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ABSTRACT 

We calculate the rate at which angular momentum and energy are transferred between a disk 
and a satellite which orbit the same central mass. A satellite which moves on a circular orbit exerts 
a torque on the disk only in the immediate vicinity of its Lindblad resonances. The direction of 
angular momentum transport is outward, from disk material inside the satellite’s orbit to the 
satellite and from the satellite to disk material outside its orbit. A satellite with an eccentric orbit 
exerts a torque on the disk at corotation resonances as well as at Lindblad resonances. The angular 
momentum and energy transfer at Lindblad resonances tends to increase the satellite’s orbit 
eccentricity whereas the transfer at corotation resonances tends to decrease it. In a Keplerian disk, 
to lowest order in eccentricity and in the absence of nonlinear effects, the corotation resonances 
dominate by a slight margin and the eccentricity damps. However, if the strongest corotation 
resonances saturate due to particle trapping, then the eccentricity grows. 

We present an illustrative applifcation of our results to the interaction between Jupiter and the 
protoplanetary disk. The angular momentum transfer is shown to be so rapid that substantial 
changes in both the structure of the disk and the orbit of Jupiter must have taken place on a time 
scale of a few thousand years. 
Subject headings: hydrodynamics — planets : Jupiter — planets : satellites — 

solar system: general 

I. introduction 

The main purpose of this paper is to evaluate the transfer of angular momentum and energy between a disk and a 
satellite in order to determine their mutual evolution. Our results are applicable to a variety of systems : the rings of 
Saturn (Goldreich and Tremaine 1978è, henceforth GT1), the rings of Uranus (Goldreich and Tremaine 1979«), 
accretion disks in close binary systems (Lin and Papaloizou 1979), and the protoplanetary nebula (cf. § VI). 

The plan of the paper is as follows. In § II we calculate the angular momentum and energy transfer due to the 
torques which the satellite exerts on the disk at Lindblad and corotation resonances. The orbital evolution of a 
satellite and a neighboring narrow ring is explicitly evaluated. Section III contains an alternate derivation of the 
results obtained in § II, based on a single close encounter between the satellite and each ring particle. The cutoff in 
the torque at Lindblad resonances which occurs close to the satellite is accurately computed in § IV. Next, in § V we 
describe additional features of disk-satellite interactions which are relevant in applications to planetary rings. 
Section VI includes an illustrative application to the mutual evolution of Jupiter’s orbit and the protoplanetary gas 
disk. Finally, § VII contains a summary and guide to the most important equations. 

From time to time we will refer to Goldreich and Tremaine (1978c) as GT2, and to Goldreich and Tremaine 
(1979è) as GT3. 

II. STEADY-STATE INTERACTIONS AT RESONANCES 

a) The Disk 

For our purposes, it suffices to consider a two-dimensional disk which lies in the equatorial plane of a cylindrical 
coordinate system (r, 0, z). The unperturbed disk is azimuthally symmetric and rotates with angular velocity Q(r) 
> 0. Oort’s parameters A(r), B(r) and the epicyclic frequency K(r) are defined by 

Ar) = ß(r) = &(r) + A(r), K2(r) = [r2Q(r)]2 = 4B(r)Q(r). (1) 2 ar r5 dr 

425 
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426 GOLDREICH AND TREMAINE Vol. 241 

The validity of most of our results does not depend upon the nature and composition of the disk material. It may 
be a fluid, a collisionless gas, or a collection of macroscopic particles. However, the magnitude of the typical random 
particle velocity, denoted by c, is assumed to be much smaller than the circular velocity, c « Qr, as is observed in 
planetary rings. Also, the surface mass density £ is constrained by G£ « Q2r, which implies that the disk makes a 
negligible contribution to the unperturbed gravity field. Thus, we consider only disks which orbit some central rigid 
body, whose mass we denote by Mp. Some other restrictions on the validity of our results are discussed in § V. 

The most important special case is the nearly Keplerian disk for which Q2(r) æ GMp/r
3, A/Q » — B/Í1 % and 

k/Q æ 1. 

b) The Satellite 

The satellite orbit is characterized by the elements a and e and is assumed to lie in the disk plane. We define a such 
that the instantaneous angular velocity is equal to Q(a) when the satellite crosses r = a. Note that for the Kepler 
problem a differs from the semimajor axis in order e2. The eccentricity e = (rmax — rmin)/2a. Fore « 1, the satellite 
makes an epicyclic oscillation at angular frequency ks = K{d) about a guiding center which revolves at the rate Qs 
= Q(a). To first order in e, we may write 

rs = a{\ — e cos Kst), 0S = QSL+ 
2iLe 

sin kJ (2) 

(Chandrasekhar 1960). The apse precession rate is given by 

dco 

dt 

The perturbation potential due to a satellite of mass Ms reads 

^ x GM- AL . 
(j)s{r, e, t) = - !   + — Q.2(r)rs-r. 

\r — rJ Mn 

(3) 

(4) 

The second term is the indirect part of the potential which arises because the coordinate origin is attached to the 
central mass. 

It is convenient to expand 0s in a Fourier series: 

(t>s(r, 9, 0 = £ X fà.Ji') cos {m9 - [miîs + (/ - w)ks]/} 
Í = — oo m = 0 

(5) 

For e « 1, the largest term in is proportional to e]l m|. The pattern speed of the /, m potential component is 

(6) n — n , — m) Ql,m — H K, • m 

It is straightforward to calculate from equations (2) and (4). To first order in e, the only nonvanishing 
components are 

C'm = (2 ~ ’ 

_ GMS n C ^ 
2a ^ ^ Om,o) 

1 mQs ß d V /3 2BS ns 

2 + + 2Tß)b'" “ n; + “ 

m — 1 ,m 
GMS 

' 2a 
e(2 - <5m,o) 

1 mQ.s ß d 

bUß) = - 71 

2 ks 2 dß 

functi< 

cos m(¡)d(j) 

3 2B* Q( 

Here / = Q2a3/GMP, ß = r/a, is the Kronecker delta function, and h"î 2{ß) is the Laplace coefficient, 

o (1 2ß cos (ß + ß2) 2x1/2 

(7) 

(8) 

(9) 

(10) 
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No. 1, 1980 DISK-SATELLITE INTERACTIONS 427 

The terms in proportional to <5m5l arise from the indirect part of the perturbation potential. Equations (7)-(10) 
are valid for all ß. 

c) Torques at Resonances 

Torques are exerted on the disk by only in the immediate vicinity of Lindblad and corotation resonances. The 
former occur where 

aW + £ï«-n,„ 
m 

e = ±1 , m > 0; (ii) 

and the latter where 

Q(r) = Qi>m , m > 0 . (12) 

We ignore m = 0 perturbations since they are axisymmetric and exert no torque. At the Lindblad resonance the 
epicyclic motion of a particle in a circular orbit is strongly excited, since the perturbation frequency felt by the 
particle is equal to its epicyclic frequency. At the corotation resonance the angular momentum of a particle in a 
circular orbit undergoes large changes, since the particle feels a slowly varying azimuthal force. However, the 
particle’s epicyclic motion is not excited. A Keplerian disk of infinite extent has one inner (e = — 1) and one outer (e 
= +1) Lindblad resonance and a single corotation resonance for each Qi>m > 0 and m > l. 

