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ABSTRACT 

From an examination of the timing behavior of 50 pulsars, we have found that timing activity is 
>507o correlated with pulsar period derivative, weakly correlated with period, and uncorrelated 
with radio luminosity, galactic altitude, and other source parameters. We place an upper limit on 
the timing noise for the binary pulsar PSR 1913 + 16 that is consistent with its small period 
derivative. A detailed analysis of 11 pulsars indicates that random walks in the rotational phase (2 
objects), frequency (4-7 objects), and frequency derivative (2 objects) are consistent with the data. 
Timing activity in general (apart from pulse shape changes and the glitches of the Crab and Vela 
pulsars and PSR 1641 — 45) appears to be consistent with a random walk origin. We explicitly 
show that the frequency second derivatives (apart from that of the Crab pulsar) and apparent steps 
in frequency that have been reported for some pulsars are probable manifestations of random 
walk processes. We constrain the rate of random walk steps between many steps per day and one 
every few years. 
Subject heading: pulsars 

I. INTRODUCTION 

The precise rotation rates of pulsars, combined with 
their secular decrease, are the hallmark of the rotating 
searchlight interpretation of the observed pulse 
periodicities. The phase stability of the pulsation 
(defined as the rms phase divided by the total accumu- 
lated phase) is indeed at least as accurate as one part in 
109 over a period of 5 years and, in some cases, is more 
stable by four orders of magnitude. At these levels of 
accuracy, however, some pulsars show deviations from 
a deterministic or predictable spin-down which appear 
to be random, either in the sense that discontinuous 
steps in the rotation frequency (glitches) occur at 
unpredictable times or that they represent the accrued 
phase change of an ongoing random process. 

The present paper is the third of a series on pulsar 
timing. In Paper I (Helfand et al. 1980), data were 
presented which show that phase deviations are a 
common phenomenon. Paper II (Cordes 1980) pre- 
sented a technique, similar to that used by Groth 
(19756) in his study of the Crab pulsar, for comparing 
observed phase deviations with those of random walk 
processes. In the present paper, we describe the 
application of this technique to 11 pulsars and link this 
to a more general study of the rotational stability of 39 
other pulsars. We also consider the possibility that 
systematic frequency second derivatives or steps in 
frequency account for the phase residuals of some 
pulsars (Gullahorn and Rankin 1978, 1979), but we 

find that both of these can be understood as fluctua- 
tions of random walks. A detailed discussion of 
physical models for timing noise will appear in the 
fourth paper of this series (Cordes and Greenstein 
1980). 

II. TIMING ACTIVITY OF 50 PULSARS 

a) Activity Parameter Definition 

Our aim here is to quantify the timing irregularities 
of a large sample of pulsars in a general fashion. We do 
so by defining an activity parameter 

A = log T)/a Jm, 7\,ab] , (1) 

where T) is the rms residual phase from a least- 
squares polynomial fit of order m over an interval of 
length T. It is assumed that the contribution of 
measurement error to the rms residual has been 
subtracted quadratically from the observed rms re- 
sidual to arrive at ö>(m, T). Our treatment considers 
oa% to be in units of time rather than in cycles because 
one aim of our analysis is to determine whether + is 
correlated with rotation period or period derivative ; 
expressing g® in periods would automatically impose a 
period dependence on +. Use of the Crab pulsar for 
normalization is purely arbitrary, of course, but the 
Crab is well studied and therefore provides perspective 
on the activity parameters of other pulsars. 
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We apply the activity parameter for m = 2, and we 
restrict the range of T in order to have as uniform a 
measure of timing activity as possible. If different 
pulsars have different kinds of timing noise, then A will 
be a function of Tand using different data span lengths 
will introduce systematic errors in the set of activity 
parameters. This can be illustrated as follows. If timing 
noise is due to a random walk process then, on average, 

T)} = CmTk, where k varies with type of 
random walk. On the basis of simulations of random 
walks discussed in Paper II, we know that the actual 
rms residual for a given realization of a random walk 
will vary from the average by a factor of £ where, 
typically £ < 3. Therefore, the total error in the activity 
parameter is 

ÔA < (k — kCmh)0 log T Ô log £ , (2) 

where the first term is the systematic error associated 
with using different time spans T. Errors in A would be 
purely random if all pulsars were to have the same kind 
of random process. As we show in § IV, however, the 
type of random walk varies from source to source such 
that \k — kCrah\ < 1 because we observe only random 
walks in the phase (PN, k = £), frequency (EN, k 
= kCmh = I), and frequency derivative (SN, k = f). 
Consequently, we can allow a variation in T as large as 
a factor of £ in order to constrain the systematic error 
to be less than the random error. Most of the time 
spans are within a factor of 2 of the 1628 d span for the 
Crab pulsar. For the Crab pulsar we adopt a value of 
o¡%(2, T = 1628 days) = 12 ms. This value cannot be 
directly measured from a second order fit because the 
residuals to such a fit are dominated by terms propor- 
tional to v and v that describe the deterministic spin 
down. We have therefore estimated <7^(2, T) for the 
Crab by scaling <7^(4, T), the rms residual from a 
fourth order fit (which measures only the timing noise), 
on the basis of simulations. 

b) Correlations with Other Pulsar Parameters 

Table 1 lists parameters for 50 pulsars. Columns (1)- 
(10) respectively are the pulsar, time span, rms residual 
after a second-order fit, rms residual after a third-order 
fit, activity parameter {A), period (P), period derivative 
(P), spin-down age (t = P/2P), distance above the 
galactic plane (z), and the radio luminosity (after 
Taylor and Manchester 1975). Column (11) lists the 
source of the data, some of which came from the 
Arecibo timing program (Gullahorn and Rankin 
1978), the JPL/Goldstone program (Downs 1979), and 
the Princeton optical timing data of the Crab pulsar 
(Groth 1975«) in addition to the FCRAO/NRAO data 
described in Paper I. We have included one pulsar 
(PSR 0943 -I-10) for which the residuals may be due to 
pulse shape changes that are random from one timing 
data point to the next (Gullahorn 1979). Although 
such behavior is qualitatively different from the timing 
activity of other pulsars (Paper I), we have nonetheless 
included the source in our analysis here because the 
pulse shape change interpretation has not been proven. 

