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ABSTRACT 
Random walk irregularities in the rotations of pulsars are analyzed by use of the variance of 

rotational phase, through which consistency with the data can be demonstrated and a strength 
parameter determined. Application to Princeton optical timing data of the Crab pulsar yields 
a strength R<8v2> = 0.66 ± 0.31 x 10_22Hz2s_;L, in agreement with Groth. Higher-order 
moments of the phase, which would characterize the distribution of step amplitudes, can be 
determined only if a small number of steps occur in the analyzed time interval. The required 
intervals (< 1 day) for the Crab pulsar unfortunately have phases dominated by random measure- 
ment errors. Step amplitudes with a nonzero mean will bias the observed braking index, n = 
vvjv2, from the index that describes the torque mechanism that spins down the star. For the 
Crab pulsar, a 20% bias requires rates larger than 1 s“1 if the random walk is damped on a time 
scale larger than 100 years. 
Subject heading: pulsars 

I. PULSAR TIMING NOISE 

Pulsars spin down on time scales of 103 to 109 years 
according to what is apparently a deterministic torque 
law. Although non-dipolar magnetic field components 
and field decay may contribute, measurements on the 
Crab pulsar (PSR0531+21) indicate that dipole 
radiation would produce spin-down that is similar to 
that observed (Boynton et al. 1972). However, a 
random component of the rotation—which is in the 
form of a random walk in the rotation frequency for 
the Crab pulsar (Groth 1975c)—represents a departure 
from the deterministic spin-down. Such timing noise 
is common to many pulsars (Manchester and Taylor 
1974; Helfand et at. 1980 [Paper I]; Gullahorn and 
Rankin 1980), but it is not known whether it is due to 
Crab style random walks or to less frequent, resolvable 
events in which momentum is transferred between 
different components of the star or between the star 
and its environment. 

This paper presents an analysis of random walks and 
develops the means for testing whether a random walk 
is consistent with the observed timing noise. The 
variance of rotational phase is used to show consistency 
with the data and to determine a strength parameter 
for the random walk. The analysis parallels that of 
Groth (1975Z?) except that the integrated variance is 
dealt with, rather than a decomposition of the variance 
into polynomial components. The analysis is applied 
to timing data on 10 pulsars in the next paper of this 
series (Cordes and Helfand 1980, Paper III). 

The next two sections consider analytical models 
for the deterministic and the random components of 
the rotation; the extent to which these components 
can be separated is discussed. Section IV presents the 
analysis of the variance and the accompanying 
measurement errors, which is then applied to the 

Princeton optical timing data of the Crab pulsar, the 
results for which agree with those of Groth (1975c). 
Finally, § V discusses the case where the step ampli- 
tudes of the random walk have a distribution with a 
nonzero mean. Higher-order moments of the phase 
can in principle yield information about the distri- 
bution of step amplitudes, but accurate estimates of 
the moments are not yet available. The effect of non- 
zero mean amplitudes on the braking index is also 
considered for the Crab pulsar. 

II. MODELS FOR ROTATIONAL PHASE 

a) Arrival Time Measurements 

The arrival times of pulses at an observatory can 
be expressed in terms of the rotational phase 

m = f dt.v'it,), (i) 
Jo 

where v'(t) is the rotation frequency in the nonintertial 
frame of the observatory. As discussed in Paper I, 
topocentric (Groth 1975a) arrival times are measured 
by averaging many single pulses together to form an 
average pulse profile; comparison with a reference 
profile then yields the arrival time. Barycentric arrival 
times are obtained through knowledge of propagation 
delays and of the observatory’s motion in the solar 
system. Errors in barycentric arrival times derive from 
errors in the ephemeris and in the position (and proper 
motion) of the pulsar. In addition to these systematic 
errors, there are random errors due to finite signal-to- 
noise ratios and to intrinsic flux variations. We expect 
that a number of processes intrinsic to the pulsar 
contribute to the rotational phase, and therefore we 
model the barycentric phase as 

0(0 = <As(0 + 0ä(O + 0a(O + 0m(O • (2) 
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Here describes the smooth spin-down of the star 
on very long time scales (103-109) years; (f>R is a 
random component that may operate on a variety of 
time scales; j>A is an astrometric component that in- 
cludes position errors, proper motion errors, and 
ephemeris errors; is measurement error. 

Proper motion was discussed in Paper I, and for the 
remainder of this paper we will ignore it as a source 
of error because systematic errors appear to be 
dominated (over the 10 years’ duration over which 
pulsars have been observed) by random measurement 
errors. Measurement errors are independent from one 
observation to the next and therefore, since they are 
also zero mean, we can write their second moment as 

^ GM2ifk)^kl • 0) 

Here—and elsewhere in the paper—angular brackets 
denote average over an ensemble, and 8kl is the 
Kronecker delta. 

b) Neutron Star Rotation 

The <!>s and (/>R terms in equation (2) are written 
separately because it is presumed that they arise, 
respectively, from a deterministic spin-down torque 
that is applied to the star via its magnetosphere and 
from the non-rigid-body nature of the neutron star 
and its magnetosphere. 