Analytic expressions for the torque are derived in GT3. At a Lindblad resonance r = rL, 

T\m = -m' 
K")"1 

rdfrl.n 
dr 

+ 
2Q 

O - 
(13) 

where D = k2 — m2(Q — Qi,m)2. Note that the sign of T\9m is opposite to that of dD/dr. Thus, angular momentum is 
removed from the disk at an inner Lindblad resonance and added to it at an outer Lindblad resonance (Lynden-Bell 
and Kalnajs 1972). At a corotation resonance r = rc, 

T c _ 
l,m 

mn2 

(14) 

Note that the sign of 7^m is that of the gradient of vorticity per unit surface density if dTi/dr < 0. The torque 
formulae are valid in the limit that c « Qr, (7Z « Q2r, and m « Qr/c. The implications of the violation of the last 
inequality are examined in § IV. 

Given a disk and a satellite, the apparatus we have assembled enables us to locate the resonances and to calculate 
the torques exerted on the disk. This procedure was applied to Saturn’s rings in GT1 to provide an explanation for 
the formation of the Cassini division. Here our goal is slightly different. We are primarily concerned with those 
resonances which are close to the satellite, i.e., those for which |rL — a\« a and \rc — a\« a or, what is equivalent, 
m»\. In this limit the positions of the resonances are located as shown in Figure 1. Two features are worth 
commenting on. First, some of the resonances are at r = a. Clearly, the linear perturbation theory used to calculate 

/ * K , 0 1 + rnr lAlm 

a(,+
2li-J 

^=m+4 Æ=m ^ = m-< 

» 1 ¿   

0 

0 
• - 

a(1 • K 
2 |A|m 

C I 

Fig. L—The positions of the most important resonances for fixed m » 1. We only show resonances with \l — m\<\ since the perturbing 
potential from the satellite (cf. eq. [5]) is azél~m\ The symbols O, C, and I denote outer Lindblad resonances, corotation resonances, 
and inner Lindblad resonances, respectively. 
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428 GOLDREICH AND TREMAINE Vol. 241 

the torques given by equations (13) and (14) is an inadequate tool for these resonances. Second, there is an infinite 
sequence of resonances of each type / = m, l = m + 1, and each sequence has an accumulation point at r = a. The 
high density of resonances near a leads us to introduce the average torque per radial interval, or torque density, 
which we denote by dT\m/dr or dT^ Jdr. 

To compute the torque densities we use equations (7)-(10), (13), and (14) and Figure 1. To evaluate b™/2(ß) for |1 
- j8| « 1 and m » 1, we note that most of the contribution to the integral in equation (10) comes from 0 « 1. Thus, 
we replace cos 0 by 1 - 02/2, extend the upper limit to infinity, and set jß = 1 except where it appears in the 
combination 1 — ß. This procedure yields 

ß\), (15> 
n 

where Kv denotes the modified Bessel function of order v. Similarly, 

^^^sgn(l-)ß) —^(mll-W, (16) 
dp n 

and 

d2b1l2(ß) x In? 

dß2 n 
K0(m\\ - ß\) + 

1 

m\l — ß\ *iMi - ß\) 

The resulting torque densities are 

dTL K2rY (G M Ï2 

m m = sgn (/' - a) ^ ^ ^ {(2QIk)K0(kI2\A\) + ^(^Ml)}2 , 
dr 

dT%± i 
dr 

= sgn (r - a) 

23A4 (a — rY 

e2K4r3Z, (GMS)
2 

22A6 (a — r)e {[1 + (2Q/k)2]K0(k/\AI) + \_\A\Ik + 4Q/k]/s:1(k/M|)}2 , 

dTÎ±urn= e2K4r3 (GMS)
2 d /I 

dr 26\A\5 \a — r|5 dr \B 
{(2Q/k)K0(k/2\A\) + K^K/nAl)}2 

(17) 

(18) 

(19) 

(20) 

e) Orbital Variations 

Next we investigate the rates of change of a and e due to the interaction between a satellite and a circular ring of 
radial width Ar and mass Mr. The mean radius and radial width of the ring are subject to the constraints 

c \a — r\ 
—- «  
Qr a 

« 1, 
\a - r\2 Ar \a - r\ 
 2  «   «   

a a a 
(21) 

The lower limit on the mean separation between the ring and the satellite orbit is equivalent to the requirement that 
m « Qr/c for those l = m and l = m ± \ resonances which lie within the ring. Our torque equations (13) and (14) are 
only valid in this limit. The lower limit on the ring width ensures that many resonances of each type fall within the 
ring boundaries so that the torque density is a meaningful concept. The effects of a wide ring on the satellite orbit 
may be determined by summing the effects of many narrow rings. 

A simple derivation of the perturbation equations for a and e starts with the integrals of the unperturbed satellite 
orbit. These are the angular momentum 

H=Msa
2Q (22) 

and the energy 

E = iMs[(aQ)2 + (eaK)2] + Ms<D(a) , (23) 

where O is the unperturbed gravitational potential. The forms of the integrals follow immediately from the 
definitions of a and e adopted in § 116. The expression for //is exact whereas that for E is valid to order e2. For each 
ring torque component Tr with pattern speed Qp there is a reaction torque on the satellite which changes H and E 
according to 

dH 

~dt 
- T ± r ? (24) 

dE 
dt = -npTr (25) 
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From equations (22)-(25) and the identities «Q2 = ¿/O/dr and k2 — 3Q2 = d2<î)/dr2, we find 

da 2QTr 

dt aK2Ms 

de 
dt 

(Qp - Q) - 2e2n( 1 + 
d In k\ 
d\nr J 

T r 
Mse(aK)2 

Here Q, k, and d In K/d In r are to be evaluated at r = a. 
The leading contribution to da/dt is due to dT^ Jdr (eq. [18]). We find 

da / x ÇïG2M M 
~dt = Sgn (ö “ r) + KM2\A\)V , 

(26) 

(27) 

(28) 

where Mr = 2nI,rAr. 
The computation of de/dt is slightly more subtle. The effect oï dTL

m Jdr is smaller than that of dT]n±l m/dr by 
~\a — r\/a « 1. To ascertain the contribution of i/r^±lm/dr, we integrate over the ring holding constant everything 
but £ and \a — r\~5, the most rapidly varying factors. We find that dT]n±lm/dr and dTc

m±1Jdr make 
comparable contributions to de/dt. The end result is 

1^ 

e dt 
k2G2M M Í 

in\A\5a\a — r|51<[1 + (2Q/^2^o(^/l^l) + Wá\/k + 4Q/k]*1(k/MI)>2 

2B {{2aiK)K0{Kl2\A\) + K^MI))2 (29) 

The positive first term and the negative second term come from the Lindblad and corotation resonances, 
respectively. 

