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ABSTRACT 

Theoretical studies of the radiation from hot, strongly magnetized plasmas, as encountered in 
pulsars, require a knowledge of solutions to the transfer equations for polarized radiation. We 
present here an analytic solution of the radiative transfer equations for one-dimensional 
propagation across a homogeneous slab of finite depth, as well as for a semi-infinite atmosphere. 
Absorption, scattering, and mode-exchange between the two polarizations are included, the role 
of the last being crucial. A physical discussion of the solutions for certain limiting cases and an 
interpretation in terms of probabilistic (quantum escape approach) arguments corroborate these 
solutions, and provide a better intuitive feel for the behavior of the radiated spectra. Whereas our 
analytic solutions are valid for any biréfringent medium (not necessarily magnetic), our numerical 
examples and the qualitative discussion presented refer to the particular problem of the radiation 
from X-ray pulsars. Large-scale qualitative and quantitative changes from the nonmagnetic 
spectra are found, which affect both the continuum and the spectral lines. 
Subject headings: polarization — pulsars — radiative transfer — X-rays : general 

I. INTRODUCTION 

Spectral characteristics of individual sources have long been used in X-ray astronomy to isolate candidates for X- 
ray pulsars in binary systems. The discovery of the binary nature of SMC X-1 (Schreier et al 1972) is a good example 
of this. Indeed, if the galactic X-ray sources are plotted on a “two-color” plot, the pulsars are easily seen to form a 
class by themselves having a harder spectrum than the other galactic sources (Ostriker 1977). Nevertheless, until 
now there was no systematic theoretical work appropriate for analyzing the observed spectra of X-ray pulsars, 
currently thought to be accreting magnetic neutron stars. Early theoretical work on nonmagnetic sources (Felten 
and Rees 1972) has shown that the expected spectra can differ widely from the blackbody law in the X-ray frequency 
range. This has turned out to be the case with most of the observed spectra (Jones 1977 ; Markert et al. 1979), which 
in addition show a considerable variety of detail hitherto unexplored. 

The presence of the pulsar magnetic field changes not only the geometry of accretion, but also the physics of the 
radiation diffusion in the lower accretion funnel. One has to deal with two normal modes of propagation with widely 
different anisotropic and frequency-dependent opacities (Canuto, Lodenquai, and Ruderman 1971 ; Lodenquai et 
al. 1974; Gnedin, Pavlov, and Shibanov 1978). Under such circumstances the spectra from magnetized objects are 
expected to differ widely from those of nonmagnetic media. This expectation is indeed strengthened after the 
exciting recent discovery of cyclotron line features in the hard X-ray spectra of the pulsars Her X-1 and 4U 0115 -h 63 
(Trümper et al. 1978; Yoges et al. 1979 ; Wheaton et al. 1979). 

One of the necessary ingredients for the proper modeling of these objects is an accurate knowledge of the transfer 
of radiation through biréfringent magnetic media. This problem arises in several other areas of astrophysics as well 
as in materials physics. General transfer equations have been given by, for example, Chandrasekhar (1960), Sobolev 
(1963), and Gnedin and Pavlov (1974), while solutions of these have been obtained for specialized problems mostly 
in radio astronomy (e.g., Ginzburg, Sazonov and Syrovatsky 1968; Zheleznyakov 1970; Pacholczyk 1977) and in 
connection with magnetic white dwarfs (Lamb and Sutherland 1974; Masters et al. 1977). 

We have recently undertaken a comprehensive study of the spectral and polarization properties expected in the 
radiation from hot biréfringent media in the limit of strong Faraday depolarization of the two normal modes of 
propagation (Gnedin and Pavlov 1974). Using for our analysis recent results for the Thomson and free-free 
opacities in magnetized plasmas, we find that qualitative and quantitative deviations from the nonmagnetic spectra 
follow because mode-exchange scattering is efficient as compared to bremsstrahlung absorption. Partial results 
previously reported by us have focused on the physics of cyclotron line formation (Nagel 1980) and on the effect of 
vacuum polarization (Ventura, Nagel, and Mészáros 1979, hereafter Paper I). 
1 Institut für Astrophysik. 
2 Institut für Extraterrestrische Physik. 
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TRANSFER OF POLARIZED RADIATION 1067 

Here we discuss the radiative transfer in a one-dimensional biréfringent medium, giving exact and approximate 
solutions for the diffuse reflection and transmission coefficients in the case of coherent photon scattering. These 
results are valid for any homogeneous, biréfringent medium (not necessarily gaseous or magnetized), as long as 
Comptonization can be neglected, and the limit of large Faraday depolarization applies. We then apply our results 
specifically to the transfer problem in an X-ray pulsar, which we idealize to that of a homogeneous radiating slab 
illuminated on one side by a blackbody flux. Our results hold the promise of distinguishing between magnetic and 
nonmagnetic X-ray sources from the study of their X-ray and UV spectra alone. 