The rotation of a neutron star crust has been 
analyzed (Baym et al. 1969; Lamb, Pines, and 
Shah^m 1978; Greenstein 1979) in terms of a differen- 
tial equation for the crust angular frequency. The 
large-amplitude glitches—and the subsequent time 
behavior in particular—observed from the Crab and 
Vela pulsars (see Manchester and Taylor 1977, and 
references therein) and PSR 1641—45 (Manchester 
et al. 1978) have supported the view that neutron-star 
interiors contain neutron superfluid. However, it is 
not clear what quantities are involved in determining 
the amplitudes of the glitches. Nor is it known what 
underlies the more common timing-noise phenomenon 
evident in the Crab pulsar and the majority of other 
pulsars. Mathematically, any of a number of quantities 
may lead to the observed randomness in the rotational 
phase. The external torque itself may possess a random 
component, as for the case of X-ray binaries (Lamb, 
Pines, and Shaham 1978). Alternatively, the crust 
moment of inertia may vary due to starquakes (Pines 
and Shaham 1972); or the temperature of the star may 
vary, thus effecting changes in the frictional coupling 
of the crust with interior components (Greenstein 
1979). Given the latitude of these possibilities, the 
approach that lends itself best to comparison with 
observation is to write fluctuations in the rotation 
frequency as 

M7 = 2 - ti), (4) 

where the amplitude % and the occurrence time tj of 
the yth event vary according to the appropriate proba- 
bility distributions. The function hjif) is the response 
of a star to an impulsive perturbation. In the next 
section we will model Ay(0 in an idealized way. 
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Meanwhile it is instructive to consider the rotation 
of a rigid object under the action of a random torque. 

i) Rigid Neutron Stars 

The rotation of a rigid neutron star is described by 
the equation 

IÙ = N(t) , (5) 

where / is the moment of inertia, N is the torque, and 
Q, = Ittv. The statistical properties of Q. are determin- 
able from those of N(t), an analysis that is equivalent 
to studies of one-dimensional Brownian motion with 
the Langevin equation (see Chandrasekhar 1943, 
eq. [132]). Suppose N(t) can be written as the sum of 
a stochastic term 8N and a deterministic term N0 : 

N(t) = N0(t) + W(t), (6) 

where Vo is in general a function of Q: 

N0(t) = aW; (7) 

n is the so-called braking index. Then O is 

Q(¿) = Qs(t) + ^b(0 , (8) 

where 

^(0 = ^o[i - (« -1)^ - (9) 

is the spin-down function, with Q0 and 00 being the 
appropriate values at the reference time t0. The 
characteristic time scale of is Ts ~ |^0/^o|5 and 
for radio pulsars it ranges from 103-3 years (Crab 
pulsar) to 109 8 years (PSR 1952+29). If QR « Qs, as 
appears to be the case for all pulsars that have been 
carefully observed, then to first order in ÜR/ÜS, 

Q*(í) =/-1 jVsw(í') 

+ n/-1 f‘ dt' J‘ dt"BN{t") . (10) 

For times t — t0 Ts, the second term of equation 
(10) is negligible compared to the first. In general, 
however, noise in the torque of a particular kind will 
produce noise £lR that is a mixture of two kinds of 
noise. If the torque is a sequence of delta functions 
with random amplitudes, for example, then the first 
term of equation (10) will be a random walk in Q.R and 
the second term will represent a random walk in ÙR. 
We have assumed that torque variations are respon- 
sible for timing noise. Variations in the moment of 
inertia as an alternative source of noise will essentially 
reproduce the results for torque variations. 

ii) Nonrigid Stars 

Nonrigid stars differ from rigid ones in that their 
response to an impulsive torque will not be instan- 
taneous. The two-component model of Baym et al. 
(1969) has a characteristic response time r. Lamb, 
Pines, and Shaham (1978) have thoroughly analyzed 
the general case of a three-component star, although 
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their treatment has assumed that N0 is not a function 
of O. As far as the purposes of this paper are con- 
cerned, the question is whether the time interval T 
over which observations are made is large or small 
compared to the response time. For T » r, the star 
may as well be considered rigid; however, if T « r, 
then the crust is effectively decoupled from the super- 
fluid. The analysis of rotational phase described herein 
cannot directly determine r if individual events are 
undetectable. However, the two cases r »r and 
T « r will be manifested as two different kinds of 
timing noise, as defined in § III. 

c) On the Separability of (/>R and <f>s 

Implicit in our model of the rotational phase (eq. [2]) 
is that the deterministic spin-down is mathematically 
separable from random variations that occur on much 
shorter time scales. In practice we can adequately 
describe the spin-down function by expanding it in a 
Taylor series : 

uo = uto) + ^2 (t - tom !, (ii) 

and evaluating the rotation frequency, frequency 
derivative, etc., at the epoch t0: 

vs(to) = d<f>s(t0)fdt, (12) 

As(^o) = d2Ut0)ldt2 . (13) 

Except for the Crab pulsar, only vs and vs appear to 
contribute significantly to the phase over the available 
time spans of the data, and the corresponding terms 
in the phase dominate the random component. Of 
course, one can measure nonzero values of p for a 
number of pulsars (Gullahorn and Rankin 1978, 
1980), but these values are much larger than those 
predicted by spin-down mechanisms that are thought 
acceptable. At present, we will attribute such values of 
p to changes in curvature in ^ ^ produced 
solely by the random component, <f>R. For the Crab 
pulsar, ps has also been measured (e.g., Groth 1975c), 
but ps has not been because random variations are 
comparable to the ps(t — t0)

4:/24 term of the phase. 
Our assumption that a deterministic spin-down 

phase </>s(t) is separable from the random phase 
suggests that we should treat <j>R and its derivatives as 
zero-mean random processes: 

<d<f>R
l{t)ldtly = 0 , / = 0, 1, 2,... . (14) 

Physically there is no reason why <j>R should necessarily 
have zero-mean derivatives. As far as measurements 
are concerned, however, there is no direct way to 
separate non-zero-mean derivatives of <j>R from ps, ps, 
etc., unless one has a model that relates rms values of 
<I>r> <1>r, to their mean values. The observable 
consequences of <f>R being a non-zero-mean random 
process will be discussed in §V. Meanwhile we will 
attribute zero-mean derivatives to (/>R. It should be 
noted that although the ensemble-average derivatives 
of <£b are assumed to be zero, the derivatives for any 
particular realization will be distributed over a finite 
range centered on zero. 