Correlation coefficients were calculated between A 
and the logarithms of various quantities, including 
those in Table 1 and also the surface magnetic field, 
Bs oc (PP)1/2, derived by assuming that magnetic di- 
pole radiation (Pacini 1968) or homopolar currents 
(Goldreich and Julian 1969) spin down the star. An 
additional correlation was performed between A and 
an inferred z velocity 

Fz = z/t, (3) 

where t is the chronological age defined by 

t = \td ln (1 + 2t/td) , (4) 

with xD being the e-folding time for torque decay 
(Helfand and Tademaru 1977). A value of td = 5 
x 106yr was adopted because it is evident that the 
spin-down age t becomes unrelated to the chrono- 
logical age for t > td. Finally, A was correlated with 
100 realizations of white noise to illustrate the fact that 
the correlation coefficient of A with some quantity X, 

_ I, (/(,_-.7KA-.-.V) 
ilj(Aj-A)2^k(xk-x)2yi2 

(where barred quantities are the sample means), has an 
estimation error (JP(N) ^ A^_1/2. Even if there is no 
correlation between two quantities, estimated correla- 
tion coefficients from a finite sample of 48 pulsars will 
be as large as crp(48) % 0.15. We have excluded the Vela 
(PSR 0833 — 45) and binary (PSR 1913 + 16) pulsars 
from the correlation analysis (see discussion below on 
these two sources). 

Two sets of correlation coefficients are given in 
Table 2. The first set was calculated from 48 pulsars 
(excluding Vela and the binary) even though 16 of 
them only have upper limits on the activity parameter. 
The second set of correlation coefficients in paren- 
theses do not include these 16 pulsars. + priori, one 
might expect that inclusion or exclusion of those 
pulsars with upper limits will bias the correlation 
coefficients. However, the majority of pulsars appear 
to be active, and therefore the actual activity param- 
eters may not be appreciably less than the upper limits. 

The largest correlation coefficient in Table 2 is that 
for + and chronological age. Generally, quantities that 
are functions of P are those most correlated with +, 
whereas P appears to be at most weakly correlated 
with +. We correlated + with log (P^P1*) while varying 
the exponents a and ß in increments of 0.25. As a 
function of a and ß, the correlation coefficient exhibits 
a broad maximum near a = —1.25 ± 1.0 and ß = 
— 0.75 + 0.50 with a peak value of 0.58 (for 48 
pulsars). The correlation coefficient is more sensitive to 
ß (for nonzero a) than to a (for nonzero ß), suggesting 
that the period derivative P, frequency derivative v = 
— P2P, or age t = P/IP is the quantity that is physi- 
cally related to timing activity. In Figure 1, ^ is plotted 
against P for the 50 pulsars in Table 1. The slope of the 
least-squares line fit to the points in Figure 1 is 0.41 if 
all sources are included, compared to a value of 0.57 if 
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TABLE 1 
Parameters of 50 Pulsars 

Pulsar 

(1) 

T 
(a) 
(2) 

0^(2,T) 
(ms) 
(3) 

Op(3,T) 
(ms) 
(4) 

Activity 
Parameter 

(5) 

P 
(s) 
(6) 

(10 l^ss 1) 
(7) 

log T 
(yrs) 

(8) 

|z| 
(pc) 

(9) 

log L 
(erg sec“-*-) 

(10) 

Reference for 
Timing Data a 

(11) 

0031-07 
0301+19 
0329+54 
0355+54 
0450-18 
0525+21 
0531+21 
0540+23 
0611+22 
0809+74 
0818-13 
0823+26 
0833-45 
0834+06 
0943+10 
0950+08 
1133+16 
1237+25 
1508+55 
1541+09 
1604-00 
1642-03 
1706-16 
1818-04 
1859+03 
1907+10 
1910+20 
1911-04 
1913+16 
1915+13 

1916+14 
1917+00 
1918+19 
1919+21 
1929+10 
1920+21 
1933+16 
1944+17 
1946+35 
1952+29 
2002+31 
2016+28 
2020+28 
2021+51 
2045-16 
2111+46 
2154+40 
2217+47 
2303+30 
2319+60 

2488 
1566 
2859 
1862 
1646 
1162 
1628 
1368 
1586 
2778 
2175 
1834 

-1000 
1355 
1399 
1563 
2946 
2447 
2865 
1669 
2177 
2560 
2559 
2560 
1227 
1107 
1117 
2558 

334 
1603 

366 
1319 

923 
2792 
1334 
1007 
1124 
1639 

984 
1409 
1607 
2790 
2047 
2585 
2487 
2458 
1649 
2865 
1596 
1577 

<1.00 
0.22 
2.31 

<0.77 
<1.88 

0.80 
11.97 
0.52 

107.00 
<1.58 
<0.20 
12.55 

4.2-32.0 
<0.03 

3.63 
0.45 
0.34 
0.07 
5.67 
0.95 
0.33 
2.66 
9.15 

10.70 
3.98 
1.40 
0.16 
0.97 

<0.02 
1.30 

6.30 
<0.12 
<0.14 
<0.13 
0.38 
0.23 
0.14 

<0.14 
<0.05 
<0.14 
1.39 
0.47 
0.51 
4.82 
1.16 

<0.77 
<0.69 
0.82 

<0.18 
<1.50 

0.74 

6.82 
0.07 

62.20 

3.06 

0.18 
0.24 

1.21 
0.61 

1.75 
2.73 
3.61 
1.98 
0.24 

0.67 

0.44 

0.23 

0.16 
0.41 
0.38 
0.54 
0.93 

0.29 

<-1.4 
-1.7 
-1.1 

<-1.3 
<-0.8 
-1.0 
0.0 

-1.3 
1.0 

<-1.2 
<-2.0 
-0.1 

-0.2+1.1 
<-2.5 
-0.4 
-1.4 
-1.9 
-2.5 
-0.7 
-1.1 
-1.8 
-1.0 
-0.4 
-0.3 
-0.3 
-0.7 
-1.6 
-1.4 