II. PHOTON OPACITIES IN A MAGNETIZED PLASMA 

The presence of a strong magnetic field severely affects the photon opacities, which become extremely dependent 
on the photon’s polarization, frequency, and direction of propagation (Lodenquai et al 1974; Gnedin and Sunyaev 
1973). In the UV and X-ray range of frequencies, a plasma of moderate density and temperature (ne < 1023 cm-3, 
T < lOkeV) is only weakly dispersive, with practically transverse normal modes of propagation obeying the 
dispersion relation of a cold electron plasma. For very strong magnetic fields, vacuum polarization begins to modify 
significantly the normal modes at frequencies co > cov= 1.5 keV (nJlO20 cm“ 3)1/2 (B/1012 gauss) “ \ where B is the 
external field, and ne the electron number density (Mészáros and Ventura 1978, 1979; Gnedin, Pavlov, and 
Shibanov 1978). In either case there are two normal modes (called ordinary and extraordinary in the cold plasma 
limit), which are mutually orthogonal to a good approximation. 

The scattering (<71>2) and absorption coefficients (jq^) for the two modes are widely different, as can be seen from 
Figure 1, which depicts angular averages of the cross sections as a function of frequency. Only the extraordinary 
mode (mode 1) exhibits a resonance at the cyclotron frequency, assumed here to be œH = 50keV, if vacuum 
polarization can be neglected. At frequencies much below the cyclotron frequency, œ « coH, the cross sections for 
photons of mode 1 are distinctly suppressed compared with mode 2, k1/k2 ^ ollo2~ (co/co^)2. Details of this 
calculation have been given in previous papers (Ventura 1979; and Paper I, where some effects of vacuum 
polarization were also discussed). 

For either mode the absorption coefficient exceeds the scattering coefficient at low frequencies, i.e., Kt » Oi {i 
= 1,2), while this inequality is reversed at high frequencies. In the case of a pure hydrogen plasma with temperature 
T ~ lOkeV this reversal occurs at cob ~ 0.04 keV («e/1022 cm-3)1/2 (cf. Fig. 1). Following equations (l)-(3) in 
Paper I we can derive an approximate expression for the ratio k/g, valid over the entire range of frequencies and 
angles of propagation : 

*1 ^2 
o2 

3n Ze2 

2 ^ hvT co3 ne—^{\ -e-hw/kT). (1) 

Fig. 1.—Scattering (cr) and absorption (k) coefficients for extraordinary (1) and ordinary (2) photons in a strongly magnetized plasma of 
(electron) density 1022 cm-3 and temperature lOkeV. The polarization exchange coefficients ff12 = g2i are also indicated. With these 
parameters the crossover from the absorption-dominated (k » a) to the scattering-dominated (k « a) regime occurs at the frequency 
hwb « 0.04 keV. The “strong-coupling regime” (see § III) extends from ha>b' « 1 keV to the highest frequencies. The magnetic field strength is B 
= 4.4 x 1012 gauss. Fig. 1(a) gives the cross sections as calculated with the usual cold plasma modes; Fig. 1(6) includes the effect of vacuum 
polarization on the normal modes. 
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1068 MÉSZÁROS, NAGEL, AND VENTURA Vol. 238 

Here Z is the ion atomic number, ^ is a Gaunt factor, and vT = (nkT/lm)112 is the electron thermal velocity. It is 
assumed that the electron velocities along the magnetic field obey a Maxwellian distribution, characterized by a 
temperature T = (kT « hcoH). However, the transverse distribution, i.e. the occupation of the Landau levels, 
need not be given by the same temperature; it may not even be an equilibrium distribution. Under the conditions 
discussed here, the rate of Coulomb excitation or de-excitation in the plasma is negligible compared to the radiative 
de-excitation rate of the Landau levels. Thus the occupation of the Landau levels will not be controlled by collisions 
(and hence by the longitudinal temperature T), but rather by the density of photons having energies near hœH. 

Equation (1) establishes that, apart from details in the (slowly varying) Gaunt factor, the ratio k/o has the same 
frequency dependence in the magnetic and nonmagnetic cases. The probability, 

that a photon in mode i will be thermalized (absorbed) during a single interaction event is thus roughly independent 
of polarization, and for our qualitative estimates we shall assume G = G = £* ^^nce ^ purpose of the present 
computation is mainly to elucidate the physics and ground rules for the transfer of polarized radiation, we prefer to 
keep the cross sections as simple as possible, assuming g = \ for the Gaunt factors and neglecting the effect of 
vacuum polarization. Inclusion of these effects is straightforward and was fully taken into account in Paper I. 

III. HEURISTIC TREATMENT OF THE RADIATIVE TRANSFER PROBLEM 

The absorption probability e is a parameter of paramount importance in any radiative transfer problem. If £ ^ 1, 
a semi-infinite homogeneous atmosphere will radiate like a blackbody, 

I~B, (3a) 

whereas for i « 1 the emergent intensity, in the case of a one-dimensional medium, is 

I~2ell2B (3b) 

(e.g., Sobolev 1963). The term B denotes here the Planck specific intensity. Felten and Rees (1972) have given a very 
appealing intuitive argument for the appearance of the factor £1/2 in formula (3b). Only photons created in a surface 
layer of depth which is called the thermalization length* have a significant chance to escape. The flux of emergent 
photons can be estimated by multiplying this length xth by the production rate of photons per unit depth of the 
medium: 

I - KBxth. (4) 

If £ æ 1, the thermalization length is simply /c-1, so that one recovers I & B. In the case £ « E i.e., k « a, the 
photons are Scattered many times before they escapé. Thé number of steps is of the orderTV ~ .1 ~ <T/K’ an(^ 
mean distance traveled between two scattering events is cr-T Hence the total distance over which a photon can 
diffuse is given by 

Xfo ^ Ni/2a~1 ~ ((7k)~1/2 

and the emergent flux is estimated to be 

I ~ kB(gk)~112 = (k/g)í/2B . 