A numerical evaluation of a~lda/dt and e~lde/dt for the Keplerian disk yields 

Ida ^ ^ MsMr 
-— = 0.798—^ 
a dt Ml 

Q sgn (fl - r), 

\_de_ 

e dt 
-0.0739 MsMr 

M2 I Q. 

(30) 

(31) 

Applications of these results are presented in §§ V and VI. Here we merely note that the satellite is repelled by the 
ring and its orbital eccentricity is damped. The latter conclusion is dependent on the assumption that the resonances 
are not saturated (cf. § Ne). 

III. INTERACTIONS DURING A CLOSE ENCOUNTER 

In this section we rederive equations (28) and (29) without reference to individual resonances. This alternate 
derivation helps to clarify the mechanisms of angular momentum transport between a satellite and a differentially 
rotating disk. The approximation we use here was applied previously by Julian and Toomre (1966) and by Lin and 
Papaloizou (1979). It was originally devised by Hill for his lunar theory. 

a) Basic Model 

We introduce a local coordinate system with origin at r = 7? which revolves with Q = Q(Æ). The x axis points 
radially outward, and the y axis points in the direction of increasing 9. For x/R « 1 and y/R « 1, the equations of 
motion of a particle of mass m subject to a central potential <D(r) and a perturbation potential read (Spitzer and 
Schwarzschild 1953) 

x + AÇïAx — 2Çïy = — d^Jdx , (32) 

ÿ + 2Çlx = - dÿp/dy , (33) 

where A = A(R). The unperturbed (0P = 0) motion of a particle is given by 

2Q 
x = oc — e cos (Kt -h ô), y = 2Aat -h 7 H e sin (kî + ô). (34) 

K 

Here oc, e, y, and ô are constants and k = k(R). 
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430 GOLDREICH AND TREMAINE Vol. 241 

The equations of motion have an “energy ” integral if 5(fip/8t = 0 and an “angular momentum ” integral if dÿjdy 
= 0: 

M d4\\(dA\^ + M(j)p , H = Mldy/dt + 2Qx] . (35) 
Kdt J \dt J 

From equations (34) and (35), we see that the energy and angular momentum of an unperturbed particle may be 
expressed as 

£ =My[£2 + 04/n)a2], (36) 

H = 2MBa. (37) 

The equations which govern the evolution of the osculating orbital elements are obtained by applying the method 
of variation of constants to equations (32)-(34). We find 

da _ 1 8(t)p 

dt 2B dy 
dy = 1 chpp 

dt 2B da 

de 
dt 

1 «<l>p 
KC ÔÔ 

dô 1 d(f)p 

dt Ké de (38) 

It is often convenient to replace e and ô by the auxiliary variables h ee e sin <5 and k = e cos ô which satisfy 

dh 1 Wp dk 1 
dt k dk ’ (39) dt k dh 

For later comparison with the results obtained in § II, we note that a and e are related to a, r, and e by 

ocs = a — R , (40a) 

ocr = r — R, (40b) 

e = eR. (40c) 

b) First and Second Order Perturbations 

We consider the changes in a and e produced by a single close encounter of two particles with masses Mr and Ms. 
The interaction energy is MrMs(j), where 

G G 

~d' <t> = l(xs-xr)
2 + (ys-yr)

2y'2 (41) 

The quantity (j) may be expressed as a function of a¿, yh hh kh and t where i = r, s. From the manner in which ah yh hh 

and ki enter </>, it follows that 

dcj) 
dzr 

del) 
dzK 

(42) 

where z is any one of these elements. This symmetry does not apply to the elements e and ¿.For this reason, we use h 
and k instead of e and à in the initial development of the equations for the second order perturbations. 

The first order variations, ¿iz¿(0, follow directly from equations (38) and (39). From the above symmetries 
Ms¿!Zs(0 = —Mfi^Zyit) for z = oc, y, h, and k. 

The second order variation of a, satisfies 

-Ô2as = -F y 
dt 2 s ™ L 2B i = r,s 1^7; 

d2<t>s 5, , d2(f)s d2<t>s / d2(t>s £ ; 

dy^y. dhidys dk¡dys 
(43) 

To obtain the total second order change of as due to the encounter, A2as = á2as(oo), we integrate equation (43) over 
— oo < t < oo and use the symmetry relations. We obtain 

A2as = Mr(Mr + Ms) 
1_ 

4B2 dt 

+ 
1 

2Bk 

52(j) 

d*sdys J 

d2(p 

dt 
-oo ^ is 

't 

dt 
d2(j> 

Ws -00 C(XS_\ 

dt 
dhsdys 

j, dt -rry + 
dk. 

r Jt£L r „,^11. <44, 
J.«, dksdys J-* dhs\) 
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The second order variation of e is related to the first and second order variations of h and k by 

. _ hd2h + kô2k (kô^h — hô^)2 

2€ = {h2 + £2)1/2 + 2(Ä2 + ¿2)3/2 ' 

A derivation analogous to that leading to equation (44) yields 

& A = 
Mr 0(¡) 

dt - 
-oo dk„ 

A2hs = Mr(Mr + Ms} 
1 

[2Bk 
dt 

d2(j) 

doiÆ^ 

, dó 
dt'   h 

» dys 

dt 
d2(j) 

dysdks 
dt y 

3a, 

(45) 

(46) 

+ 
00 dt d2(t> 

-=0 dhsdks 
(47) 

The analogous expressions for Atks and A2ks are obtained by applying the transformation hs > ks, ks > —hs to 
equations (46) and (47). 

Next we change from hs and ks to es and ds in the equations for A2as and A2£s. This is accomplished by using the 
relations 

d d cos ô 8 
— = sm<5-- +  
dh de e ce 

8 c 8 sm 3 3 
—- = cos 3   —- 
8k 8e e 8e 

(48) 

The results are 

A2as = Mr{Mr + Ms) 4B2 

-h 
2Bkc^ 

■ du.stiys J_œ dys 

j,5 <t> r , ^ dt dt' 
» dys J—co 

d2(f> 
dt 

-oo Sesdys J 

and 

esA2£s = Mr(Mr + Ms) i- \2Bk 

d2(l) 

-oo dt Sctsdôs 

dt' 
33, 

8c¡) 

dt r I dt' 411 

dôsdys J — oo 

+ 
K2t, 

dt'    
Sys 

d2(j> p ,, d(j) 

. dôsdes J_œ dô. 

dt 
82(j) 

dysdös 

j,dd± 
-oo d<52 

Í' dt' 
J - oo 

dcj) 
da. 

de. 