<-1.7 
-1.0 

0.7 
<-1.9 
<-1.6 
<-2.3 
-1.4 
-1.4 
-1.7 

<-1.9 
<-2.1 
<-1.8 
-0.9 
-1.8 
-1.5 
-0.7 
-1.3 

<-1.5 
<-1.3 
-1.5 

<-l. 8 
<-0.9 

0.943 
1.388 
0.715 
0.156 
0.549 
3.745 
0.033 
0.246 
0.335 
1.292 
1.238 
0.531 
0.089 
1.274 
1.098 
0.253 
1.188 
1.382 
0.740 
0.748 
0.422 
0.388 
0.653 
0.598 
0.655 
0.284 
2.233 
0.826 
0.059 
0.195 

1.180 
1.272 
0.821 
1.337 
0.227 
1.078 
0.359 
0.441 
0.717 
0.427 
2.111 
0.558 
0.343 
0.529 
1.962 
1.015 
1.525 
0.538 
1.576 
2.256 

0.400 
1.290 
2.050 
4.390 
5.780 

40.060 
422.689 

15.430 
59.730 
0.160 
2.110 
1.680 

125.030 
6.800 
3.530 
0.230 
3.730 
0.956 
5.040 
0.410 
0.310 
1.780 
6.370 
6.320 
7.500 
2.690 
9.500 
4.060 
0.009 
7.200 

211.000 
7,670 
0.800 
1.350 
1.160 
8.200 
6.000 
0.024 
7.050 
0.002 

74.580 
0.150 
1.900 
3.040 

10.970 
0.720 
3.420 
2.760 
2.910 
7.040 

7.6 
7.2 
6.7 
5.8 
6.2 
6.2 
3.1 
5.4 
5.0 
8.1 
6.0 
6.7 
4.0 
6.5 
6.7 
7.2 
6.7 
7.4 
6.4 
7.5 
7.3 
6.5 
6.2 
6.2 
6.1 
6.2 
6.6 
6.5 
8.0 
5.6 

5.0 
6.4 
7.2 
7.2 
6.5 
6.3 
6.0 
8.5 
6.2 
9.5 
5.7 
7.8 
6.5 
6.4 
6.5 
7.4 
6.9 
6.5 
7.0 
6.7 

420 
340 

28 
21 

1400 
230 
200 
160 
150 
110 
350 
420 

24 
210 
430 

71 
160 
370 
730 

1800 
230 

72 
38 

260 
160 

84 
280 
460 
230 

35 

16 
360 
240 

26 
7 

470 
220 

34 
480 

9 
3 

33 
160 
120 
230 

88 
630 
210 

1400 
25 

26.4 
26.1 
28.6 
27.5 
28.5 
27.9 
29.1 
28.2 
28.2 
26.2 
27.4 
26.5 
28.2 
26.5 
26.3 
26.1 
25.7 
26.1 
26.9 
28.4 
25.9 
26.1 
25.5 
28.3 
30.3 
28.8 
26.8 
27.0 
28.7 
28.2 

25.9 
27.6 
28.6 
26.7 
25.8 
28.5 
28.9 
27.1 
29.1 
26.5 
28.3 
27.1 
28.7 
27.3 
26.5 
28.4 
28.2 
27.5 
27.5 
27.6 

A 
P 
A 

JPL 
A 
A 
A 

A 

A 

A 
A 

T FM 
A 

A 
A 
A 

a Note: A denotes Arecibo (Gullahorn and Rankin 1978). 
JPL denotes data from the Jet Propulsion Laboratory (Downs 1979). 
P denotes Princeton (Groth 1975a). 
TFM denotes Taylor, Fowler, and McCulloch (1979). 
All other data are from the FCRAO/NRAO timing program described in Paper I. 
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TABLE 2 
Correlations of Activity Parameter with 

Other Pulsar Parameters 

Parameter Correlation Coefficient 

Period P    -0.27 ( — 0.23) 
Period derivative P   0.51 (0.60) 
Spindown age PßP.    —0.57 ( — 0.63) 
Chronological age t.       —0.61 ( — 0.66) 
Magnetic field Bs cc (PP)1/2  0.37 (0.43) 
Galactic height z  —0.08 ( — 0.14) 
Z velocity Vz   0.33 (0.37) 
Luminosity L  0.18 (0.20) 
White noise    0 ± 0.15 (0 ± 0.18) 

upper limits are excluded from the fit. This suggests 
that the strength of the random process [which is 
proportional to T7)] is proportional to A 

None of the other correlation coefficients appear to 
be significant. Timing activity is not significantly 
correlated with radio luminosity or with galactic 
height. The large correlation of A with log Vz is 
probably an artifact of the correlation of A with log i. 
We illustrate this by predicting the correlation oî A 
with log Vz under the assumption that neither A nor 
log t is correlated with log Vz. It can be shown in this 
case that the predicted correlation, pAVz, is 

Pavz = -Pa,(\ + Oz2Ig,2Y112 > (6) 

where oz and ot are the standard deviations of log z and 
log L respectively. Excluding the Crab pulsar because 
of its anomalously large z velocity, we obtain pAVz 
= 0.38, which is slightly larger than the measured 
value of 0.33. 

c) The Vela and Binary Pulsars 

The Vela pulsar (PSR 0833—45) and the binary 
pulsar PSR 1913 + 16 have respectively the fourth 

Fig. 1.—Plot of activity parameter (eq. [1]) versus period 
derivative. Arrows denote upper limits. 

largest and second smallest values of P (Manchester 
and Taylor 1977). Although data were not available on 
these pulsars as they were for the others, it is possible to 
make estimates of their activity parameters. The 
results conform to the aforementioned relationship of 
P to timing activity. 

The Vela pulsar has experienced four large glitches 
(Av/v æ 2 x 10“6) in the last 10 years separated by 
intervals of 900 to 1500 days of less active behavior. By 
estimating the rms residual from fits (provided by G. 
Downs, private communication) made over sub- 
intervals of 90 to 145 days, we find the activity 
parameter to be between —0.15 and 1.1, thus making 
Vela at least the fifth most active pulsar of those we 
have studied. 

The binary pulsar must be treated in a unique 
fashion because the arrival time measurements are 
fitted by an 18-parameter function that describes the 
orbital as well as the spin-down behavior (see, e.g., 
Taylor et al 1976). However, the spin-down param- 
eters v and v are not very strongly coupled to the orbital 
terms, which are periodic in harmonics of the 8 hour 
orbital period, Pb. Therefore the orbital terms will be 
much less responsive to the random walk than the 
polynomial terms (described by v and v) which better 
approximate the low-order terms of a random walk. 