The extra factor 2 in formula (3b) is due to the photons which are initially produced in the inward direction. Since 
in the case e « 1 the medium is strongly reflecting, photons traveling inward have nearly the same chance of escaping 
as those traveling outward. On the other hand, for é ^ 1* the reflectivity is low, and thus the factor 2 is absent in 
formula (3a). 

How should this argument be modified if two types of photons, with drastically different opacities, can propagate 
in the medium? A medium subject to the opacities g1 and cr2 and to the mode-exchange probabilities a21/(T1 and 

2/^2 is a natural polarizer. At frequencies well below the cyclotron resonance, where <t2 » cu, a magnetized slab of 
finite dimension could be transparent to mode 1 and optically thick to mode 2. Of an unpolarized incident beam, 
mode 1 would readily go through the slab, whereas mode 2 photons would scatter ö'2/ö'12 times (in the average) re- 
emerging on both sides, mostly in mode 1* after mode-exchange scattering. 

The importance of moda exchange on the radiative transfer is thus immediately clear. Depending on the 
effectiveness of mode exchange^ the transport of radiation occurs in a qualitatively different manner in the following 
three cases. 
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No. 3, 1980 1069 TRANSFER OF POLARIZED RADIATION 

a) Weak Coupling: ol2 « Ku Ki 

Photons in this case are likely to be absorbed in the same polarization state in which they were produced. Hence 
the two types of photons diffuse independently, and we can immediately apply the above argument to each mode. 
We easily see that two separate thermalization lengths are obtained (/ = 1, 2), 

Xi = (Kiffi)'112 = e112^1 (e « 1), x. äk:,“1 (e « 1), (5) 

and the radiated intensities are 

/j ^ IxíKíB & 2e1/2B (e « 1), /* ^ æ B (e ^ 1). (6) 

As already discussed in connection with equations (1) and (2), e is a smooth function of the frequency differing 
only slightly from the nonmagnetic case. 

These considerations establish that if the coupling of the two modes is neglected in the scattering-dominated 
range of frequencies, use of the magnetic field opacities ^ and Kt would still lead at infinite optical depth to spectra 
very similar to those of the nonmagnetic case. There would thus be no cyclotron spectral feature, since the increased 
production rate in equation (6) would be exactly offset by the decreased depth of escape. We shall see that these 
results are drastically changed when the coupling of the normal modes is included. 

b) Case of Intermediate Coupling: « o12 
<<: Ki 

In Figure 1, this case is encountered at an intermediate range of frequencies of 0.04-1 keV. At these frequencies, 
type 2 photons are the main source of radiation. They can escape after repeated scattering as 2-photons from within 
a skin of dimension x2 = (k2u2) -1/2, where = Ki -b <t¿ is the total opacity. These photons also escape as 1-photons 
from within a deeper range, x2í = (ocic^y112 ^ oq-1. The radiated intensity is 

/2 ^ Bk2x2 * 61/2B (7) 

for the first case, and for the second case 

A ~ Bk2P 12*21 > 

where P12 = (oq/^X0^/0^) is the probability for a 2 —► 1 conversion of photons having scattered a mean number 
ol2/

k2 ~ é_1 of times. The result is 

Ii = B((j12/(x1)
112 ^ B . (8) 

Mode 2 would thus have a “ spectral break ” at ^ 0.04 keV, and exhibit a spectrum very similar to the Felten and 
Rees spectrum, whereas f would continue along the blackbody line, well beyond cob, up to the frequency 
c% » (ctv%)1/2. 

c) Strong Coupling: Kq, k2 « o12 

Prior to escape a photon generally experiences multiple scatterings and conversions, the total number of which 
cannot exceed e “1 (else it is absorbed). If the two modes have very different opacities, say a2 » oq, absorption would 
occur principally in mode 2, while mode 1 is the principal mode of photon diffusion and escape. This happens 
because mode-2 scattering is relatively localized within a length of dimension 

*12 = (tfi2«2r1/2 ~ arHai/ai)1'2 « «r1, 

corresponding to an average of a2/(j12 scatterings (cf. Fig. 2). The thermalization length of a photon is then easily 
estimated to be 

*th = *1 ~ *2 = (^«l) 1/2 , (9) 

while the radiated intensities are 

/i + /2 ss B{k1 + K2)xth x (etx2/cii)ll2B, Ij/Ií K (al2la2y
12 . (10) 

To verify the second of these equations, one has to consider the main contributions to I2 in some detail. One 
contribution comes from photons created in mode 2 within the outer skin depth x12, while a second and dominant 
one comes from mode-1 photons, which have a finite probability ~öq2x12 for converting into mode 2, as they 
traverse the outer skin depth x12. 