_i/I f” W-V-L 
2UJ-00 dej 21 /ce. 

(49) 

(50) 

The piece proportional to M2 in £sA2es arises from the term in equation (45) which is quadratic in the first order 
variations of hs and ks. 

Equations (49) and (50) describe the second order changes in as and es produced by a close encounter of masses Mr 

and Ms. However, our aim is to determine the changes in as and es due to the interaction of a continuous ring of small 
particles of total mass Mr with a satellite of mass Ms. In this case, the terms proportional to Ml account for 
successive first order perturbations of the satellite by different particles of the circular ring. Since the potential of a 
circular ring may be absorbed into the unperturbed potential, these terms do not contribute to A2as and A2ês. (A 
formal proof of this result may be constructed but is not given here.) In the terms proportional to MsMn Mr should 
be replaced by Mrdyr/2nr and the resulting expression integrated over 0 < yr < 2nr. 

To further simplify the equations for A2as and A2es, we make use of the relations 

d<l>/dyr = -d(t)/dys 

and 

d<j> 

~dt 
+ 2A(as — ar) 

d(t> 

dys 

(51) 

(52) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8O

A
pJ

. 
. .

24
1.

 .
42

5G
 

432 GOLDREICH AND TREMAINE Vol. 241 

Equation (51) is a special case of equation (42) with y substituted for z. Equation (52) follows immediately from the 
form of (j) as given by equations (34) and (41) and the fact that er = 0. 

To simplify A2as, we apply equation (51) to the second term in each of the square brackets of equation (49). Next, 
we integrate by parts with respect to yr and then change the order of the integrations over t and /'. After applying 
equation (51) again, the two terms in each square bracket combine to yield the product of two one-dimensional 
integrals. 

The prescription for simplifying A2£s is similar to that used for A2as. However, in this case equation (52) is applied 
first to express d(f)ldös in terms of d(j)ldys and dÿ/dt. The integrations by parts and the interchanges of order of the 
integrations over time now follow the procedure outlined for A2as. After A2es has been expressed as the sum of terms 
each involving the product of two one-dimensional integrals, equation (52) is applied again to express d(¡)/óys in 
terms of d(j)/dôs. 

The simplified versions of A2as and A2es read 

In writing equations (53) and (54), we have discarded some boundary terms which arise from the integrations by 
parts over yr. These terms are smaller than those retained by order |as — ocr\/R « 1. 

We proceed to evaluate A2as and A2£s to lowest order in es. We start by expanding 0 in a Taylor series in es using 
the identity 

dcf) 

des 

dÿ 2Q . dè cos u ———|- — sin u -f- 
Sxs K dys 

(55) 

where u = Kt ôs. We also need the second and third order derivatives which read 

d2</> (1 + cos 2w) d2</> /2Q\2 (1 — cos 2w) d2</> 2Q . d2(¡) 

de2 2 dx2 + \ k ) 2 dy2 k ^ ^ dxsdys 

d3(¡) (3 cos w + cos 3w) d3</> 

4 ~dx! 
. -- . d3ó 

+ 2( — ) (3 sin u — sin 3w) 

3Ü / . . ^ a3(/> 
+ (sin u + sin 3u) . 2. 

2k 8x2dys 

/QV d3(j) 
3 — (cos u — cos 3u) „ - 
W dx

s8ys 

(56) 

(57) 

Next we replace d(j)/dys by — [2^4(as — ar)] “
1 k d(j)ldôs and (27rr)_ 1 dyr by (2n) ~1 \2q dôs in equations (53) and 

(54). The latter substitution is not exact unless Kar/(2A\as - ar\) is an integer, but the error it introduces is only of 
order |as — ar|/R « 1. 

To calculate A2as to lowest order in es, only the second term in equation (53) is needed. Using the results of the 
preceding paragraph, we see that this term is equal to 

To lower order in 6S, 

A2as = - MsMr 

2n 

'In 

Jo 
dds- 

1 a 
8v4i?(as — ar)es des 

dcj) 

dô 

"oo 

J - 00 
J ' d(t> dt\ sin u   h 

V dxs 

2Q dcf) 
— cos u-— 
k oys/0 

(58) 

(59) 

where the subscript 0 denotes that the partial derivatives, 

d(t> _ G(xs - xr) dÿ _ G(ys - yr) 

dxs d3 ’ 3j;s d3 

are to be evaluated for circular orbits. Thus, we set .v¿ = a¡ and y¡ = 2/1 a,/ + y; for i = r, s. Then we change the 
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variable of integration from ¿ to t = 2At + (ys — yr)/(as — oO and obtain 

dcf) esG sin v 
1 ôôs 2\A\(cts — ar)

2 % 

dx 
cos 

-ood+T2)^ 

where v = ôs- K(ys - 7r)/[2^(as - ar)]. Integration over t yields 

KT 
2[Z\ 

2Qt . / KT 
^"Sin^ 

i: 

^ d(j) esGK sin v 
dtWs

=2A\as-arf jK{m)+K{wl 

Combining equations (58) and (62), we arrive at the final expression for A2as which reads 

A2as = 
G2MsMrK a2 

n\A\5B{as - ary 
2Q 

K0 

433 

(61) 

(62) 

(63) 

To obtain da/dt from À2as, we use equation (40) and the fact that the entire ring passes by the satellite in a time 

Thus 

na 

\Á{a - r)\ ' 

^ = sgn (a - r) Í(^Ik)K0{k/2\A\) + ^(k/2141)]2 . 

(64) 

(65) 

In writing ufa/A we have set k2 = AQ.B. Note that equation (65) for da/dt is identical to equation (28) obtained by 
summing the torques at discrete resonances. 

The calculation of A26s proceeds along similar lines to that of A2as. Each of the four terms in equation (54) makes 
a contribution of order £s to A2£s. The first of these terms may be written as 

A2esli 
MsMr d 

\6n\A\B(<xs — oir)es dots 
(66) 

With the aid of equation (62), we find 

^2es\l 
G2MsMrK

2es pQ / K \ 

l6\A\5B(ocs-(xr)
6lK 0\2\A\J 

(67) 

The three remaining terms may be grouped as 

^2esl 2 + 3+4 
MsMr 

AnK2es 
(68) 

To calculate A2es to first order in es, we must expand </> to third order in es in equation (68). We denote by c//'0 the nth 
derivative of </> with respect to es evaluated at es = 0. Then to third order in es, 

$ = 4>(°) + ^ + (¡){2Xe2J2) + </>(3)(£s
3/6) . (69) 

When equation (69) is substituted into equation (68), the terms which result may be sorted according to the order of 
the derivatives with respect to £s which appear in the integral factors. Thus the (m, n) terms are proportional to the 
product of an integral of </>(m) and an integral of </>(w). Using this nomenclature, we assert that the (0, n) terms vanish 
individually, the (1,2) terms vanish when averaged over <5S, and the (1, 1) and (1,3) terms sum to zero when averaged 
over <5S. These assertions may be verified by inspection of the forms of equations (55)-(57) and (68). It is not 
necessary to evaluate the t integrals. 

