
College Observatory. 

APPENDIX 

CRITICAL POINT BEHAVIOR OF SOLUTIONS TO THE WIND EQUATION OF MOTION 

In § HI, it was noted that when the effect of Alfvén wave dissipation is included in the momentum equation for 
the wind, the wave force per unit mass fw /p is a nonmonotonic function of distance from the surface of the star. In 
particular, if the waves are damped with a constant damping length L, then fw/p is an increasing function of 
distance for (r—R)<cL, a decreasing function for (r—R)>L, and becomes smaller than either the gravitational or 
thermal pressure force within several damping lengths from the base of the wind. Such a peak in the rate of 
momentum addition to the gas can lead to the existence of several critical points in the flow (Holzer 1977). In this 
appendix, we isolate the parameters upon which solutions to the isothermal wind equation depend, and determine 
the critical point locations when these parameters have a particular set of fixed values. From these results, we deduce 
the behavior of solutions in the vicinity of the critical points. 

Adopting r0=R sls the reference level location, we define the scaled variables z and w by z=r/R, w=u/a. Using 
equation (35) for the wave energy density c, the wind equation of motion (34) can be written in the form 

dw _2w N(w,z) 
D(w,z)' (A1) 
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where (in the notation of § III) the functions A(w, z) and Z)(w, z) are given by 

279 

2z (1+^a) 

Í 1 +3Ma \ z 
\ i+ma 

cxp[-(z-l)/X], 

4 , aMA(l+3MA) 1 ^ ^iexp[_(z_1)/X]; 

(1+^a) 

with X = L/R, £=(GM/a2R), p=aw¿/2/A0, and 

*o (1+MA0)
2 

4p0a
2 Mao 

(A2) 

(A3) 

(A4) 

For radially directed flows and magnetic field, the Alfvénic Mach number MA is a function of w and z through the 
relation MA =ßzwl/2. Following Lerche and Vasyliunas (1976), we seek the curves w(z) along which N(w, z) = 0 and 
D(w, z) = 0, for fixed values of the parameters a, ß, £, and X. For purposes of illustration, we choose the specific 
values a = 233.56, ß=2.02 X10 -2, £=61.62, and\= 1, appropriate to solution 6 of Table 3. The intersection points of 
the curves so derived will correspond to the locations of critical points in the (w, z) plane where N and D 
simultaneously vanish and dw/dz as given by equation (Al) is indeterminate. 

We note that at a given location z, the equation represented by N(w, z) = 0 is a cubic to be solved for MA (cf. eq. 
[A2]). For the assumed values of a, ß, £, and X, A'(h\ z) = 0 possesses three real roots MA for z < 5.59, of which one is 
negative and can be omitted from further consideration. The two remaining roots are both positive, and have the 
property that throughout most of the region 1 <z<5.59, one root is much smaller than 1 (AfA<l), while the other is 
large (MA»1). Approximate expressions for w(z) corresponding to these roots are 

w(z)~ 
1 

aßz 
(¿/2z-l) 
(1+z/X) 

exp[(z — 1)/X] 

for A/a<1, and 

w(z)æ 
a (3+z/A) 

Tz (É/2z-l) 
exp[—(z— 1)/X] 

l2 

(A5) 

(A6) 

for AfA»l. At the point z = 5.59, the two positive roots merge; for larger values of z, real roots greater than 0 to the 
equation N(w,z) = 0 exist only for z in the narrow region j£(l-e) <z <£/2, where ««1. Examination of equation 
(A2) reveals that for z in this region, the set of solutions to N(w, z) = 0 contains all values of MA in the ranee 
0< Ma <oo. 

The equation Z)(w, z) = 0 at a fixed position z is a polynomial equation of order seven to be solved for MA (cf. eq. 
[A3]). For the assumed parameter values, it can be easily shown that D(w,z)=Q has a single real positive root MA 

for all z> 1. Near the base of the wind (z«l), the root is such that A/a«!, and the solution w(z) can be given in 
approximate form as 

H'(z)«{a/îzexp[-(z-l)/X]}2/'3. (A7) 

At larger distances, the inclusion of wave damping causes the third term in equation (A3) to diminish in magnitude 
relative to each of the first two terms. As a result, the solution at large z approaches MAmßz or w«l. 

The calculated lines w(z) for which A(w,z) = 0 and D(w, z)=0 are shown in Figure 7, along with the velocity 
profile corresponding to solution 6. The existence of three critical points in the (w,z)-plane is indicated from the 
presence of three intersections of the N=0 and D = 0 curves. For the specified values of «, ß, £, and X, the 
intersections occur at the locations (wc, zc) given by (2.70,1.78), (1.88,3.03), and (1.00,30.81), respectively. We note 
that the desired wind solution (i.e., that solution satisfying the boundary conditions of subsonic flow at r=R and 
vanishing gas pressure at infinity) passes through the critical point closest to the surface of the star. 