HI. MODELS FOR THE RANDOM ROTATIONAL 
COMPONENT 

a) Superposition of Events 

The random component of the rotational phase 
(which would be the integral of eq. [4]) can be repre- 
sented as a superposition of contributions 

^«(0 = 2 "" ^ 5 

3 
where the y*th term occurs at a time tj with amplitude 

and with a response function gft). In general we 
need not make any assumption about the rate of 
occurrence of events. If we assume that events occur 
independently, however, then the tj are Poisson 
distributed and (f>R takes on the mathematical form of 
shot noise. We are most interested in the moments of 
<f)R, and the formalism of shot noise (Rice 1954) easily 
provides them. As shown in the Appendix, the first 
and second moments of <£B are 

<Ut)> = <«> J dt'R{t’)g(t - t'), (16) 

+ <a2> Ídt'Rit^giti - t’)g(t2 -t')9 

(17) 

where we have further assumed that the moments of a 
are independent of time and that all events have the 
same time behavior. The rate at which events occur, 
R(t), has not been assumed to be time independent. 
If (f>R is a zero-mean random process, then <a> = 0. As 
shown in later sections, our primary diagnostic for 
studying the random process will be the second 
moment. 

b) Random Walk Processes 

Boynton et al (1972) and Groth (19756) hypothesized 
that rotational irregularities from the Crab pulsar 
might be produced by a random walk in either the 
phase, the frequency, or the frequency derivative. In 
general, a random walk r{t) is the integral of a 
sequence, q(t)9 of pulses, A(¿): 

r(t)= Ç dtW), O») 
Jo 

q(t) = 2 aA(t - tj) = A(0 * 2 aJ8(t - tj) > (19) 

where A(i) is a pulselike function and q(t) can be 
represented as the convolution (*) of A(¿) with a 
sequence of delta functions. If the rate at which 
impulses occur is independent of time and if the 
amplitudes have stationary statistics, then q(t) is a 
stationary random process. However, the random walk 
r(t) is nonstationary regardless of whether or not 
q(t) is stationary. 

We apply the formal definitions of a random walk 
in equation (18) to the model for phase irregularities 
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in equation (15) by defining random walks in the kth. 
derivative of the phase (following Lamb, Pines, and 
Shaham 1978) as 

dk</)R(t)/dtk = r(t) . (20) 

The duration of A(i) is an important diagnostic for 
the structure of neutron stars if it is large (or small) 
enough to be measurable. We will assume that A(¿) 
is not resolved by observations, in which case A(i) is 
effectively a delta function and r(t) is a sequence of 
unit step functions, H(t). Under this assumption, the 
random walks for ÆT = 0, 1, 2 correspond to phase 
noise (PN), frequency noise (FN), and slowing-down 
noise (SN) as defined by Groth (19756). We have 

UO = 2 HMt - t¡) (PN, = 0), (21) 

hit) = 2 hVjH(t - tj) (FN, k=l), (22) 

hit) = 2 ^H(t - tj) (SN, k = 2), (23) 

from which the quantity g(t) in equation (15) can be 
identified and the moments determined from equations 
(16) and (17). Table 1 gives <<£Ä(0> and 

^b(^i)^ä(^2)) ~ 

assuming that random walks commence at t = 0. 
Section IV will make frequent use of the second 
moments of the random walks in the analysis of pulse 
arrival times. 

c) The Time Origin of Random Walks 

The moments expressed in Table 1 assume that 
random walks begin at i = 0. It is clear that the begin- 
ning of a set of measurements of pulse arrival times 
has nothing to do with the onset of the random walk. 
The rms phase for PN, FN, and SN increases, respec- 
tively, as i1/2, i3/2, and f5/2, and therefore the observed 
statistics will depend on the time origin of measure- 
ments. It can be shown that if measurements begin 
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at í = ¿o, then the random walk can be written as a 
random walk commencing at t = ¿0, <j>R\ plus terms 
describing the random walk prior to/0- 

^(0 = ^o)+^-^o) (PN), 
= + ^b(A))(/ — ¿o) + “ ¿o) (FN) , 
= ^áíq) + ^b(^o)(^ “ ¿o) + ~ t0y 

+ <f>R{t-t0) (SN). (24) 

The net effect of the random walk prior to t0 is to 
adulterate the random walk beginning at t0 by a net 
phase for PN, a net phase and frequency for FN, and 
a net phase, frequency, and frequency derivative for 
SN. That is, if random walks are assumed to com- 
mence at i = t0, then the estimates for vg and ¿g at 
t — to will generally have absorbed contributions 
from the random walks. The absorbed contributions 
will have zero mean values over an ensemble (if the 
random walk steps have zero mean amplitudes), but 
for any given set of observations they will be distrib- 
uted with standard deviations 

~ <[Uto)]2> (FN and SN) , (25) 

([^rQo)]2}112 (SN). (26) 

If SN is operative in any pulsar, then the measured 
braking index, n = vi)/]>2, will be in error according to 
the error of the frequency derivative. The most 
important consequence is that the ensemble-average 
second moment, <</>*2(0X at the start time of observa- 
tions is larger for a random walk starting at t = 0 < t0 
than for a walk starting at ¿ = t0. Fortunately, and 
this is the main point of this discussion, this effect is 
obviated by fitting a polynomial to the observed phase 
because the coefficients of the polynomial absorb the 
undesired terms. 