It is now established that to first order in es only the (2, 2) terms survive. From equations (56) and (68), we find that 
these yield 

^26sl2 + 3+4 
MsMres 

\6nK2 dô< 
< 

dt sin 2u\ 
d2(j) 

ôx2 

:Q\2 d2(t)\ 4Q „ d2</> 1 ' H cos 2u 
dy; 

dt 
.d2<t> • 

ôxs8ys 

d2(j) <1+cos2„)«+lirj d-coS2»)w 

4Q • o  sin 2u 
K 

(70) 
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where 

d2<j) 

d2(¡> 

02(j> 
dxsdys 

Equations (70) and (71) reduce to 

G2MM^ 
^2esl2 + 3H 

Gl2(xs - x,)2 - (j5 - vy)2] 

d* 

G[2( >-s - >v)2 - (Xs ^)2] 

= —3G 
(xs 

d5 

Xr)(ys - Vr) 

32A2k2(ols — ar)
6 

< 
í/t cos 

KT \f 8Q2 H- K2 3(4Q2 + k:2) 

Ml + t2)3/2 /c2(1 + t2)5/2 

— sin ”1, 
12Qt 

>! Mil Ak(1 + *2)5/l 

8Q2 - k2 3(402 - K2) 

k2(1 + t2)3/2 k2(1 + r2)5/2 

(71) 

(72) 

The integrals in equation (72) which involve trigonometric functions may be expressed in terms of modified Bessel 
functions. The other integrals are elementary. We find 

^2Êsl2 + 3+4 — ~J6 
K2G2MKMr^ 

<[1 + (2Q/^]*o(k/MI)+ [Ml/* + 4Q/<|*i0c/MI)>2 

A6(as - a,)6 

To determine de/di we combine equations (40), (64), (67), and (73) which yield 

(73) 

1 de 
e dt 

K2G2MsMr 

87t|^4|5a|u — /*|5 j<[l + (2ÇÎ/k)21K0(k/\A\) + [\A\!k + AÇïIk-]K1{kI\A\)'}2 

- ^ ({2ttlK)K0{Kl2\A\) + Kl(Kß\A\)'}2 (74) 

Note that d In a/dt is smaller than d In e/dt by a factor \a — r\/a and has been neglected. A comparison of equations 
(29) and (74) reveals that the close encounter approximation duplicates the expression for de/dt that we obtained by 
summing the torques at discrete resonances except for the addition of a term proportional to (A/k)4. The origin of 
the “extra term” is explained below. 

c) Eccentricity Driving 

A satellite moving on an eccentric orbit forces an eccentricity in an initially circular ring. The potential 
components responsible for the forced eccentricity have ra = 0 and / = ± 1. From equations (5)-(10), we see that for 
\a — r\ « a the dominant terms in the forcing potential are 

GMse 
V(r) = (</>s

t o + </> - i o) cos Kt & ^ A cos Kt . 
7i\a — r\ 

The forced response of a ring particle is obtained by substituting V for(</> in equation (33). 
find ^ 

(75) 

To first order in Ms we 

^ x GM^e sgn (a — r)t sin Kt x , 
x(,) - - -ill - 4—■ <76> 

subject to the initial conditions x(0) = i(0) = y(0) = 0. In deriving equation (76), we have set ks = kl = k since k 
has been treated as a constant in this section. More generally, equation (76) is valid for |k;s — Kr\t « 1. For Kt » l, the 
ring perturbation is well described as a growing forced eccentricity er where 

GMset 

2nKa(a — r)2 (77) 

As the ring’s eccentricity grows, the satellite’s eccentricity e diminishes. To relate the changes in er and e, we use the 
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conservation laws (cf. eqs. [36] and [37]) and the fact that the circularly symmetric potential V does not transfer 
angular momentum between the satellite and the ring. Thus 

Ae2 (78) 

With er evaluated for / = A/, the time interval between successive passages of the satellite past a given ring particle 
(cf. eq. [64]), 

G2MsMre 

8k2A2(ci — r)6 (79) 

This is just the value of the “extra term” in Ae obtained in the close encounter approximation (cf. eq. [73]). 
It is clear that the “extra term” in de/dt does not arise from a true resonance and does not represent a secular 

change in e. Its appearance in the close encounter derivation of de/dt is an artifact of this approximation’s limited 
frequency resolution which does not enable us to distinguish between a long period term and a secular one. 

IV. TORQUE CUTOFF 

We have shown that the torque density at radius r due to a satellite moving on a circular orbit of radius a is 
proportional to sgn (r — a)(a — r)-4 for c/Q « \a — r\<< a (cf. eq. [18]). If the satellite orbits within a disk, we are 
unable to find the total torque since equation (18) fails in the region \a — r\ < c/Q, where the torque density is 
greatest. Our purpose in this section is to derive formulae for the total torques exerted by the satellite on the parts of 
the disk interior and exterior to it. For simplicity, we consider gaseous disks. They are the subject of our 
astronomical application in § VI. Results for disks composed of discrete particles should be similar. 

We adopt the local Cartesian approximation of § III. The satellite is located at the coordinate origin and gives rise 
to the time-independent potential Ms(/> = — GMs/(x

2 +y2)1/2. The steady-state response of the disk may be 
obtained from the hydrodynamic equations developed in Goldreich and Lynden-Bell (1965) and GT2. The 
unperturbed surface density Z and the sound speed c are assumed to be constant. We denote the perturbed surface 
density by a. The relevant equations are 

d26 

dx2 

(x, y) = Re 

(?(£ , t) = kyl. 

dky exp (^yj)|^(ky, x), 

X) 
dxOiky, t) exp (ikyix), 

$(ky, T)=^jt dx(j)(ky, x) exp ( — ikyTx) = 
nky(l + t2) 2\l/2 

2t do 
+ 

2B 
(1 + T2) dx \_A(l + T2) 4^2 2A2Q +4i-4£<i+^+®Î<i+^) 4 A2 

h- 

Mk2- 
-^<K^,t)(1+t2). 

(80) 

(81) 

(82) 

(83) 

Note that our sign conventions for A and Q differ from GT2 ; as a result some of our equations differ slightly from 
their analogs there. Equation (83) (GT2, eq. [34]) is to be solved subject to the boundary conditions 0, dS/dx -> 0 as 
x —> oo ; 

Q = kc/tiG'L (84) 

is the Toomre (1964) stability parameter. The disk is stable to axisymmetric perturbations if and only if ß > 1. We 
consider only stable disks. 