We thus see that highly polarized radiation, dominated by mode-1 photons, is expected from an optically thick 
slab. The lower intensity is I2 » ell2B0), following close to the usual limiting luminosity for unmagnetized media. 
The intensity however, exceeds this limit by a factor ~(a2/oq)1/2 » 1. Higher overall intensities should thus 
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1070 MÉSZÁROS, NAGEL, AND VENTURA Vol. 238 

j 

Fig. 2.—In the “strong-coupling regime” a typical photon history involves several scatterings from a mode (/) with a long mean free path to 
the other mode (j) having a short mean free path. 

characterize the coherent spectra of magnetized matter. Spectral line features resembling emission or absorption 
lines are also predicted whenever the opacity ratio a2/a1 goes through sharp variations with changing frequency (see 
Nagel 1980; Paper I). 

These qualitative results are verified by the exact solutions for the transfer in a biréfringent one-dimensional 
medium depicted in Figure 3, the results for which (cf. § VI) are shown in Figure 4. Since the radiative transfer 
problem in a plane-parallel atmosphere can be approximately reduced to that of the one-dimensional case (Sobolev 
1963), such exact solutions can be of great value. We devote the following sections to this problem. 

IV. THE TRANSFER EQUATION 

We use a form of the transfer equation derived by Gnedin and Pavlov (1974), which reduces the problem to the 
determination of radiation intensities in the two normal modes of the medium. This equation is specialized to a one- 
dimensional medium, which should serve as a model for the radiation transport in a slab of finite thickness z0. Hence 
we ignore the angular distribution of photons and introduce simply the upward and downward flux of photons in 
each mode. Thus, e.g., /2 " is to represent the flux of photons of type 2 in the direction of increasing depth z (see Fig. 
3). Defining the opacities + Ki as the sum of scattering (o^) and absorption coefficients (jq) for photons in 
mode /, we obtain the following transfer equations : 

 -y— = — ai/i+ + + + A ) + 2°'l2(^2+ + ^2 ) + > dz 

^f-=-ai/r +i<711(/1
+ +/1-)+k12(/2+ + /2-)+K15, dz 

 -J— = + l{h+ + A ) + 2<J22(h+ + A ) + k2^ > dz 

f  = — <*2/2 + l(J2l(h+ + h ) + 2i722(A++A ) + K2B . (11) 

Fig. 3.—The one-dimensional transfer model used for calculating all the spectra shown in this paper. The graphs display /+(0), the flux 
escaping through the upper boundary (toward the observer). The flux of photons entering the slab from below (background illumination) is 
designated by/+(z0). 
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No. 3, 1980 TRANSFER OF POLARIZED RADIATION 1071 

Fig. 4.—Radiation from a semi-infinite medium of density ne = 1022 cm 3, in which two types of photons can propagate, with the cross 
sections depicted in Fig. \{a). The top curve represents blackbody emission at the slab temperature of T = 10 keV. 

The coefficients are the coefficients for scattering a photon from mode j into mode /, and have the property 
= au -h o2i- We assume the scattering of photons to be equally probable in the forward and backward directions, 
hence the factors y in equations (11). It is convenient to introduce the densityandfluxF* = 1+ — 
of photons of type /. Adding and subtracting the first two of equations (11) we get 

^ = otii’i , (12a) az 

dF1 

dz 
OCi/i ffn/i GiiJi — 2k1B . (12b) 

Of course, there are two similar equations for J2 and F2. We can use equation (12a) to eliminate the flux Fi, arriving 
at a diffusion equation for ,/, ; with a, ~1 playing the role of the diffusion coefficient (see Nagel 1980): 

G11J1 - (712/2 - 2/CiF. 

Defining the matrices 

a = 
ax 0 

0 a2 
<7 = 

Ö-11 (T12 
cr21 cr22 

K = 
Ki 0 

0 k2 

(13) 

(14) 

and the vectors J = (Ju J2)
T, /* = (22?, 22?)r (LTE photon-density), we can combine equation (13) with its 

corresponding form for J2 into the matrix equation 

d2 

—j J = (a — a)J — kJ* , 
dz 

(15) 

describing the transfer of two polarizations. 
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1072 MÉSZÁROS, NAGEL, AND VENTURA Vol. 238 

If the coefficients a, <r, and k do not depend on the depth z, the transfer equation (15) is easily solved with the 
ansatz 

J = ue~Zz. 

This leads to the eigenvalue problem 

a(a — a)u = A2« , 

from which we can calculate two eigenvectors, « and v, belonging to the two eigenvalues A2 and /r : 

A2 
«lOl - <Ul) + a2(a2 - 0-22) + 

al(al - <Ul) - <X2(<X2- V22Ï 
+ ^12^21lXl<X2 

1/2 

(16) 

(17) 

(18) 

The general solution can be written as a superposition of the form 

The boundary conditions 

J — J* — (cjc Az + c2e
Xz)u — (d^ ^ + d2e

,‘z)v . 