IV. ESTIMATION OF RANDOM WALK PARAMETERS 

a) Analysis of the Second Moment 

In this section we outline a procedure for estimating 
the random walk strength when only the composite 
quantity 

<£ = + 0B + (27) 

PULSAR TIMING 

TABLE 1 
Moments for Three Random Walk Processes 

Quantity PN FN SN 

<W0>a 

Ob(»> 

<Vb(0> 

<ÿR{ty> 

Rmyt 
Rm*yt< 

r<h> 

i [*<«£>] 

ii?<8v>/2 

iR^yt<^t> - i<) 

Í dt'R(t')<Mt’)> 
Jo 

R<$v> 

jt [*<S»>] 

iR<Si>t3 

- 5t<t> + /<2) 

f dt'R(t')(t - tYMn> 
Jo 

J dt'R(.0<W)> 

ROv} 

Note.—i<(i>) is the smaller (larger) of h and t2. 
a These quantities were derived assuming R and the step amplitude moments are independent of time. 
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is measured. The difficulty arises because is a low- 
order polynomial and </>B also has components with 
similar polynomial behavior. Groth (1975c) tackled 
the problem by expanding </> into a series of orthogonal 
polynomials and comparing the polynomial coefficients 
with those predicted for the random walk models. The 
procedure followed here is to estimate ^ by a poly- 
nomial of order m, <£P, and then compare the variance 
of the residuals that is in excess of measurement-error 
variance with the variance expected for a random walk. 

Let the polynomial fit to ^ be 

+ ÿpR + ^PM ? (28) 

where <£PÄ and ^PM are the low-order polynomial 
components of (f> B and (f>M, respectively. The residuals 
& = (/> — (j)p have an ensemble-average second 
moment 

O®2 = <(</>- <l>p)2> 

= - tpR)2} + - <I>Pm)2> , (29) 

assuming measurement errors are independent of <¡)R 
and that <j)R is zero mean. 

In practice, ensemble-average quantities are un- 
available, and one must deal with integral estimates 
of the moments such as the following: 

or\T) = T-1 \T dt<l>R\t), (30) 
Jo 

Table 2 lists the average correction factors obtained 
from 100 realizations of each kind of random walk. 
The factors can be worked out analytically (in the 
limit of a large number of equally spaced samples), 
but it is tedious except for a zeroth order polynomial, 
results for which agree within 5% of the values listed 
in Table 2. Simulations were performed for a range of 
time spans T and for both uniform and irregular 
sampling. The correction factors are (1) independent 
of the time span T as long as RT » 1 and the number 
of samples iV satisfies N » m, (2) independent of the 
sampling as long as the number of missing samples is 
less than ~ 0.57V and the largest gap is smaller than 
~0.2T, and (3) variable over a factor of 8 range from 
one realization to the next. Simulations also show that 
for a given random-walk strength, the variance <jr

2 

can vary by a factor of 1000. The independence of 
C(m, T) from T is not surprising because it reflects 
the fact that a random walk has no characteristic time 
scale (as long as individual steps are unresolved). In 
other words, apart from a scale factor, the spectrum 
of a random walk in polynomial space has the same 
form independent of time span T. 

Note that the correction factors for SN vary the most 
with order of polynomial and those for PN vary the 
least. This follows because SN has a narrower spec- 
trum in polynomial space than does PN. Therefore, 
for example, a fifth-order polynomial absorbs a much 
larger fraction of the variance of SN than of the PN 
or FN variance. 

as an estimate for the second moment oí <t>R(t). The 
measurable quantity of interest is 

T-1 f dt(<l>R - ¿Pß)2 = °®2(T) - oM
2 , (31) 

Jo 

which is an underestimate of the desired quantity, 
^(O* We quantify the underestimation of vR

2 by 
considering the ratio of pre-fit rms phase to post-fit 
rms phase: 

CB{m, T) = - ¿p*)2]1'2 , (32) 

where m is the order of the polynomial <£P. The quantity 
Cß(m, T) is a “correction” factor for the rms value 
of (j>R after a polynomial fit. It itself is a random 
variable because it fluctuates from realization to 
realization of 0Ä. 

TABLE 2 
Correction Factors for Three Random-Walk Processes 

Correction Factors 
Order of      

Polynomial PN FN SN 

0   1.73 1.58 1.38 
1   2.90 6.46 3.87 
2   3.70 15.5 23.7 
3     4.14 27.3 71.1 
4   4.70 36.1 151.7 
5   5.20 49.0 234.5 

ÜJ CO < X Q. 

Ld CO < X CL 

Ld C/) < X CL 

Fig. 1.—Realizations of three kinds of random walks 
computed with T = 1000 days, R — l day-1. The phase is 
shown before (solid tine) and after (dotted line) removing a 
least-squares, third order polynomial fit. The pre-fit phase has 
been shifted by an arbitrary amount for clarity; at ¿ = 0 the 
pre-fit phase is actually zero. 
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Figure 1 shows a realization of each kind of random 
walk and the residuals of each walk from a third-order 
least-squares polynomial fit. It is apparent that the fit 
decreases the variance of SN the most and PN the 
least. 