The presence of a random walk in the timing of PSR 
1913+16 could be detected in two quantities: the rms 
residual and the frequency. We examined the residual 
phase from a fit to a 334 day span of the most recently 
obtained timing data (J. H. Taylor, private com- 
munication) by calculating the autocorrelation func- 
tion of the residuals at lags of integer multiples of 
5 minutes (the typical separation of arrival time 
measurements). The autocorrelation function is con- 
sistént with there being only random residual phases 
and therefore an upper limit on the rms residual 
contributed by a random walk is 

^<<7M7V-1/4^20/xs, (7) 

where oM æ 80 /¿s (Taylor, Fowler, and McCulloch 
1979) is the rms measurement error and N = 338 is the 
number of lagged products. The upper limit on the 
activity parameter is + < — 1.7 which (see Fig. 1) is in 
accord with the small value of P (8.8 x 10“18 s s“1) 
for this pulsar. 

The residuals discussed above were obtained from a 
334 day fit for v, v, and Ph, while all other parameters 
were held fixed to values obtained from a fit to a 
nonoverlapping span of 1282 days of data. The data 
points in the first fit of 334 days are clumped into three 
observing sessions separated by ~ 160 days. Therefore 
it is possible that the vLand vt2/2 terms of the fitting 
function have “absorbed” any random walk that was 
occurring. This does not appear to be the case, 
however, since the derived values of v obtained from 
the 334 day and 1282 day spans are equal to within the 
measurement errors. The difference between the 
values is Av æ 3 x 10 “17 Hz s “1 whereas the expected 
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rms value of v due to a random walk in frequency (FN) 

vimsKT-'i2Sm^. (8) 

Equating Av and vrms and solving for the strength *SFN, 
we find again that an upper limit on the activity 
parameter is between —1.4 and — 1.7, consistent with 
the upper limit obtained from the residuals. 

III. TYPES OF TIMING ACTIVITY 

As we have seen, timing activity is easy to detect as 
departures of the rotational phase from a low-order 
polynomial. However, some care is needed to pin down 
the nature of the timing activity. We will consider here 
several possibilities. First is white noise in the phase 
(other than measurement errors) that may be due to 
random pulse shape changes. Such noise, which is 
stationary, does not account for most timing noise 
which appears to be nonstationary. Second, glitches— 
steps in the rotation frequency large enough to be 
individually measured—have been suggested. Third, it 
has been proposed (Gullahorn and Rankin 1979) that 
systematic frequency second derivatives account for 
the residuals for some pulsars, even though such 
second derivatives imply braking indexes that are 
sometimes negative with magnitudes in excess of 103. 
Finally, there are the three random walk processes— 
phase noise (PN), frequency noise (FN), and slowing- 
down noise (SN)—that are produced respectively by 
microscopic steps in the phase, the frequency, and the 
frequency derivative. In § IV we demonstrate in 
detail—for 11 pulsars with adequate data bases—that 
random walk processes are consistent with the data. 
Presently, we establish that the apparent frequency 
second derivatives and apparent isolated frequency 
steps that have been measured can be understood as 
manifestations of random walk processes. 

a) Apparent Frequency Second Derivatives 
For a sample of 22 pulsars, the residuals after a 

second order polynomial fit are significant in that the 
reduced x2 of the fit is large. Therefore, a third order fit 
can be performed, yielding a coefficient that can be 
inferred to be a frequency second derivative v. The 
question is whether the measured v is to be equated 
with the systematic frequency second derivative of the 
torque process. If so, then the braking index 

n = vv/v2 (9) 
can be calculated as has been done for the Crab pulsar. 
Such computations have been made on 19 pulsars by 
Gullahorn and Rankin (1979), the results yielding 
eight negative values for n and magnitudes between 4.2 
and 105. While these measurements are generally 
inconsistent with the braking indices of simple torque 
processes (which range between 1 and 5), it is always 
possible that some previously unconsidered process 
can account for them. Our aim here, however, is to 
show that random walk processes cannot be rejected as 
the cause for the large residuals after a second order fit. 

If third order fits are made to random walks over 
finite time spans, the derived second derivatives vR (R 
for random) can be either positive or negative; they 
will not necessarily be different for contiguous 
nonoverlapping time spans, and the residuals will 
yield a large reduced x2 if the fourth and higher order 
components of the random walk are larger than 
random measurement errors. For random walks the 
rms residual after a third-order fit ö^(3, T) will be 
smaller than the rms residual after a second-order fit 
<7^(2, T) by a predictable amount, on average. There- 
fore to test the apparent values of v we will use the 
diagnostic quantity 

^32 - M3, T)/^(2, T). (10) 

For the three kinds of random walks and for white 
noise we have 

r3i = [(N — 4)/(7V — 3)]1/2 (white noise) 

= 0.79 ± 0.21 (PN) 

= 0.47 ± 0.30 (FN) 

= 0.36 ±0.32 (SN), (11) 

whereas if only a true frequency second derivative and 
measurement error cause the residuals after a second- 
order fit, then 

0 < r32 < 120 x !1,2<jm/vT3(N - 4)1/2 . (12) 

Here W is the number of data points, assumed to be 
large (TV » 4) for the random walks, and T is the time 
span of the fit. The mean and range (±1 ff) of r32 
specified for the random walks were determined di- 
rectly from simulations. The upper limit on r32 for the 
second frequency derivative case derives from the fact 
that the accuracy of r32 is limited by the estimation 
error of the estimate of (tm. 

In Figure 2 we have plotted r32 versus P for 23 
pulsars. Apart from the Crab pulsar for which r32 
= 0.002, all of the apparent second derivatives are 
consistent with a random walk origin because the 
values of r32 are well within the ranges of r32 for the 
random walks (also shown in Fig. 2). Excluding the 
Cr?b, the mean and rms of r32 are <r32) = 0.45 and 
an2 = 0.24. 