/1,2"(^ = 0) = 0, IU2 + (z = z0) = lmc¡2, 

(19) 

(20) 

can be expressed in terms of J and the derivatives dJ/dz as follows : 

(21) 

Substituting into this the general solution (19) leads to a system of four equations for the unknown coefficients c1>2 

and dia which can be solved by standard methods. 
Though simple in principle (and numerically), it is tedious to solve these equations for the four unknowns and to 

substitute the coefficients back into the general solution to find analytic expressions for the emergent intensities /i+ 

(z 0) and /2 + (z = 0). We give the details of this exact solution in the Appendix. Here, in order to get some insight 
and avoid extended formulae, we discuss next a semi-infinite atmosphere (z0 —► oo), in which case c2 = d2 = 0 and 
we are left with a two-by-two system. 

V. THE CASE OF A SEMI-INFINITE ATMOSPHERE 

We shall not try to attack these two equations for the coefficients c1 and dx directly. Instead, we derive a formal 
solution first, using the concept of the photon escape probability introduced by Sobolev (1963). Thus we define a 
matrix 

P(^) = 
>u00 Pi2(z)X^ 

iOO Pili?)/ 
(22) 

/?12(z), for example, giving the probability that a photon released at depth z in mode 2 will eventually escape from 
the atmosphere as a type-1 photon. The probability of direct escape (without undergoing any scattering) is given by 
the matrix 

_lVexp( —o^z) 0 

0 exp ( — a2z) 
(23) 

the factor j arising from the assumption that the photons are released with equal probabilities in the upward or 
downward direction. Since a photon either escapes directly or after at least one scattering process, it is obvious that 
p(z) must satisfy the following integral equation: 

p(z)=Ae-« +J dz'viz'^oe-^'-^ . (24) 

Differentiating twice we find that this is equivalent to the differential equation 

d2 ( , 
^2 P = P(a - ff)a , (25) 
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and the boundary conditions 
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^ p(z = o) = p(0)a - a , p(z oo) ^ 0 . (26) 

It is easy to see that the differential equation (25) is satisfied by 

P = Poe"Az, (27) 

where A = [(a — o')«]1/2 is the positive root of (a — <r)a, i.e., it has positive eigenvalues. It turns out that these 
eigenvalues are just A and // defined in equation (18) above. Of course this was to be expected since equation (27) is 
just a different description of the same problem. The matrix p0, giving the escape probability at the surface, is 
obtained from the boundary condition (26) : 

i.e., 
-PoA = p0a-a, 

Po = a(a + A) 

(28) 

(29) 

This quantity is simply related to the reflectivity r0 of the atmosphere. Since a photon is created either upward or 
downward, its escape probability is 

and thus 
Po - 2 + iro (30) 

r0 - (a - A)(a + A)-1 . (31) 

Photons are produced thermally at a rate 2/qÆ and 2k2B. Hence the flux of photons escaping from the atmosphere is 
given by 

/^(OA = f” ,/>u(z) 

Uw Jo P22{z))\2k2b)' ( J 

Denoting by F¡ = I¡+(0)/B the ratio of the emergent intensity to the blackbody intensity (per mode), and defining the 
vector K = (/q, k:2), we can write 

where the matrix C is given by 
F = 2Ck , 

C - ¿/zp(z) = dzv0e Az = p0A . 

Using the expression (29) for p0 one finds 

C = a(Aa + A2) ~1 = (A + a — <r)_ 1 

(33) 

(34) 

(35-) 

Equation (33) provides the justification of the procedure used in Paper I for estimating the emissivity of a strongly 
scattering medium in which two types of photons can propagate. The matrix elements C0- give the mean depth from 
which a photon that was born in state j can escape, suitably weighted with its probability to escape as a type-/ 
photon. We will now derive explicit formulae from the formal expression (35). Since there are only two normal 
modes, we have oq — ail = <t21 + k1, and a2 — <r22 = <t12 + k2; thus 

(a — <r)a = 
^(<721 + Ki)ai -ö-12a2 

-0-21^1 (<Ti2 + K2)a2 

Quite generally, the square root of a positive definite two-by-two matrix 

is given by 

(A)1/2 = N~1/2 + (¿)1/2 

a21 

¿*12 \ 
Û22 + (d)ll2J ’ 

(36) 

(37) 

(38) 

with d = ö11ö22 — a12a21, and N = a11 + a22 + 2(d)i/2. 
We apply this formula to matrix (36) and discuss the resulting expression in the three different parameter regimes 

introduced in § III. 
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a) Weak-Coupling Case: k2 » ol2 

In this case scattering from one mode into the other is unimportant. Most photons are absorbed in the same 
polarization state in which they were produced. The emergent intensity can be worked out for each mode separately. 