To determine the torque exerted on the disk, we compute the angular momentum flux through the disk in the limit 
|x| -> oo. This is a valid procedure because we are dealing with a stationary state and all of the angular momentum 
which is deposited in the disk is transported toward 0x = ± oo by density waves. As |x| —► oo, the factor exp (ikyxx) in 
the integrand of equation (81 ) oscillates rapidly. Thus the main contribution to â(ky, x) comes from large values of x 
where 0(t) also oscillates rapidly and there is a point of stationary phase. At large t, the WKB solutions of 
differential equation (83) have the form 

0(kr x) S+x112 exp I 
/ ikvcx' 

+ S_t1/2 exp ( -ik?Cz2 

4|^| J * V 4\A\ 

The amplitudes S± are obtained by numerical integration of equation (83).1 Because equation (83) is real, S% 

(85) 

= S-. 
1 For Q 1 = 0 the differential equation may be solved analytically. The solutions contain parabolic cylinder functions. 
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Substituting equation (85) into equation (81) and applying the method of stationary phase, we find 

Vol. 241 

c{kr x) = ST(2nky\x\)1/2 exp ^ as x ± oo . (86) 

These solutions are trailing spiral wave trains. 
Spiral density waves transport angular momentum by gravitational torques and by advective transport (Lynden- 

Bell and Kalnajs 1972, GT3). In regions far from corotation (\x\ —► oo), advective transport is dominant. To derive 
the appropriate expression for the advective angular momentum flux in local Cartesian coordinates, we make a 
slight modification of the development in § II of GT3 and obtain 

FH = An1Rc\A\L^ ky\S±\2dky. (87) 

To adapt this relation to a circularly symmetric disk, we replace kyR by the azimuthal wavenumber m. A single value 
of m corresponds to an interval dky = \/R. Thus, 

00 
Fu = X ? 

m = 1 

where 

FH(m) = An2c\A\Lm\S±\2IR , m » 1 . (88) 

In the limit m = kyR « Qi?/c, the WKB approximation enables us to solve equation (83) analytically (cf. GT2, 
eqs. [36] and [46]). For 

Q2 — 1 4mc|^| 
(89) 

we obtain 

GM ( m \1/2 

|5±KB| = 2k\J\ ( ) H2ü/k-)Ko(k/2MI) + Kí(kI'AA\)) . (90) 

If inequality (89) is not satisfied, the density waves tunnel through the forbidden region around corotation and are 
amplified (Mark 1976; GT2). As a result, there is interference between density waves which originate on opposite 
sides of corotation and FH(m) oscillates rapidly witn m. The WKB approximation may also be applied to solve 
equation (83) in this limit with the aid of appropriate connection formulae. However, we do not include these 
solutions here. 

The angular momentum flux which corresponds to *S± given by equation (90) is 

F^\m) = {(2Q/k)K0(kI2\A|) + K^Kß^)}2 . (91) 

The torque which excites each density wave train is exerted in the vicinity of a Lindblad resonance at r — a = 
±Kal(2\A\m) (see Fig. 1). It is a simple matter to compute the torque density from F^KB(m) and to recover 
equation (18). 

To determine the total torque, we must include values of m > ÇïRjc. We determine |*S±| by numerical integration 
of equation (83) and express the results in terms of the ratio For a given rotation law, this ratio 
depends only on Q and fi = mc/QR. The results are plotted in Figure 2 for Keplerian disks with Q = 2 and ß = oo. 

The total flux may be written as 

yo3 J? fo° F (m) 
FH = {GMs)

2—-1{ßaiK)K0{Kß\A\)FKl(Kß\A\)}2\ dfi ^ (92) 
k\a\c j0 rH [m) 

The behavior of the integrand is displayed in Figure 3. If we define ;umax by 

!/y3 Sr^max = I dn n2 F Him) 
FT\m) 

(93) 

then /imax = 1.45 for ß = 2 and /imax = 0.69 for ß = oo. 
A satellite which moves on a circular orbit exerts a torque equal to + FH on the parts of the disk which are interior 

and exterior to its orbit. We apply this result to a simple problem in § VI. 
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Fig. 2.—The ratio of the actual angular momentum flux from a resonance to the flux calculated from a WKB approximation (eq. [91]). The 
azimuthal wavenumber m is assumed to be »1. Q denotes Toomre’s stability parameter (eq. [84]). 

V. EXTENSIONS AND REFINEMENTS 

Here we discuss some details of the application of our results to planetary rings. Out of necessity we settle for 
order-of-magnitude calculations. To simplify matters we specialize to circular satellite orbits and Keplerian disks. 

We consider both gaseous and particulate disks. The latter are assumed to be composed of particles of radius b 
and density p which possess random velocities of order c. The normal optical depth t, the collision frequency coc, and 
kinematic viscosity v satisfy 

t » E/6p, 

œc ^ Qt , 

c2t 
V^Q(1+t2)’ 

(94) 

(95) 

(96) 

(Goldreich and Tremaine 1978a). The significance of the disk’s self-gravity for local dynamics is measured by 
Toomre’s parameter Q (eq. [84]). A disk is self-gravitating in the vertical direction if Q = 0(1). 

Fig. 3.—Plot of the integrand of eq. (92). The area under each curve is proportional to the total angular momentum flux excited in the disk by 
a circular satellite. Note that the vertical scales for the two curves are different. 
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a) Angular Momentum Deposition 

We inquire about the fate of the angular momentum (positive or negative) which is deposited at a Lindblad 
resonance by an external torque. For disks composed of gas, the angular momentum is carried away from the 
resonance by a trailing density wave (GT1 ; GT2 ; GT3). The angular momentum carried by the wave is transferred 
to the gas as the wave damps. The viscous damping length lv satisfies 

r \m1/2vrQ2/ 

2/3 

for Q = 0(1), 

for Q » 1 (97) 

(GT1). The viscous damping time is obtained from lv and the group velocity cg (GT1). We find 

tv » Q_1(Qr2/m2v)1/3 . (98) 

The viscous damping time is independent of Q because it is determined by the rate at which the perturbed velocity 
field is sheared by differential rotation. Note that for sufficiently strong perturbations, nonlinear damping will 
reduce lv and tv below the values given here. 