To ascertain the nature of solutions in the immediate vicinity of a critical point (wc, zc) we express the variables w 
and z in the form h' = w'c+Ah', z=zc+Az with Ah’«w,,, Az«zc, and substitute in the equation of motion (Al). 
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Fig. 7.—The curves w{z) corresponding to #=0, Z> = 0, and the critical velocity profile for the wind of model 6 (see Appendix). 
Critical point locations are indicated by heavy dots. 

Expanding N and D about (wc, zc) and retaining only the terms which are linear in Aw and Az, we obtain 

¿/Aw _ QAw+C^Az 
¿/Az C3AW+C4AZ’ 

(AS) 

where the constant coefficients Q, C2, C3, and C4 are proportional to the partial derivatives of N and D with respect 
to w and z evaluated at (wc, zc); specifically, 

dN 
(Cj, C2, C3, C4) $z 

dN dD dD 
2 dwiZ dz )(Wc.- (A9) 

We first consider the existence of solutions which pass through a given critical point with constant slope. Assuming 
Aw = 5'Az with 5'=constant, equation (AS) yields two values Sl9 S2 for the slope at each critical point, 

Ci —C4 (A10) 

in which the subscript 1(2) corresponds to the +(-) sign. The coefficients appearing in equation (A8) can be 
calculated by direct differentiation of equations (A2) and (A3), and evaluated at each of the locations (wc, zc) given 
above. When these values are inserted into equation (A 10) for the solution slopes, the following results are obtained. 
At (wc,zc) = (2.70,1.78), the coefficients C1,C2,C3,C4 are all greater than 0, and SUS2 have opposite signs and 
unequal magnitudes. Solutions of the form Aw = iSAz therefore exist, and the critical point is a saddle point or X-type 
critical point. At (wc, zc) = (1.88,3.03), Q, C3, Q >0 while C2 <0, and the values computed for Su S2 are complex. 
In this case, there are no solutions of the assumed form that cross the critical point, indicating that the critical point 
is a focus or spiral point. At (wc, zc) = (1.00,30.81), Q =C4 =0 with C2, C3 >0, so that Si9 S2 are again real and of 
opposite sign, but now have equal magnitudes. This critical point is essentially the familiar 2f-type singularity 
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associated with the transonic flow of an isothermal wind, (see, e.g., Parker 1963), and occurs at the location 
(wc,zc) = (l,|/2). 

The form of the solution curves in the neighborhood of a critical point can be derived by assuming that Aw is 
expressible as Aw = /xAz where /x is taken to be a function of Az. With this substitution, equation (A8) can be 
integrated to obtain a relation between Aw and Az of the form (cf. Lerche and Vasyliunas 1976). 

(Aw-51Az)“(5l+C4/C3)(AH'-52Az)(S2+C4/C3) = constant) (All) 

where the slopes Su S2 and coefficients C3, C4 have been defined above. Using the previously determined values of 
these quantities, we find the following behavior for solutions near each of the three critical point locations. At the 
inner critical point, the solution curves are similar to hyperbolae, and are asymptotic to the lines Aw=SlAz and 
Aw = S2Az9 i.e, to the two critical solutions. At the middle critical point, all solution curves spiral toward the critical 
point in a counterclockwise sense. At the outer critical point, the solution curves constitute a family of hyperbolae, 
with the two critical solutions as asymptotes. We note that the same conclusions concerning the solution topology 
can be reached by attempting to sketch the curves w(z) for solutions other than the wind solution shown in Figure 7. 
Given the positions of the N=0 and D=0 lines in Figure 7, this can be done by noting that a particular curve is 
vertical when crossing the D = 0 line, horizontal when crossing the N=0 line, and that points on these lines are the 
only locations at which the slope of a curve can change sign. 

While the quantitative results described in this section pertain only to the case of model 6 (for which the 
parameters a, ß, £, and X have the particular values assumed above), the critical point characteristics obtained from a 
similar analysis of the other X= 1 models (cf. Table 3) are qualitatively the same. For those wind models that do not 
include the effects of wave damping, only a single Y-type critical point exists (see, e.g., Jacques 1977). This can be 
seen from equations (A2) and (A3) by holding a, ß, and £ at the values appropriate to model 6 and taking the limit 
À—>oo. In this case, the inner curve w(z) for which N—0 (cf. Fig. 7) is a monotonically decreasing function of 
distance that crosses the z-axis at z = £/2, while the outer N=0 curve is absent. The shape of the D = 0 curve is 
qualitatively the same as that shown in the figure, with the result that a single intersection of the N=0 and D — 0 
curves occurs; the location of this intersection is near that of the inner critical point in Fig. 7. We note also that a 
single critical point exists for the case in which À—>0. As X is decreased with a, ß, and £ held fixed, the initial decrease 
in the D = 0 curve moves closer to z= 1, while the minimum of the N=0 curve shifts inward and increases in value. 
Thus, for X<XC, where the value of Xc depends upon À, ß, and £, the N=0 and D = 0 curves intersect only at 
(wc,zc) = (l,£/2), and a single critical point exists. For parameter values characteristic of model 6, this transition 
occurs for À < Ac æ0.9. 
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