The matrix (36) is nearly diagonal, 

and so is A : 

and C: 

(a — <r)a 
K^CCi U 

0 K20L2 

0 (K2a2)
1/2 

1 

+ Ki 

0 

0 

1 

(;c2a2)
1/2 + k2 

(39) 

(40) 

(41) 

If the medium is strongly scattering (o-f » jq), one has » k1, and thus 

/(Kiai)_1/2 0 \ 

* V 0 (K2a2)-1/2L 
(42) 

Because the depths cll and c22 are much smaller than /q 1 and k2 S the emergent intensities Fx ^ 2C11k1, 
F2 ^ C22k2 are far below the blackbody limits. 

b) Intermediate-Coupling Case: k1 « a 12 « k2 

Here a photon that was produced in mode 2 is likely to be reabsorbed in state 2. A typical 1-photon, however, will 
terminate its life by scattering into mode 2. We expect that <j12 will play the role of an effective absorption cross 
section for 1-photons: 

(a — <r)a (43) 
012ttl ~Ö'l2a2> 

, ~ ^21^1 *qa2 , 

In terms of its (approximate) eigenvalues, 2 « (/c2a2)
1/2 and 11 & (<ri2ai)1/2, the matrix A can be written in the form 

- jU2 oc2 

'l «1 1 / (<T12al)1/2 -Glliai/Kj)112 

0 
À 

For the matrix C we obtain finally 

1 

(K2a2)
1/2 

1 

(44) 

k1 + (ff2ai)1/2 

1 
k2[i + 

i 
(45) 

[k2 + (K2a2)
1/2][1 + (o<i/(t12)1/2] k2 + (K:2a2) 1/2 

c) Strong-Coupling Case: g 12» Ki, k2 

If this condition is satisfied, every photon is scattered many times from one mode into the other. When it escapes, 
it retains no memory of which mode it was produced in. Hence we expect CX1 æ C12 and C21 æ C22. 

The matrix a — <r is nearly singular ; correspondingly one has to retain a few more terms than in the preceding 
cases in order not to run into trouble when taking the inversion matrix in equation (35). The determinant of A2 is 

det (A2) = ^p2 æ (/q + , (46) 

and the eigenvalues X, p of A are 

~(k'i + K2)a1a2 

oq + a2 

1/2 
and la12(ot1 + a2)] 1/2 (47) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

O
A

pJ
. .
 .

23
8.

10
66

M
 

No. 3, 1980 TRANSFER OF POLARIZED RADIATION 

Using these expressions, and /I « //, we find 
cr12a2 1 A -h 

A: 
0-21^1 

1075 

(48) 

A + 
>12u'2 

H ¡I 

Keeping only terms of order A/ö-12, i.e., of order (/c/ö-12)1/2, one arrives at 

^21 "h ^ ' 
<721al 

A + a — (7 ^ 

' cr21 
^21^1 

O' 12 + ^ + 

<T12a2 
n 

cr12a2 

the determinant of which is 

det (A + a — <t) æ A(2cr12 -F . 

Taking the inverse, and again dropping terms of order /l/(x12, we finally obtain 

li + ol2 fi + a2 

Iï;, 
C « A“11 

2/1 + «! + a2 2/¿ + «! + a2 

+ Oil /t + C<i 

(49) 

(50) 

(51) 

12/i + o«! + a2 2/i + oci + a2 

As expected, the two columns are equal (within the approximations made). The total flux of photons is given simply 
by 

a a 11/2 

F=F1+F2^22-1(k1 + k2)= . ^ ^ ^ . • (52) 
L(Ki + + a2)J 

If one mode has a significantly shorter mean free path, say a.2 » «i, we can approximate 

X •*th (K2a1) 1/2 (a12a2) 
1/2 (53) 

i.e., the thermalization length is controlled by the larger absorption coefficient and the smaller of the two total 
opacities. 

The emergent intensities become 

(ffi2a2)
1/2 /i + oq 

— ~ A-1  
B 2/1 + a! 4- a2 

(Kl + K2) 
1 

(K2ai) 1/2 

h 
B 

/i + oi2 

2/1 + oi! + a2 
(Kj + k2) 

a2 

k2 

feai) 1/2 
1/2 

(54) 

The intensity in either mode cannot be larger than the blackbody limit. Also, I2 must be smaller than B, since we 
assumed strong coupling, a12 » k1j2, and thus k2 « a12 < a1. The ratio of polarizations turns out to be 

^i^Y72. 
A 

VI. RESULTS AND DISCUSSION 

Figures 4-8 depict the numerical evaluation of the exact solution of the transfer problem specified by equations 
(19) and (20). In Figure 4 we see the typical features of the semi-infinite atmosphere which were discussed 
qualitatively in § III. The mode of shorter mean free path has the lower intensity in the scattering-dominated regime 
co > œb, and follows closely the spectral behavior of the nonmagnetic case. The mode of longer mean free path 
follows the blackbody behavior, i.e. I = Bin the frequency range œb < œ < œb. Beyond œb the spectrum is flat at 
low frequencies, and falls off exponentially at high frequencies co > 3kT. At infinite optical depth a cyclotron line 
excess above the nonmagnetic behavior is seen at co ^ œH. The behavior of the spectrum near the line is 

/ * e^BiaJaJ112 « ell2B, ” , , 
|m - (üH\ 
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Fig. 5.—Radiation from a slab of thickness z0 = 105 cm, temperature kT = 10 keV, and density ne = 1022 cm-3. A strong emission line 
appears at the cyclotron frequency hœH = 50 keV. (a) Radiation from the slab itself, (b) Spectrum of the same slab if it is illuminated from below 
with blackbody radiation for temperature 5 keV (not indicated). 

if we neglect thermal broadening. Thermal effects will Doppler-broaden this behavior and can be easily accounted 
for (see Ventura 1979). 