Unfortunately, the quantity r32 is of no use in 
distinguishing between the three random walk pro- 
cesses because of the overlap of the distributions of r32 
for the different random walks. The large variation of 
r32 occurs because the power in a polynomial com- 
ponent can vary over a large range from one realiza- 
tion to the next. It can be shown in the continuous limit 
(i.e., an infinite number of data points) that the 
expansion coefficients Cfc for a random walk in a 
Legendre polynomial series have moments that satisfy 

<C)[
4)/<Q2)2 = 3 + 6>[<a4)/^r<a2)2] , (13) 

where R is the step rate of the random walk, T is the 
time interval, and a is the step amplitude in the 
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P (I0‘15 s/s) 
Fig. 2.—Plot of the ratio r32 (eq. [10]) versus P. The solid bars represent the 1 a range of values of r32 obtained from 100 realizations of phase 

noise (PN), frequency noise (FN), and slowing-down noise (SN). The dashed lines are the total ranges of r32 found from the 100 realizations. 

appropriate units. For jRr—> oo, the expansion coeffi- 
cients behave like Gaussian random variables. Hence 
the ratio r32 is expected to vary by an amount 
commensurate with the variation of the second and 
third order coefficients and according to the fraction of 
the “power” of the random walk these two com- 
ponents possess relative to higher order components. 

In order to distinguish PN from FN or SN, etc., it is 
necessary to have many independent estimates of 
or of some other quantity that parametrizes the 
random walk. Paper II outlined the procedure by 
which random walks can be distinguished, the applica- 
tion of which appears in the next section. 

b) Apparent Frequency Steps (“Glitches”) 
of 11 Pulsars 

i) Fast and Slow Glitches 

The notion of glitches arose from the observed 
discontinuities in rotation frequency from the Crab 
and Vela pulsars. Such discontinuities have very small 
rise times (< few days) and they have all represented 
increases in rotation frequency with amplitudes Av/v 
= 4 x 10-8-10-9 for the Crab glitches of 1969 
September and 1975 March and Av/v = 2 x 10“6 for 
Vela. Greenstein (1979) has discussed how the rise time 
may depend strongly on the temperature of the 
neutron star, therefore allowing the possibility of 
positive frequency steps with very long (days to 
decades) rise times for low-temperature stars. Such 
frequency steps we will call slow glitches. Independent 
of Greenstein’s work, Manchester and Taylor (1974) 
and Gullahorn and Rankin (1978, 1979) have isolated 

frequency steps for 11 pulsars with magnitudes in the 
range 2 x 10~8 < |Av/v| < 10-10. While such steps 
may correspond to slow glitches, it should be noted 
that six of the attributed steps are negative—a result 
not to be expected if glitches arise from a transfer of 
angular momentum from the superfluid interior of a 
neutron star to a more slowly rotating crust. 

In this section we test whether or not the frequency 
steps for the above mentioned 11 pulsars are merely 
fluctuations of a random walk process. Given an 
infinite amount of data, it would be easy to distinguish 
a random walk from a single frequency step because 
the rms phase of a random walk diverges mono- 
tonically as T —> oo whereas the rms phase of a single 
frequency step would first increase and then asymp- 
totically tend to zero. The problem at hand arises 
primarily because we have only a finite number of data 
and therefore the polynomial components of the 
rotational phase for data containing a frequency step 
may be similar to those of a random walk. In the 
following we develop a criterion forjudging whether a 
given frequency step is merely a fluctuation of a 
random walk. 

ii) Random Walks 

First, it is clear that a random walk can produce 
changes in slope of the phase. In Figure 3 we show 
simulated random walks of frequency noise computed 
with T = 1000 d, a rate of one step per day, and steps 
with a uniform, zero-mean amplitude distribution. 
Several abrupt slope changes are evident, but what we 
need to know is the distribution of slope changes for a 
given random walk strength. For our purposes, it is 
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Fig. 3.—Three realizations of a random walk in the frequency 
(FN) computed with zero-mean steps, an average rate of 1 step per 
day, and a time span of 1000 days. 

sufficient to calculate the moments of the quantity Av 
= v(¿ + Ai) — v(0- For frequency noise we have 

= (14) 
j 

where H(t) is the unit step function. It can be shown 
that Av has a standard deviation o-Av = (*SFNA01/2, 
where SFN = R(ôv2} is the random walk strength and 
R is the rate. Also Av has a Gaussian probability 
density function as long as RAt » <<5v4>/<<5v2>2; this 
constraint on RAt is essentially the condition for the 
Central Limit Theorem to hold. 

For the Crab pulsar, whose timing noise we know is 
consistent with frequency noise, we predict slope 
changes as large as 3<7Av æ 6 x 10-9(A¿/1 day)1/2 Hz. 
Inspection of the phase residuals for Crab optical 
timing data (see Fig. 4 of Groth 1975c) shows positive 
and negative slope changes with magnitudes as large as 

1.3x10 8 Hz over A¿ æ 10 days. These are within the 
range expected solely from the random walk. 

iii) Tests of Apparent Frequency Steps 

For an arbitrary pulsar we must test whether a 
particular slope change is larger than that expected for 
a given strength. To do so, we estimate a strength from 
the slope change, 

Sfn,Av = (Av/3)2/Aí, (15) 

and compare it to a strength estimate determined from 
the residuals to an mth order fit, 

SFN^ = 24CmW(T)/r3P2 , (16) 

where a®2 is the residual variance (in excess of 
measurement errors), Cm is a correction factor for 
the fit (see Paper II), and T is the length of the span 
of data which does not include the slope change. If 
r = *§fn,av/*§fn,^ » 1 > then the slope change is too 
large to be considered a fluctuation of the random 
walk. By this criterion, the glitch of the Crab pulsar in 
1975 March (Lohsen 1975; Helfand 1977) with Av = 
1.2 x 10“6 Hz and At = 5 days has r = 7000. The 
1969 September Crab glitch has a similarly large value 
of r, but the alleged glitch of 1972 (Lohsen 1972) has 
r & 1 and therefore appears to be a manifestation of 
the random walk, as suggested by Groth (1975c). 

In Table 3 we estimate r for the 10 frequency steps 
discussed by Gullahorn and Rankin (1978) and for 
PSR 1508 + 55 (Manchester and Taylor 1974). The 
step times for the frequency steps, At, were estimated 
from residual curves (Gullahorn 1979 and unpublished 
work) and are not well defined because of the paucity 
of data points. Generally we have attempted to be 
conservative by adopting the smallest possible esti- 
mates for At. 