Strengths of the random walks are calculated 
according to 

S-<C,(m,r)>>(^^)s,, (33) 

where is the ensemble-average second 
moment for a unit strength (S,, = 1) random walk. For 
arbitrarily sampled data, we have 

<tfB
2(r)>u = W-1 i <<¿*2(íy)> , 

7 — 1 

0 < ¿i < tN < r, (34) 

where <<£Ä
2(i;)> is obtained from Table 1 assuming 

that the random walks are zero mean and that the 
strengths, *SPN = Æ<&£2>, SFN = R(8v2}, and Ssn = 
R(8v2} are unity with units of s_1, Hz2^-1, and 
Hz2 s“3, respectively. 

b) Computation of Measurement Errors 

The variance of measurement errors can be cal- 
culated empirically by finding the variance of the 
residuals after removing a running linear trend. A 
local approximation to the residual phase = 
^(ij) ~ is 

4 = ^ + (-^+1 - - ti-i). (35) 
tj + i tj-i 

For equally spaced samples, the measurement error 
variance can be estimated as 

~ 3^ Í - 4)2, (36) 

which itself will be in error according to the ampli- 
tudes of the quadratic and higher-order components of 
the residuals. If the time differences (e.g., tj + 1 — t^i) 
are constrained below some upper limit, then the 
estimation error of aM

2 can be constrained below some 
desired limit. 

c) Application to the Crab Pulsar 

Groth (1975c) determined that timing noise from 
the Crab pulsar was consistent with a random walk 
in the frequency with strength i?<Sv2> = 0.53 x 
10~22 Hz2 s_1. To show that timing noise is consistent 
with a random walk model, it is necessary to show 
that the noise and the model have consistent moments 
over a range of time scales. This determination also 
requires that the random walk strength not vary 
considerably with time. In this section we apply the 
technique of this paper to the optical timing data of 
the Crab pulsar that was analyzed by Groth. 

Barycentric arrival times were calculated from the 
topocentric arrival times tabulated by Groth (1975a) 
by using the Lincoln Lab solar system ephemeris and 

by using the identical observatory and pulsar co- 
ordinates used by Groth. The 348 arrival times were 
divided into 12 sub-blocks as defined by Groth (1975c), 
and an mth-order polynomial was least-squares fitted 
to the data of each block. Blocks shorter than a year 
were fitted by a polynomial of order m = 3; longer 
blocks were fitted with m = A because the phase 
contributed by the third derivative vs (which can be 
estimated from vs = n(2n — l)^3^-2) becomes com- 
parable to the rms phase of the random process for 
r ~ 3 yr. The fits differed from those of Groth in 
that (1) non-orthogonal polynomials were used and 
(2) all points were weighted equally whereas Groth 
weighted points proportional to the inverse square of 
the measurement errors. The rms residual from the fit 
was computed, and rms measurement errors were 
computed according to equation (36). Comparison 
with measurement errors tabulated by Groth (1975a) 
indicates that equation (36) indeed gives an accurate 
estimate of the rms measurement error. Such estimates 
will prove to be essential for the analysis of other 
pulsars described in Paper III. 

Random walk strengths calculated from equation 
(33) are shown in Table 3. The results agree with 
Groth’s insofar as phase noise and slowing-down noise 
are inconsistent with the data because the derived 
strengths for long time spans differ by two or more 
orders of magnitude from strengths for short time 
spans. The PN and SN strengths are not the same as 
Groth’s because, as will be demonstrated below, they 
are functions of the order of the polynomial fit. The 
strengths for frequency noise differ by less than an 
order of magnitude on all time scales from 94 to 
1628 days, suggesting that frequency noise is indeed 
consistent with the second moment of the residuals. 
The average FN strength obtained from blocks 4 
through 12 is 7?<8v2> = 0.66 x 10"22 Hz s_1, whereas 
the longer blocks (2 and 3), which are less affected by 
a possible phase-noise component (Groth 1975c), 
yield R(8v2} = 1.22 x lO-^Hzs"1; both values 
agree (within the errors to be discussed below) with 
those obtained by Groth. A final point of comparison 
between our results and Groth’s concerns the slowing- 
down parameters, vs, vs, i)s. Despite the different 
weighting procedures used, these parameters and the 
derived braking indices agree with Groth’s within the 
uncertainty caused by measurement errors. 

The derived strengths for PN and SN are—given 
that the random walk is FN—functions of both the 
time span of the data and the order of the polynomial 
that is fitted to the data. It follows from equation (33) 
that the estimated strengths are, for uniformly sampled 
data, 

*SpN = SFN[CPN(m)¡CFN(m)]2T2l6 , (37) 

*^sn = ^FNtGsN^VGpN^)]2!^ 2 ? 08) 

where we have dropped the T dependence of the 
correction factors. It can be verified that the strengths 
for PN and SN in Table 3 conform to those predicted 
by these equations. 
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TABLE 3 
Random Walk Strengths for the Crab Pulsar 

Block 
(1) 

Julian Day Limits 
(JD-2,440,000) 

Begin 
(2) 

End 
(3) 

Length 
(days) 

(4) 

Number of 
Points 

(5) 

RMS 
Residual 

(ms) 
(6) 

RMS 
Error 
(ms) 
(7) 

Random Walk Strengths 

R<W> 
xlO11 

(s'1) 
(8) 

R<>2> R<Sv2> 
x 1022 x 1036 

(Hz2 s“1) (Hz2s-1) 
(9) (10) 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 

535 
535 

1591 
288 
535 
829 
969 

1175 
1296 
1591 
1704 
1974 

2164 
1420 
2164 

526 
704 
926 

1065 
1288 
1420 
1700 
1803 
2164 

1628 
883 
572 
189 
167 
95 
94 

111 
122 
107 
98 

183 

312 
208 
104 
24 
54 
39 
46 
28 
41 
34 
31 
37 

5.01 
2.61 
0.601 
0.175 
0.071 
0.056 
0.057 
0.123 
0.151 
0.086 
0.080 
0.214 

0.048 
0.055 
0.028 
0.107 
0.020 
0.017 
0.028 
0.030 
0.013 
0.014 
0.013 
0.049 