Figure 5(a) shows the effect of finite optical depth on the spectrum. Taking the same temperature T = 10 keV and 
density ne = 1022 cm-3 as before, but a thickness z0 = 105 cm, we see a sharp drop in ^ at low frequencies and a 
break in I2 at around 1 keV. The slab is transparent to mode-1 photons for œ « 1 keV, at which z0 is much smaller 
than the mode’s mean free path oq _ 1 (see Fig. 1). At this same frequency range, the slab is optically thick to mode-2 
photons, since xth & k2~

1 < z0, and it follows the e1/2B behavior. Beyond 1 keV, however, xth > z0, the slab 
becomes translucent, and the radiated intensity drops well below the optically thick case. If we now supply a 
background illumination of a T5 = 5 keV Planck flux (Fig. 5b) we see an increase of the total intensity, due to 
translucence above co = 1 keV, as well as to mode-1 transparency at low frequencies. 

Figure 6 shows the transmitted intensity for the illuminated slab of the example above, and also shows the 
reduced transmission when the slab dimension is increased to z0 = 106 cm. The sharp drop in the transmitted 
intensity at co > 1 keV is the result of having passed from the translucent to the optically thick regime at these 
frequencies. In the case z0 = 10b cm the spectrum has become a composite of two principal contributions, with the 
co < 0.35 keV transparency range and the co > 0.35 keV self-absorbed range quite distinct from each other. Finally, 
Figure 7 gives a completely translucent case with parameters^ = 102Ocm-3, T = lOkeV, andz0 = 105 cm. Every 
photon produced in the slab is likely to escape since z0 < xth in the scattering-dominated regime. Figure 7 gives the 
intensity of a self-radiating slab (without background illumination), which is equal to the product (k1 + k2)Bz0. The 
effect of a background temperature (10 keV) higher than the slab temperature (5 keV) is shown in Figure 8. Like the 
Fraunhofer lines in the spectra of normal stars, the cyclotron line appears here in absorption. 

a) Effect of Vacuum Polarization 

In the strong magnetic fields {B æ 1012 gauss) encountered in pulsars (Trümper et al 1978), the vacuum 
polarization effect of the virtual electron-positron pairs induced by the field can play a dominant role (Mészáros and 
Ventura 1978, 1979). The radiative cross sections (Thomson, bremsstrahlung, etc.) change their frequency and 
direction dependence, owing to the fact that the normal mode structure is dominated by the vacuum (see Fig. \b). 
The most striking manifestation of this is the appearance of a new feature in the cross sections, besides the usual 
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Fïg. 6.—Transmitted intensities from a 5 keV background flux incident on a slab of dimension 105 cm (dashed lines) ox 106 cm (solid lines) 
and ne = 1022 cm-3. Both cases show a strong cyclotron absorption effect. The self-radiation of the slab is not included here. 

cyclotron resonance (Ventura et al 1979), which may lead to another line in the spectrum of an X-ray pulsar. In the 
present paper we have not included vacuum polarization, since we were more interested in the general behavior of 
the transfer for arbitrary cross sections. We therefore used the cold-plasma cross sections, which exhibit a simpler 
behavior (Fig. \a) for the purposes of illustration. There is, however, no difficulty in introducing the vacuum effect 
in the cross sections, and this in fact is what was done in Paper I. 

b) Effect of Incoherence 

Up to now we have assumed that photons scatter in the slab and escape at precisely the same frequency at which 
they were created. This assumption is justified only if the number of scatterings suffered prior to escape is much less 
than the critical number Nc = mc2/3kT. If this number is exceeded, the photon (frequency) distribution 's very 
efficiently altered, leading exponentially to a thermal (Bose-Einstein) distribution within a few times Nc 

(Kompaneets 1957; Weymann 1965; Cooper 1971). For an electron temperature T = 10 keV, Nc ^ 20, and this 
poses a severe limitation on most of the examples treated in the last section. In principle this process of 
Comptonization is inextricably coupled to the spatial diffusion of photons, and can be treated only through the help 
of complicated numerical schemes. Very often, however, one deals with limiting cases where the number of 
scatterings N « Nc or N » Nc. In the first case Comptonization may be viewed as a perturbation on the spatial 
diffusion problem, while in the second case it is the dominant effect and may again be treated separately. The 
qualitative aspects for the Comptonization of a continuum by a hot nonmagnetized gas have been summarized 
convincingly by Felten and Rees (1972), where references to previous literature can be found. The emergent spectra 
can be very roughly understood as consisting of two independent additive components : (a) a coherent spectrum 
arising within the outermost layer of optical depth ies ~ {mc2/3kTY12 and (b) a thermalized equilibrium distribution 
of photons originating from deeper layers. 

To generalize this argument to the transfer of two polarizations one has to look more closely into the photon 
histories. It is clear that Comptonization operates in this case mainly through the mode of shorter mean free path. 
Thus, assuming a2 » (t1, the average photon is produced in mode 2 (in the self-radiating case), and is effectively 
Comptonized before it has a chance to convert to mode 1. This happens because the average number of scatterings 
prior to mode conversion is ö’2/

ö'i2 » Mc2/3kT, under the above assumption. Comptonization therefore tends to 
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FREQUENCY (KEV) 
Fig. 7.—Same as Fig. 5, but for a reduced plasma density ne = 1020 cm 3. We see the characteristic optically thin bremsstrahlung spectrum. 