The spatial variation of the angular momentum transferred to the disk material is smooth if and only if the 
damping length is long compared to the distance between adjacent Lindblad resonances, dm » rim2. If linear viscous 
damping dominates, this requires 

m » (Q3vrQ2/c3)1/4 for ß = 0(1), 

m » (vrQ2/c3)2/5 for ß » 1 . (99) 

The behavior of particulate disks is slightly more complicated. A particulate disk can support sound waves if 
i » 1 and/or gravity waves if ß = 0(1). In these cases equation (97) for the damping length is valid, with the 
viscosity given by equation (96). Note that for ß » 1 the radial interval Arx occupied by the first cycle of the wave is 
given by (cf. GT1) 

Ari _ / 37rV V/3 

r \mr2Q2/ 

For a particulate disk with t » 1 the ratio of lv to is simply 

ly/Ar, ~ (37t2/t2)1/3 . 

(100) 

(101) 

The concept of a wave is valid only if t » 1 (i.e., if the damping length is longer than the first wavelength). 

b) Gap Formation 

The radial distribution of the disk material adjusts in response to the addition or subtraction of angular 
momentum. If the spatial scale of angular momentum deposition is small compared with the spacing between 
resonances, there will be a tendency for gaps to form at each resonance (GT1). Since the external torque at a 
Lindblad resonance is proportional to Z (cf. eq. [13]), any reduction in Z is accompanied by a reduction of the 
torque. 

The angular momentum AH needed to open a gap of radius Ar is AH æ ZQ(rAr)2. The torque 

T^m * m2r^2nMJMp)2 (102) 

(cf. eq. [13]) supplies AH in a time A/open æ AH/T^^. The tendency for gap formation is opposed by viscous 
diffusion which fills up a gap of width Ar on a time scale A¿close » (Ar)2/v. Gap formation requires A/close > A/open or 

v Ms 1 

Mn ~ m \ Qr2 

1/2 Ms 1 
or —^ , „ 

Mp m \Qr A 1 + t2 

1/2 
(103) 

for particulate disks. Note that the requirement for gap formation is independent of Z. It is also independent of Ar so 
long as Ar exceeds the viscous damping length. 

c) Disks of Low Optical Depth 

We consider a particulate disk of low optical depth with ß » 1. Particle collisions are assumed to be sufficiently 
inelastic that, far from resonances, the rms random velocity is of order bÇï (Brahic 1977). The character of the 
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motion of a particle close to a Lindblad resonance depends on Aa = — rres, // = MJMP, m, and coc. We assume 
m » 1, yum2 « 1, and coc/Q < ^2/3m4/3. We distinguish three separate classes of particles, according to the value of 
\Aa/a\. Resonant perturbations do not, in general, shuffle particles from one class to another. 

For class 1,/¿1/2 < \Aa/a\ « 1, collisions tend to relax the orbits toward the stable periodic orbit which at A« has e 
~ fi\a/Aa\. The periodic orbits do not intersect. The particles have an rms velocity of order bQ relative to the periodic 
motion. 

For class 2, /¿2/3ra1/3 < \Aa/a\ < /i1/2, there are stable periodic orbits with e ~ n\a/Aa\. However, neighboring 
periodic orbits cross so that collisions prevent particles from moving on these orbits. The behavior of class 2 
particles is as follows ¡ typical orbital eccentricities are e ~ fi\a/Aa\ since the time between collisions, co“1, is much 
longer than the time t2 ~ (Qm) _1|a/Aö|, over which the resonant perturbation builds up e. Particles in class 2 are 
most likely to collide with particles of class 1. If either collision partner ends up in class 2, it will tend to have an e 
which is below average for its \Aa\. Resonant perturbations will subsequently increase e to a value appropriate to its 
\Aa\ in a time of order t2. 

For class 3, \Aa/a\ < /¿2/3m1/3, resonant perturbations increase e from zero up to an average value ~ /¿1/3m "1/3 on 
a time scale t3 ~ Q_1/¿~2/3m_4/3 « coc

-1. Class 3 particles collide most often with those from class 1. A particle 
which finds itself in class 3 after a collision will almost always have a value of e which is below average. The resonant 
perturbation will then restore e to the average value ~ii1/3m~1/3 in a time t3. 

The resonant perturbation must supply energy to a particle to build up its eccentricity after a collision. The energy 
required to produce an eccentricity e is AE ~ ^ sgn (Qp — Q)a2Q2me2 . Assuming that the surface density of particles 
is independent of Aa, we find that the total rate at which the resonant perturbation supplies energy to the disk is 

dE 
— ~ sgn (Qp — Q)lia

4Ql
2ii4'l3m2l3œc. (104) 

The dominant contribution comes from particles with \ Aa/a\ < /¿2/3m1/3 following a collision. Note that the rate of 
energy dissipation in collisions is ~sgn (Q — Qp)m~1 times the rate given in equation (104). From the Jacobi 
integral the torque exerted on the disk is 

r=o; ■ ^ ~ sg„ <n, - . <,<,5) 

This expression for T is valid for mc/Q < ii2l3m413, since then the forced eccentricity of a class 3 orbit will regain its 
full value between collisions. Note that for œc/Q ~ ¿¿2/3ra4/3, T given by equation (105) is equal to the value used 
elsewhere in the paper (cf. eqs. [13] and [102]). This result indicates that the expression for rt m given by equation 
(13) is valid for all coc > Q//2/3m4/3. 

Finally, we relate to the optical depth t. A conservative estimate is obtained by using equation (95) ; in this case 
the torque equation (13) is valid so long as 

? ä; Tent ~ fi2l3m413. (106) 

However, equation (95) does not take into account that the particles which contribute most to the torque have much 
larger random velocities ^ jLL1/3m~ll3Qr than the random velocities ~Qb of the class 1 particles with which they 
collide. Hence, equation (106) represents a conservative upper limit to the value of Tcrit. 

Franklin et al. (1979) have previously obtained results similar to these in a study of the evolution of asteroid 
orbits. 

d) Applications to Planetary Rings 

We have described elsewhere (GT1) the manner in which Mimas clears the Cassini division between Saturn’s A 
and B rings. We have also proposed that the narrow rings of Uranus are confined by torques due to small, as yet 
undiscovered, satellites which orbit within the ring system (Goldreich and Tremaine 1979a). It seems likely that the 
Jovian ring is also shaped by interactions with small satellites such as the newly discovered J XIV. 

Each planetary ring system is found close to its parent planet. Presumably, the ring material lies close to or within 
the Roche limit, and that is why it does not rapidly collect into satellites. The condition that the rings are located 
near the Roche limit tells us that p æ MJr3 or Gp æ Q2. 

The random velocities and particle sizes in planetary disks are not well determined. Dynamical considerations 
(Brahic 1977; Goldreich and Tremaine 1978a) imply that c > ilb and suggest that c æ Çïb may often apply. 
However, the latter relation should be used with caution since the random velocities may be enhanced by satellite 
interactions near resonances (cf. § Vc), by gravitational scattering due to atypically large ring particles (Cuzzi et al. 
1979), and, for small particles, by electrostatic repulsion which inhibits physical collisions at low velocities. 