802.0 
355.0 

35.0 
5.49 
1.06 
1.07 
1.13 
4.32 
6.49 
2.63 
2.39 
8.35 

1.54 
1.98 
0.456 
0.355 
0.129 
0.378 
0.403 
1.01 
1.38 
0.697 
0.852 
0.730 

1.38 
5.57 
2.91 
6.58 
4.14 

35.0 
39.0 
67.7 
76.6 
46.3 
78.0 
17.6 

d) Estimation Errors for the Strength 
of the Random Process 

The strength of the random process can be deter- 
mined only as accurately as measurement errors and 
the stochastic nature of the random process allow. If 
the rms residual is much larger than measurement 
errors, then mis-estimation of measurement errors is 
inconsequential. Long data spans provide the best 
estimates for the strength, as far as measurement 
errors are concerned, because the random walk phase 
increases with data span length T and because the 
error in the estimate of aM decreases with T. However, 
the nonstationarity of the random process itself 
ultimately determines the accuracy to which its strength 
can be determined. Consider the quantity 

gr\T) = T-1 Cdt^t). (39) 
Jo 

For a stationary process, aR
2 converges to its ensemble- 

average value, <cl>R
2(T)y, as T->oo. That is, the 

fractional estimation error in gr
2(T)9 

* ^ [<tf/(70> - <°R2(T)>2]ll2K(jR
2(T)y , (40) 

goes to zero as T-^co. For nonstationary random 
walks, however, gr

2(T) does not converge to its 
ensemble average value. For PN we have 

<T) = 
<s^4> Y12 (A112 

(8<j>2y2RT \ (3) • (41) 

If phase steps 8<f> are of roughly equal amplitude, then 
for RT » 1, the estimated second moment will vary 
from one realization to another with a standard 
deviation (2/3)1/2<aÄ

2(7T)>, regardless of the value ofT. 
If phase steps themselves are highly variable, then 
<S^4)/<8^2)2 » 1 and e will be correspondingly 
greater for finite T. For FN and SN we have 

lim e(r) = (33/35)1/2 (FN) 
r-* 00 

= (905/924)1/2 (SN) ; (42) 

and for finite T, e will deviate from these values by 
terms of order <ôv4>/<Sv2>2i?7T and (Sv4)/^2)2^, 
respectively. 

To rephrase these results, estimates of the random- 
walk second moment do not improve as one integrates 
for longer times (as long as we ignore measurement 
error). The rms phase ^Â(T) has a fractional fourth 
moment that is smaller than that for a Gaussian 
random variable for which e = \/2. 

Numerical simulations indicate that the variance 
of the residual phase gm

2{T) and the correction factors 
have statistics similar to those of gr

2{T). Moreover, 
CR{m) and appear to vary independently, and 
therefore the variance of the strength estimates is the 
sum of the variances of CR(m) and <7^. For FN, this 
means that the fractional variance of the strength 
approaches ^/2, the value for the square of a Gaussian 
random variable. Consequently, for the purposes of 
an error analysis of our strength determinations, we 
can assume that a strength estimate that is the sum of 
N independent strength estimates is a x2 random 
variable with N degrees of freedom. 

The results of this section yield a prescription for 
assigning errors to the derived strengths of FN for the 
Crab pulsar. Summing strength estimates for the nine 
shorter blocks (4-12) yields an estimate with 9 degrees 
of freedom, and therefore the 6870 confidence interval 
for the strength is R(ßv2y = 0.66(4-0.31, —0.30) x 
10"22Hz2s_;L. Blocks 2 and 3 yield R(8v2y = 
1.22(+0.92 -1.13) x 10"22 Hz2 s"1. For blocks 4-12, 
the sample standard deviation is 0.39 x 10“22 Hz2 s_1, 
indicating that the strengths vary as expected from our 
error analysis. 

e) Low versus High Rate Random Walks 

Analysis of the second moment yields direct in- 
formation on only the product, Æ<Sv2>, for the Crab 
pulsar. However, the fact that a consistent strength is 
obtained on time scales down to 10 days (i.e., from the 
10-13 order polynomials fit to 100 day spans of data 
by Groth) and that structure is evident in the residuals 
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with time scales of a few days implies that the rate is 
larger than one event every few days. In anticipation 
of the results on other pulsars, it is worthwhile to 
consider how a second-moment analysis can determine 
the rate R. The parameter that distinguishes small 
rates from large ones is 

t = <a*yKa*y*RT, (43) 

where a is the step amplitude in the appropriate units 
and Tis the time span for the analysis. If £ « 1, then 
the strength estimates will vary with a ratio of 
standard deviation to the mean of ~ V2, as discussed 
before (cf. eq. [41]). However, as £->l, strength 
estimates will vary in excess of \/2. When £» 1, 
individual steps will occur at resolvable times, and 
R and <a4>/<a2)2 can be separately estimated. If 
£ » 1, an alternative method of analysis would be in 
order because the goal would then be to measure the 
properties of individual steps after first demonstrating 
their reality. 