Fig. 8.—Same as Fig. 5(6), but with the temperature of the slab (5 keV) lower than that of the illuminating background (lOkeV). The 
cyclotron line now appears as a Fraunhofer-type absorption line. 
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reduce the importance of mode conversion. This argument can be followed through to give the ground rules for 
estimating the modification expected on the coherent spectra due to Comptonization. Given the complexity, 
however, of the transfer problem for polarized radiation, we have chosen to limit our present discussion mainly to 
an in-depth account of the coherent problem and devote a separate paper to the effects of incoherence. 

In the numerical examples discussed, incoherence should also play a principal role in determining the size and 
shape of the spectral feature near the cyclotron resonance. Analytic studies of some facets of this important problem 
have been presented recently by Bell, Frisch, and Frisch (1979) and by Bonazzola, Heyvaerts, and Puget (1979). 
These authors, however, do not take birefringence or spatial diffusion into account, and therefore our approach is 
complementary to theirs. A generalized treatment of incoherence in a biréfringent medium accounting for the line as 
well as the continuum is still missing. 

In conclusion, the transfer of radiation in a strongly magnetized medium, with polarization-dependent opacities, 
presents some interesting departures from the case of nonpolarizing media. The interplay between the absorption 
and the polarization-exchange scattering assumes a dominant role, leading to peculiar features, the origin of which 
remains hidden in typical Monte Carlo simulations. Our aim here has been to gain insight into the details of the 
transfer, using a simplified atmosphere model, which has the advantage that it allows exact solutions of the radiative 
transfer equations that lend themselves to comparison with probabilistic and semi-intuitive considerations. One can 
hope that such analytical studies, coupled to detailed numerical schemes, such as presented recently by Yahel (1979, 
1980), will shed light on the physics of the magnetic X-ray sources. 

We are indebted to Prof. J. Trümper for useful discussions. 

APPENDIX 

EXACT SOLUTION OF THE TRANSFER EQUATIONS 

Here we give the explicit solutions to the coupled radiative-transfer equations (15), subject to the boundary 
conditions (20). The eigenvectors u and v can be expressed with the help of their associated eigenvalues k and ¡i as 
follows : 

u = Ul<7l2 
ai(“i - <tu) - X- 

V = 
ai<7i2 

al(al - <7u) - 
(Al) 

The normalization of these vectors is arbitrary. It is convenient to redefine the coefficients in the general solution, 
equation (19), and to write it in the form 

J = J* — [r+{exp [ — k(z0 — z)] + exp( —Az)} + r_(exp [ —A(z0 - z)] — exp( —Az)}]w 

- [5+{exp [-/i(z0 - z)] + exp ( — ¡iz)} + i_{exp [-^o - Z)1 - exp (-/íz)}> (A2) 

The boundary conditions (20) can be cast into the following form : 

r,ij = 0, 
: = 0 

/ + at 1 — J 
dz 

= L 
(A3) 

Inserting the general solution (A2), this leads to a four-by-four system of linear equations : 

where the matrix elements are abbreviations of 

At = {ll + exp ( — Az0)] + [1 - exp (- fo0)~]Xlct.i}ui, 

A; = {[1 - exp ( - Az0)] + [1 + exp ( —AzoXlA/aflWj, 

Bi = {[1 + exp (~/tz0)] + [1 - exp (-¿(Zolü/iMK-, 

Bi = {[1 — exp ( —/tz0)] + [1 + exp ( —/tZo)]/Va¡}í>¡ • (A5) 
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Adding and subtracting the equations for corresponding polarizations in (A4), and a little reordering, yield 

(A, B, 0 

a2 b2 o 

0 0 

0 0 A 2 

Defining D = AlB2 — A2B1 and D' = A^'B^ — A^Bi, the coefficients r.. v. 

(A6) 

are easily expressed in the form 

Dr+ = B2{J* - /inCl) - 5,(7/ - /inC2), 

Ds+ = A,{J2* - /inC2) - A^J,* - /¡nci), 

= B^'I^ - B2’lmci, 

D's. = A2'lmCl~ A^I^. (A7) 

From the boundary condition for z = 0 (no radiation from above) it follows that the emergent intensities can be 
found from 

/+(0) = /(0) = a-1 

dz 
(A8) 

Using the second form we get 

/+(0) = {r+[l - exp ( —Az0)] — r_[l + exp ( —Az0)]}Aa-1i# 

+ {i+[l - exp(-/iz0)] - 5-[l + expi-ziZo)]}^“1!). (A9) 

The radiation originating in the slab itself is found by letting /inc = 0. The self-radiation part of equation (A7) is 

r+* = (B2J^ - B1J2*)ID , s+* = (A.JS - A2J^)/D , (A10) 

and equation (A9) reduces to 

/+(0) = r + *[l — exp ( —Azo)]^'1!# + ^+*[1 — exp( —/¿z0)]/xa~^ . (All) 
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