The resultant values of the ratio of strengths indicate 
to us that none of the steps can confidently be 
considered a glitch. Even though values of r as large as 
9 are obtained, we feel that the uncertainty in r may be 
as large as an order of magnitude. The random error is 
expected to be large because r will vary according to 
the F distribution with 1 and 1 degrees of freedom if it 

TABLE 3 
Test of Frequency Steps for 11 Pulsars 

Pulsar Av (Hz) At (d) ^fn.av (Hz2 s *) (Hz2 s 1) r — ^fn.av/^fn.^ 

0525 + 21    2.6 x 10-10 50 1.7 x 10“27 2.6 x 10 28 6.5 
0611+21   1.0 xlO“7 100 1.3 x 10-22 (0.25-2.3) x 10“23 5.5-58 
0823 + 26....   —5.5 x 10-9 200 2.0 x lO"25 (0.072-2.8) x 10"25 0.7-27 
1508 + 55   1.4 x 10“9 115 2.2 x 10"26 6.8 x 10 27 3.3 
1859 + 03    -2.0 xlO"9 100 5.1 x 10"26 1.8 x 10"25 0.3 
1900 + 01....  -3.0 xlO“10 100 1.2 x 10“27 <1.3 xlO"28 >9.2 
1907 + 00...   0.5 x 10”9 100 3.2 x 10“27 1.8 x 10"27 1.8 
1916+14   -1.7 xlO"8 50 7.4 x 10"24 5.6 x 10"24 1.3 
1929 + 20...  -1.3 xlO“9 60 2.8 x 10"24 1 x 10 24 2.8 
1933 + 16    2.8 x 10"10 100 1.0 x 10“27 9.7 x 10"28 1.0 
1946 + 35      -2.0 x 10“10 <200 2.5 x 10“28 4.6 x 10“29 >5.4 
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is assumed that the strength estimates are independent. 
For such an i7 distribution, values as large as 9.5 can 
occur at the 20% level. Second, a systematic error, 
which will tend to bias r to larger values, derives from 
the very act of selecting slope changes out of the data. 
We have accounted for the fact that the largest slope 
changes are extraordinary by considering them to be 
3 a values (cf. eq. [15]), but we have notaccounted for 
the fact that the data used to calculate *SFN ^ are likely 
to occur in an interval of less than average power in the 
random walk. Finally, not all of the pulsars are 
expected to behave according to the predictions based 
on frequency noise. Pulsars 0611 +22 and 0823 + 26, 
for example, are apparently consistent with slowing- 
down noise (Table 4), and our implied estimates for 
predicted slope changes therefore may be only dimen- 
sionally correct. 

We conclude that none of the frequency steps can be 
confidently interpreted as anything other than fluc- 
tuations of a random walk process. This conclusion 
includes PSR 1907 + 00 for which a frequency step was 
inferred by Gullahorn et al. (1976). In order for a 
frequency step to be considered a real event (as 
opposed to a superposition of many smaller events), it 
would have to be of much larger amplitude or have a 
much smaller rise time than any of those in Table 3. 
The discontinuity reported by Manchester et al. (1978) 
for PSR 1641 —45 is large enough (Av/v ~ 2 x 10“7) 
to imply a ratio r > 600 even though the rise time is 
known only to be less than 120 days. 

IV. RANDOM WALK ANALYSIS 

a) Technique 
Techniques developed in Paper II enable us to test 

whether a random walk is consistent with the timing 
activity of a pulsar. To do so requires that the phase 
deviations be larger than measurement errors on a time 
span that is much shorter than the time span of the 
entire data set; then both short-time structure and 
long-time structure of the phase deviations can be 
compared with the predictions of a random walk, thus 
affording a strong test of the model. This criterion 
limits us to a study of 10 pulsars in addition to the Crab 
pulsar. 

The method consists of finding the rms residual 
from an mth order polynomial fit, T), calculat- 
ing strength parameters for each of the three kinds of 
random walks, and determining whether the strength 
parameters are constant (within estimation errors) in 
T. As before, we obtain cr^(m, T) by quadratically 
subtracting the measurement error aM from the actual 
rms residual. We estimate oM from the residuals by 
subtracting a linear trend and finding the variance 
from that trend, as discussed in Paper II. The data 
were divided into Nmiri equal size blocks of size rmin. 
These blocks yield Nm[n strength parameters whose 
average is 

s(Tmj = /%
V'x (i?) 

-^min j = 1 

Larger blocks composed of 2, 3,... , 7Vmin subblocks 
were also analyzed. The largest yields a strength 
estimate, S{Tm3L^). If a random walk is inconsistent with 
the data, then the derived strengths will vary strongly 
and (on average) monotonically with T. The strength 
estimates for a consistent random walk should be 
roughly constant in T. In Paper II we argued that a 
single strength estimate may be considered a x2 

random variable with 1 degree of freedom. Therefore 
the ratio S{Tm^IS(Tm{u) should be of order unity for a 
consistent random walk and it will vary according to 
an F distribution with 1 and Nm{n degrees of freedom if 
S(Fmax) and S(Tm{r) are statistically independent. If 
%iin « %iax> then the strength estimate S(rmin) will 
measure structure in the random walk that varies much 
faster and has much less variance (power) than the 
larger scale structure that dominates S{TmSL^). Conse- 
quently we expect S{Tm^ and to be essentially 
independent, and we therefore may apply the F test to 
the quantity F = <S(7’max)/S'(7’min). 

b) Results 

Results of the random walk analysis for 11 pulsars 
are given in Table 4. Columns (l)-(9) are, respectively, 
the pulsar; the time spans 7%^ and \ the number 
of blocks of length rmin, A%n; the quantity F = 
^(%iax)/^(%tin) f°r the three random walks; the 
most probable random walk ; and the adopted strength 
for the most probable random walk. Also in paren- 
theses in columns (5)-(7) are the probabilities of 
obtaining F values less than those observed. If this 
probability is different from 0 or 1 by a small amount £, 
then the random walk can be rejected at the 1006 
percentage level. If the probability is of order 0.5, then 
the random walk is not inconsistent with the data. 