The relations Gp æ Q2 and c æ £1? may be used to simplify the equations derived earlier in this section. Here we 
merely point out that they imply ß ^ t_1. 
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e) Eccentricity Evolution 

In § lie we showed that torques due to / = m ± 1 corotation resonances damp the satellite’s orbital eccentricity 
while those due to / = m ± 1 Lindblad resonances excite it. When all of the resonances are unsaturated, the net 
result is that the eccentricity damps. However, the corotation resonances are easier to saturate than the Lindblad 
resonances. This saturation arises because of trapping of the particles’ orbital angular velocity into libration about 
the pattern velocity. When the strongest corotation resonances are saturated and the Lindblad resonances are not, 
the orbital eccentricity will grow to some finite value. This process will be discussed further in a subsequent paper. 

VI. APPLICATIONS 

In this section we present an illustrative application of our results to the interaction of Jupiter with the 
protoplanetary nebula. We assume that Jupiter’s mass and orbital radius have their present values : 
= 0.001 M0 = 2 x 1030 g, = 5.2 AU = 7.8 x 1013 cm. Jupiter’s mean motion is Q = 1.7 x 10-8 s-1. The 
appropriate value for the nebular surface density is less certain. If the condensed matter now in the terrestrial planets 
represents a mass fraction ~5 x 10“3 of the original nebula, then the mean surface density inside Jupiter’s orbit 
was ~ 130 g cm-2. If we spread Jupiter’s mass uniformly over an annulus between and fa, we obtain Z 
= 50 g cm-2. These are conservative estimates of the nebular surface density in the neighborhood of Jupiter. Thus, 
we will express our results in units of Z10o = S/100 gem-2, recognizing that S10o ^ 1- Similarly, we write the 
nebular temperature in units of = T/lOO K. The sound speed for molecular hydrogen is c = 7.6 
x lO^^oo cm s-1. 

Toomre’s stability parameter (eq. [84]) for the disk is g ^ fiO^îoo^ioo- Thus the self-gravity of the disk is 
unimportant. In this case the maximum azimuthal wavenumber which contributes to the torque on Jupiter (cf. eq. 
[93]) is ramax = 0.69Qa/c æ \2Tl¿¿2. The distance of the corresponding Lindblad resonance from Jupiter is \a 
- A/a « 2/(3wmax) = 0.06 TToq. 

The scale of the density waves excited at the resonances is relatively large. From equation (100) the radial interval 
Arx occupied by the first cycle is given by krja = 0.46m-1/3 For m = mmax, krja = Q2T\%0. Clearly, the 
temperature of the nebula is sufficiently high that our approximation c « Qa(cf. § l\d) is not very good ; nevertheless 
our formulae are still useful for rough estimates of the torques on Jupiter. 

The molecular viscosity of the nebula is negligible. Therefore, the viscous damping length lv (eq. [97]) depends on 
whether the nebula is turbulent. If it is turbulent, and we write v = ac2/Q, a < 1 for the turbulent viscosity, we find 

lyla » 0.15a-2/3m-1/3r}/o
3
o . (107) 

By contrast, the distance between resonances for m » 1 is Ar/a » 2/3m2. In the region where the torques are 
strongest, m æ 12, Ar < /F. Thus the spatial variation of the angular momentum transferred to the disk is smooth, 
even if there is strong (a ~ 1) turbulent viscosity. 

Finally, we must check that our linear approximation is correct. A rough criterion for the validity of the linear 
approximation is that the radial velocity u should be subsonic at the resonance. From the solutions in GT1 we find 
the maximum value of u/c at the Lindblad resonance to be 

[u ”I M ( QrV/3 

c (ri)J = 1-° # w1/\t) = 0-12wl/3ri“oo6 = 0-277’foo for m = rnmax. (108) 

Thus, the perturbations are linear at the resonance. 
With these preliminaries we may apply equation (30) to estimate the time scale over which Jupiter’s semimajor 

axis evolves. We replace the ring mass Mr by InÆdr and integrate over r up to \a — r\= 2aßmm&x. For mmax » 1, we 
find 

I* 
a dt \MP/ 

(109) 

The ± sign refers to the contribution from the parts of the disk interior and exterior to the satellite, respectively. 
With our scant knowledge of the nebula we cannot be certain whether the interior or exterior torque is larger. Thus, 
we can estimate only the magnitude of the effect, not its sign. For the parameters we have adopted here a"1 da/dt = 
± T-1, where the characteristic time Ta = 6 x 102 yr EfdoTioo. Since most of the torque comes from the parts of the 
disk with \a — r\/a ~ m-

ax, we expect that gradients in the disk properties will always lead to a residual torque which 
is at least m-

ax times the torque from one side of the disk. Thus, Jupiter’s semimajor axis will evolve on a time scale 
~ ^maxU ^ 7 x 10 yr ^looTioo* 

Similarly, we can estimate the time scale for the damping of Jupiter’s eccentricity by the disk from equation (31) : 

1 ¿te 

e dt 
= —2 x 0.591 Qm 4 

max * (110) 
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The factor 2 is a reminder that both the interior and exterior contribute to the eccentricity damping. If we write 
e~1de!dt = —Tg"1, we find = 3 x 102 yr EToo^ioo- Note that re is somewhat less certain than xa since the cutoff 
mmaxwas calculated only for the / = m Lindblad resonances which are the most important for Tfl, not for the / = m 
± 1 Lindblad resonances and / = m corotation resonances which make the dominant contribution to te. 

VII. SUMMARY 

We have calculated the rate at which angular momentum and energy are transferred between a disk and a satellite. 
The main approximations are: (1) we use linear perturbation theory; (2) we assume that the eccentricity of the 
satellite is small, and (3) we assume that the disk is thin, i.e., c « ÍLR. 

The calculations are done by independent methods in §§ II and III. The main results are : the rate of change of the 
satellite’s semimajor axis (eqs. [28] and [65]) and the rate of change of the satellite’s eccentricity (eqs. [29] and [74]). 
These equations yield the contribution from a single ringlet of mass Mr and negligible radial extent; the total 
contribution from a disk is obtained by summing the effects of many ringlets. 

In general, torques from Lindblad resonances increase the satellite’s eccentricity while those from corotation 
resonances damp it ; to lowest order in e the corotation torques are slightly larger in a Kepler disk (eq. [31]), and the 
eccentricity damps in the absence of saturation. 

If the satellite is embedded in a disk, torques from resonances with azimuthal wavenumber m » ramax = fimaxÇlR/c 
are not important (§ IV). For Kepler disks, /^ax = 0.69 for Q = oo and /¿max = 1.45 for Q — 2. The torque on the disk 
cuts off for |a — r| < fl7c/(2|^4|mmax) (eqs. [28], [30], and [65]). 

This research was supported in part by NSF grants PHY-79-19884 and AST-79-24978, and NASA grant NGL- 
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