V. RANDOM WALKS WITH FINITE MEAN STEPS 
As previously stated, the mean values of the steps 

of a random walk get absorbed into the slowing-down 
parameters. In this section, we demonstrate that the 
mean and third moment of the step amplitude can be 
measured under certain circumstances. 

a) The Second Moment 

The quantity available to us for studying the random 
walk is the residual phase after subtracting a least- 
squares polynomial. Define 

<Sm2> = (t-' Çodm) - m?y (44) 

as the second moment of the phase after subtracting 
a polynomial of order /, For FN, we can write 

<Sm2>FN = A^hvy^T* + B^Sv^yT3 . (45) 

It can be shown that At = 0 for l > 2 because the 
mean value of produces a second-order phase 
variation, corresponding to a frequency derivative 
Æ<8v>. Unfortunately, such a frequency derivative 
cannot be separated from that of the slowing-down 
function. For the case of slowing-down noise, how- 
ever, we have 

<Sm2>SN = AlR\Svy2TQ + B^iS^yT5 ; (46) 

and in this case, /?<&>> corresponds to a frequency 
second derivative, which may possibly be measurable 
for slow pulsars because vs is negligible if the braking 
index is as small as it is for the Crab pulsar. For PN 
and FN, however, it is clear that the second moment 
of the phase residuals can yield information on only 
the quantities and R(8v2y, respectively. 

b) The Third Moment 

Now consider the third moment of the residuals, 

<s™3> = - m?y, (47) 

which can be written for FN as 

<Sra3>FN = alR\8vy3T3 + ft*2<Sv><>2>r5 

+ y^<Sv3>r4. (48) 

Only if the distribution of Sv is symmetric about the 
origin will (8m3yFN be zero. For / > 2, az = ft = 0, 
whereas yz # 0 in general, and therefore information 
about R(Sv3y is obtainable from the third moment. 
Numerical simulations indicate that y2 ^ —l.lxlO-5, 
y3 ^ -3.3 x ICT6, y4 Ä -8.3 x lO“7. 

We can estimate the third moment for the Crab 
pulsar by assuming that <Sv3> = ± <Sv2>3/2 and there- 
fore i*03> = ±R-1/2Sfn

3/2, where SFN = R(8v2y x 
0.53 x 10“22 Hz2 s“1. Expressing R in inverse days, 
we have (after a fourth-order fit) 

<8m3> = y4^<5v3>r4 

* ± 5.25 x 10-6Æday-
1/2r10oo4 cycles3 > <49) 

where Tiooo is the span of time in units of 1000 days. 
Measurement errors have a zero third moment over 
an ensemble, but an estimate of the third moment will 
have a standard deviation of 

<X3 ^ *m3N-112, (50) 

which is smaller than the predicted <8m3> for most of 
the 12 blocks of Crab data defined in Table 3. Again 
the dominant error in Sm3 is due to the stochastic 
nature of the random walk. The standard derivation 
of 8m3 is 

(8m3
2y112 x K^R^yT3)312 (51) 

if we assume that <8m3> = 0 (i.e., 8v has a symmetric 
distribution), and simulations indicate that K2 — 
4.3 x 10“6, K3 = 1.0 x 10“6, #4 = 2.3 x 10“7. For 
the Crab, we have 

<8m3
2y112 = K±(R(8v2yT3)312 

^ 4.6 x 10“ 5r10oo4'5 cycles3, (52) 

which, upon comparison with equation (49), indicates 
that 8m3 will not be measurably distinct from sto- 
chastic fluctuations unless i^ay^iooo « 1> or <^3) » 
<8v2>3/2. It is known that i?day > 1. Furthermore, 
estimates of the third moment for the Crab pulsar are 
within the bounds of equation (52). Therefore, the 
primary conclusion is that the frequency steps do not 
have a highly skewed distribution. The main hope for 
measuring 8m3 would be to make intraday measure- 
ments, but then measurement errors (eq. [50]) would 
dominate the third-moment estimate. 

c) Finite Mean Steps and the Braking Index 
of the Crab Pulsar 

If the random walk steps have non-zero-mean 
amplitudes, then the random walk contributes to the 
measured systematic frequency and frequency deriva- 
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tives. The FN process that operates for the Crab 
pulsar has frequency derivatives 

/dkvFN(t)\ dk 1 /d/s^ \\ /ro\ 
\—di^/-d^(R<8v>)- (53) 

Consequently, the measured braking index may or 
may not reflect that of the deterministic torque process. 
In particular, we show here how the measured braking 
index for the Crab pulsar, nm = 2.51, may have been 
biased away from the torque index of 3, as predicted 
by the electromagnetic torque model (Pacini 1968; 
Gunn and Ostriker 1970) and by the relativistic-wind 
model (Goldreich and Julian 1969). 

Let ns be the index of the spin-down torque model. 
That is, given the rotation frequency, v = + <vFN>, 
we have the interrelationship 

ns = vvsvs~2 . (54) 

The observed braking index is 
nm = Ws(l + ^FN/V^sX! + ^FN/V^s) 2 ? (55) 

and can be written as 

nm = nsvm{vm - x)2/(vm - y), (56) 

where x = Æ<Sv>, y = dx/dt, and vm and vm are the 
measured derivatives of the frequency. 

A set of values of (x, y) = (^<Sv>, dR{Sv}fdt) can 
cause the measured braking index to deviate from the 
torque index, ns; however, only a subset of values is 
physically plausible. If the random walk is a conse- 
quence of rotation (e.g., the starquake model), then 
it is plausible that |i?<Sv>| should decrease with time 
as the oblateness of the star decreases. Suppose the 
random walk is a series of spin-ups: R(8v} > 0. We 
therefore require < 0. Moreover, we should 
expect that the dissipation time for the random walk, 

td = R<8v> / jt 
R<8v> (57) 

be reasonable, i.e., much greater than the 10 years 
over which the Crab pulsar has been observed and 
probably not much different from the spin-down time 
scale, Ts = vm[vm = 2600 years. 