It is clear from Table 4 that the strongest F tests 
obtain for the largest ratios of Fmax/Fmin. This is true 
because if one of the random walks is consistent with 
the data, then the F values for the other two random 
walks will vary at least as fast as (Fmax/Fmin)

2. For 
pulsars 0329 + 54, 0531+21, 0611+22, 0823 + 26, 
1133 + 16, 1508 + 55, 2016 + 28, and 2217 + 47, the 
results are unambiguous as to which random walk is 
consistent with the data. Four of these are consistent 
with frequency noise, two with slowing-down noise, 
and two with phase noise. In all eight cases, the 
strengths of the inconsistent random walks vary 
monotonically with T and over ranges consistent with 
the values of Fmax/Fmin. The remaining three pulsars, 
1915 + 13, 2002 + 31, and 2020 + 28, have timing noise 
weak enough that Fmax/Fmin is too small to afford a 
definitive F test. However, we have tentatively attri- 
buted frequency noise to the timing noise for these 
three pulsars. 

c) Discussion 

The basic conclusions to be made from Table 4 are 
that three kinds of random walks are required to 
account for the timing noise of the 11 pulsars and that 
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TABLE 4 
Random Walk Analysis of 11 Pulsars 

Pulsar 
(1) 

Cnax 
(d) 
(2) 

Tmin 
(d) 
(3) 

Ratio of Strengths 
S(Tmax)/S(Tmin) 

N ■ 1 T mm 
(4) 

PN 
(5) 

FN 
(6) 

SN 
(7) 

Most 
Probable 
Random 
Walk 

(8) 
Strength 

(9) 

0329 + 54. 

0531 +21. 

0611+22. 

0823 + 26. 

1133 + 16. 

1508 + 55. 

1915 + 13. 

2002 + 31. 

2016 + 28. 

2020 + 28. 

2217 + 47. 

2859 

1628 

1586 

1834 

1834 

2946 

2865 

1602 

1606 

2790 

2047 

2865 

450 

100 

275 

400 

900 

425 

425 

500 

500 

850 

1000 

450 

98 
(1-6 x 10~5 

267 
(1-10~6 

550 
(1-2 x 10“4 

153 
(1-3 x 10“4 

27 
(0.99 
0.83 

(0.60 
40.0 
(0.999 
3.9 

(0.86 
>1.41 

(>0.68 
11.8 
(0.98 
2.2 

(0.72 
1.82 

(0.77 

0.41 
0.45 
1.96 
0.80 

19.3 
0.978 
8.2 
0.95 
7.2 
0.93 
0.023 
0.12 
1.18 
0.68 
0.58 
0.50 

>0.21 
>0.32 

0.50 
0.49 
0.60 
0.48 
0.036 
0.14 

0.058 
0.18) 
0.024 
0.12) 
0.62 
0.51) 
0.38 
0.43) 
1.84 
0.73) 
0.00059 
0.02) 
0.031 
0.13) 
0.059 
0.18) 

>0.030 
>0.13) 

0.056 
0.18) 
0.13 
0.25) 
0.00067 
0.02) 

FN 

FN 

SN 

SN 

PN 

FN 

(FN) 

FN 

7.0 ±4.0 x 10-27 Hz2 s"1 

6.6 ±3.0 x 10~23 Hz2 s-1 

1.3 ± 0.9 x 10"37 Hz2 s“3 

2.0 ± 1.3 x lO”40 Hz2 s~3 

1.5 ± 0.9 x 10~14 s-1 

1.0 ±0.6 x 10“26 Hz2 s"1 

1.1 ±0.7 x 10“25 Hz2 s~1 

-27 U + c 1 (FN) 1.0 ±0.7 x 10-27 Hz2 s 

2.0 ± 1.2 x 10-28 Hz2 s”1 

(FN) 2.0 ± 1.6 x 10“27 Hz2s_1 

PN 1.6 ± 0.9 x 10“ 

these encompass a range of strengths. The strengths 
are second-order quantities and as such give no 
information on the rate or mean amplitude of the steps 
of the random walks. Here we will discuss limits that 
can be placed on these quantities. 

i) Limits on the Rate 

First, if we find that the random walk strength is the 
same (within the expected errors) for blocks of length 
Tmm as it is for a block of length rmax, then a limit on 
the rate is 

R>Rm.m=Tm,n-'. (18) 

Also, if the step amplitudes have a nonzero mean (e.g., 
if they are all positive frequency steps such as are 
expected from starquakes which presumably always 
decrease the moment of inertia of the star), then the 
quantities 

*<<^> = <v*> (PN) 

R{àvy = <v*> (FN) (19) 

*<<5v> = <v*> (SN) 

represent average noise induced frequencies and fre- 
quency derivatives that will contribute to the net 
measured values of these quantities. 

For SN, a systematic frequency second derivative is 
predicted that would increase the residuals from a 
second-order fit over and above those for a random 

walk with zero-mean steps (<<5v> = 0). If were 
significant for those pulsars that are consistent with SN 
(PSR 0611+22 and PSR 0823 + 26), then the values of 
r32 obtained for them (see Fig. 2 and discussion in 
§ Ilia) would be smaller than expected for a zero-mean 
random walk. That r32 for these pulsars is consistent 
with a zero-mean random walk implies that the 
residuals to a second-order fit are dominated by the 
second-order terms of the random walk and therefore 

G. (20) TÓP 

This inequality was obtained by calculating (in the 
continuous limit) the residual <x^(2, T) expected for a 
systematic second derivative. For the above two 
pulsars this becomes (evaluating inequality [20] using 
values from Table 4) 

R(Sv) < 3.9 x 10~23 Hz s-2 (PSR 0611+22) 

< 1.9 x 10“24Hzs“2 (PSR 0823 + 26). 

Now we can combine this constraint with the observed 
strength if we assume that all step amplitudes are 
approximately the same. That is, we write (Sv) 
= a(3v2)112 with a ^ 1. Then R(Sv) = ocR1/2Ssn

1/2, 
and inequality (20) becomes an upper limit on the rate 

R < 
120^/7 

T3P 
M2, T)a -1 (21) 
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or R < 10-8 s_1 to IO-7,7 s-1 for both pulsars; thus 
steps must occur no more often than once every 1- 
3 years. This upper limit on R is marginally consistent 
with the lower limit obtained from inequality (18) 
which implies that steps occur as often as once every 1- 
2 years. Therefore, if all steps are of the same sign, then 
they must occur on the order of once a year. 

These constraints on R are interesting in that Downs 
(1979) has identified nine steps in 10 years of JPL 
timing data for PSR 0823 + 26; six of these events are 
steps in v while three are steps in v. The JPL timing data 
have measurement errors that are an order of magni- 
tude smaller than the data analyzed here, thus allowing 
the identification of these events. If all nine events 
produce phase changes of the same sign, then the 
similarity of our constraints on the rate with the 
implied rate of the nine steps attests to the reality of 
those steps. However, the six steps in v and three steps 
in v must have “conspired” to appear as slowing-down 
noise in our analysis. An alternative situation is 
possible. Steps in v may be occurring with both signs 
(such that a « 1) and with a rate much larger than once 
a year. Then the events identified by Downs are 
spurious, as were the apparent frequency steps dis- 
cussed in § III6. To determine the actual situation, the 
JPL timing data—especially the intervals between 
events examined by Downs—will have to be carefully 
analyzed. 

Similarly, a limit on R can be made for those pulsars 
for which FN is consistent with their timing noise. 
Frequency noise generates = R(ôv} > 0 (if all 
steps are spin-ups) whereas the measured values of the 
frequency first derivative vm are always negative. Since 
we have found that the random walk strength is larger 
for larger values of |vj, it appears that « |vm|. 
Again assuming that step amplitudes are approxi- 
mately equal (i.e., <(5v> = a<<5v2>1/2), we have 

R < oc 25'fn , (22) 

which yields upper limits on R between 10“1 and 
10“3 s~1 for the seven pulsars in Table 4 that are most 
probably FN. Therefore we find that the rate of steps is 
constrained between many per day and one every few 
hundred days. 

ii) Can Other Effects Mimic Random Walks! 

The detailed analysis of this section has shown the 
consistency of random walks with the timing noise of 
11 pulsars. In a preceding section we demonstrated— 
via the ratio of rms residuals after third and second 
order fits—that a larger sample of sources is also 
consistent with random walks. Our analysis therefore 
suggests that only two phenomena are needed to 
account for the observed rotational irregularities : 
large-amplitude discontinuous increases of the rota- 
tion frequency (glitches) for the Crab and Vela pulsars 
and PSR 1641—45 and random walks. We note, 
however, that timing activity of some pulsars may not 
reflect rotational irregularities but may signify pulse 
shape changes, as for PSR 0943 +10 (Gullahorn 1979), 

or orbital motion in a binary system. Orbital motion 
with an orbital period larger than the data span length 
Tcould mimic a random walk because the rms residual 
of a polynomial fit would probably increase with data 
span length. There also may be additional types of 
rotational irregularities that have not been theoreti- 
cally or observationally recognized. One theoretical 
possibility (Greenstein 1979) is that of very slow 
glitches with rise times of years which, like long-period 
orbital motion, might mimic a random walk over finite 
spans of data. For well sampled data with timing noise 
larger than measurement errors, random walks can be 
distinguished from orbital motion or a very slow 
glitch. However, one must admit the possibility of 
effects other than random walks for those pulsars that 
are poorly sampled, even though their timing is 
consistent with a random walk interpretation. Gulla- 
horn and Rankin (1979), for example, have argued 
that timing activity in general may result from torque 
variations induced by density irregularities in the 
interstellar medium. They have accepted the reality of 
frequency second derivatives and apparent frequency 
steps (similar to those shown in § lllb to represent 
chance fluctuations produced by an ensemble of 
events) and attributed them respectively to either slow 
or fast variations of the interstellar density. 

V. CONCLUSIONS 
We have shown that timing noise is common among 

pulsars, that its strength is correlated with period 
derivative and weakly correlated with period, and that 
random walks are consistent with the timing noise of 
11 pulsars that were studied in detail. Random walks 
are not inconsistent with the timing behavior of most 
of the other pulsars in our sample. 

Although a detailed discussion of the physics of 
timing noise is deferred to Paper IV of this series, we 
will make some brief comments here. First, the correla- 
tion of timing activity with / suggests that timing 
activity is related to the rotational energy loss, È 
= /QQ, or to the change in stellar oblateness. What- 
ever the case, it is important to note that there is a large 
scatter about any straight line fit to the points in Figure 
1. At a constant P, there appears to be a spread in 
activity parameter of 2, corresponding to a variation of 
two orders of magnitude in the rms residual. Although 
some of this spread is estimation error of the activity 
parameter, some of it probably reflects the distribution 
of masses, magnetic fields, etc., over the set of pulsars 
and therefore, given a physical model for timing 
activity, limits on the mass range, etc., may be possible. 

In the starquake model (e.g., Baym and Pines 1971 ; 
Pines and Shaham 1972), stresses in the neutron star 
crust are induced by the change in equilibrium oblate- 
ness and are relieved by crustal cracking. The ampli- 
tudes of frequency steps are initially proportional to 
the changes in moment of inertia and then evolve 
according to the structurally dependent response of the 
star to such perturbations. According to the two 
component model developed by Baym et al. (1969), a 
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star quake at i = 0 will produce a frequency perturba- 
tion of the form 

Av(0 - AviOXQe-^ + 1 - Q)H(t), (23) 

where H(t) is the unit step function and t is a decay 
time determined by the frictional coupling of the 
superfluid neutrons and the crust. The fraction of the 
frequency jump that is permanent is 1 — ß, where Q is 
constrained between 0 and 1 and is large for the least 
massive stars and small for the most massive stars. 

Groth has pointed out that an ensemble of fre- 
quency perturbations of the form of equation (23) can 
produce either phase noise (for light neutron stars with 
Q = l)or frequency noise (for heavy stars with ß = 0). 
However, there is no way of producing slowing-down 
noise (SN) in this model because SN requires fre- 
quency perturbations which increase linearly with 
time. A frequency perturbation with a large rise time 
(compared to the time span T of the data) would mimic 
SN, but this is not possible with starquakes for which 
the crust rotational frequency changes almost instan- 
taneously. 
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