In Figure 2 we show those values of x and y that 
satisfy equation (56) for various values of the true 
braking index, ns. We have taken nm = 2.51, vm = 
-3.8559 x 10-10 Hz s“1, and vm = 1.2341 x 10"20 

Hz s“2. If the steps are spin-ups (8v > 0), then reason- 
able dissipation times (td > 100 years, say) are ob- 
tained only for very large rates: R > 105 steps per day 
for ns = 3. We estimate the rate by assuming all 
steps have the same amplitude. Then a /ower limit to 
the rate is 

R > (R(8v»2/R<8v2> = x2*?™-1'2 . (58) 

As «s — «m->0+, td > 100 years for smaller rates; 
indeed, RdaiV = 1 is possible only if \ns — nm\ < 10"3. 
If the random walk comprises spin-downs, then 
similarly large rates are required if ns deviates signifi- 
cantly from the measured index. 

In summary, if the step rate of the random walk can 
be shown to be approximately 1 step per day, then the 
measured braking index is essentially equal to the 
true braking index of the spin-down torque. At present, 
observations indicate only Æday > 1, and it is likely 
that only theoretical considerations will provide an 
upper limit to the rate. Consequently, it is possible 
that the observed braking index may deviate signifi- 
cantly from the spin-down index. 

VI. CONCLUSIONS 

In this paper, randomness in the rotations of 
pulsars has been modeled and a technique has been 
presented for estimating the strength parameter of 
the random process. In application to the Crab pulsar 
it has been demonstrated that a random walk in the 
rotation frequency, characterized by a strength 
parameter S = R{8v2y, is consistent with the data. 
In principle, more information is contained in the 

R ( steps per day ) 

R <8i/> Hz s 1 

Fig. 2.—Plot of those values of R<Sv> and its time derivative that yield the observed braking index, nm = 2.51, for the Crab pulsar 
assuming different values for the actual spin-down index, ns. The dashed lines represent damping times for the random walk of 
102 and 104 years. The rate on the upper horizontal scale was derived assuming that all steps of the random walk are of equal 
amplitude and by using the known strength for the random walk, R<Sv2>. 
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data. For example, one would like to determine the 
rate R and the third moment of the step amplitudes, 
<8v3>. This is not possible with available data because 
one must have RT < 1, where T is the time interval 
of the data span. For the case of the Crab pulsar, 
measurement errors are too large to analyze data sets 
with T < 1 day that would be required. 

Showing consistency of a random walk is a necessary 
but not a sufficient condition for demonstrating that a 
random process is indeed occurring in a pulsar’s 
rotation. In general one can only compare hypotheses 
and show which is the best. For the case of the Crab, 
it was found that no deterministic process could 
account for the observed timing residuals, thus 
suggesting a random process. One’s confidence in the 
random walk interpretation increases when it is 
proved to be consistent over a variety of time intervals 
as was done by Groth (1975c) and in the present paper. 
Over the 5 years spanned by Princeton timing data, 

225 

the random process appears to have stationary 
statistics. It is to be expected, however, that the 
random walk will eventually prove to be nonstationary 
on longer time scales because the random walk will be 
“mixed” with another kind of random walk (cf. § II 
and the equation of motion) and because the strength 
parameter is likely to decrease as a function of time. 

The next paper in this series will apply the tech- 
niques of this paper to radio timing data of several 
pulsars. Activity in the rotations of these pulsars is 
certain, but it is not known whether the responsible 
random process is composed of a large or a small 
number of events. 

I thank G. Greenstein, D. J. Helfand, and J. H. 
Taylor for innumerable discussions during the course 
of this work, which was supported by NSF grants 
MPS 75-03377 and ATS 75-23581. This is contribution 
309 of the Five College Astronomy Department. 

PULSAR TIMING 

APPENDIX A 

MOMENTS OF A SUPERPOSITION OF EVENTS 

Here we derive moments of random processes 

m = ^ajg(t - 0) (Al) 

under the assumption that events occur at times ^ that are Poisson distributed. Following Rice (1954), we compare 
the fourth-order characteristic function 

with the expression 

0(^1, a>2, a>3, a>4) = / exp i 

i/j = exp 

* 2 

(j>) 

to find the moments 

s i? / dt’R{t,)[%wig{t ~ 

"*i(0 = <^(0>, 
W2(A> ^2) = <</>(A)</>72)> , 

Wia(A> (3) = > 
mi{h> ¿2, ta, ti) = (,<f>(ti)<l>(t2)<l>(tà)<l>(ti)') . 

(A2) 

(A3) 

(A4) 

(A5) 

In general we need not assume that a and R are independent of time. For our purposes, full generality is not 
necessary, and we therefore obtain 

(A6) 

(A7) 

tmjÍO = Rid) J dt'g{t - t') , 

mzih, i2) = WilAW,^) + R<a2'> J dt'gdi - t')g{t2 - t'), 

maih, t2, t3) = - 2m1(í1)m1(í2)/n1(í3) + m^maita, t3) + Wi(t2)w2(ti, t3) + m^maiti, ta) 

+ Ria3) J dt'giti - t')g(t2 - t')g(t3 - t') . (A8) 
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The fourth-order moment is given only for the case that (a) = <a3> = 0: 

w4(ii, t2, t3, i4) = m2(t1, ?2)m2(/3, i4) + m2(t1, h)m2(t2, í4) + m2(tu t¿)m2{t2, t3) 

+ iî<a4> J dt'gih - t')g(t2 - t')g(t3 - t'Mti - t') . (A9) 

If R and a are time dependent, they must be included in the above integrals. 
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