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ABSTRACT 

We investigate the interaction between the stellar magnetic field and the accreting plasma at the 
magnetospheric boundary of a neutron star accreting matter from a disk. The stellar magnetic 
field penetrates the inner part of the disk via the Kelvin-Helmholtz instability, turbulent diffusion, 
and reconnection, producing a broad transition zone joining the unperturbed disk flow far from 
the star to the magnetospheric flow near the star. Using the two-dimensional hydromagnetic 
equations, we calculate the inner and outer radii of this zone and its radial and vertical structure. 
The transition zone is composed of two qualitatively different regions, a broad outer zone where 
the angular velocity is Keplerian and a narrow inner zone or boundary layer where it departs 
significantly from the Keplerian value. The star’s magnetic field is only slightly deformed within 
the boundary layer but becomes increasingly distorted at larger radii. 

We discuss the implications of the flow solutions found here for neutron-star models of 
accreting X-ray sources, considering in turn the flow of matter from the inner edge of the disk 
to the surface of the star, the resulting accretion torque, and the pattern of falling plasma at the 
stellar surface. Because ^20% of the star’s magnetic flux threads the disk outside its inner edge, 
plasma channeled by the magnetospheric field falls in a circular ring at the magnetic poles. 
Subject headings: hydromagnetics — stars: accretion — stars: magnetic — stars: neutron — 

X-rays : binaries 

I. INTRODUCTION 

The discovery of more than a dozen pulsating X-ray 
sources (Pounds 1977; Forman et al. 1978) and the 
strong evidence that these are rotating magnetic 
neutron stars accreting matter from a binary com- 
panion (Lamb 1977; Lightman, Rees, and Shapiro 
1978) have generated great interest in the properties 
of such stars. The changes observed in the pulsation 
periods of these X-ray sources due to the torque 
exerted on the star by the accreting matter are particu- 
larly significant because they provide the most com- 
pelling evidence that the sources are indeed neutron 
stars (Pringle and Rees 1972; Lamb, Pethick, and 
Pines 1973; Rappaport and Joss 1977; Mason 1977), 
and because they furnish clues about the pattern of 
the accretion flow near the neutron star (Eisner and 
Lamb 1976; Lamb, Pines, and Shaham 1976,1978a, b). 
Indeed, if our knowledge of accretion flows and the 
magnetic moments of these stars can be substantially 
improved, accurate measurements of period changes 
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could provide new constraints on the equation of state 
of matter at very high densities (Lamb 1977). 

In the first paper reporting the results of our study 
of accretion by rotating magnetic neutron stars (Ghosh, 
Lamb, and Pethick 1977, hereafter, Paper I), we pre- 
sented solutions for the flow of accreting matter and 
the configuration of the magnetic field inside the 
magnetosphere, and showed that both are strongly 
influenced by the angular momentum transported to 
the star by the accreting matter. Pointing out that the 
torque on the star is determined by matching the flows 
inside and outside the magnetosphere in a physically 
acceptable way, we showed that these solutions can be 
used to derive interesting bounds on the accretion 
torque even without knowing the details of the flow 
in the transition zone between the exterior flow and the 
magnetosphere, by applying general conservation 
laws. These bounds demonstrate that the early dimen- 
sional estimate (Pringle and Rees 1972; Lamb, Pethick, 
and Pines 1973) of the sign and magnitude of the torque 
on slowly rotating neutron stars accreting from a disk 
is correct if the transition zone is narrow, and that in 
this case this same estimate is also approximately 
correct even for fast rotators. We considered a variety 
of exterior flows, and discussed the implications of our 
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260 GHOSH AND LAMB Vol. 232 

results for secular period changes in pulsating X-ray 
sources. Finally, we noted that determination of the 
actual value of the accretion torque does require a 
detailed description of the flow in the transition zone. 

Recently, we have developed a two-dimensional 
model of steady axisymmetric disk accretion by an 
aligned rotator which includes a detailed description 
of the radial and vertical structure of the transition 
zone and therefore enables us to compute both the 
innermost radius of the disk and the accretion torque 
acting on the star. This model represents a first attempt 
at a consistent description of the flow between the 
Keplerian region and the stellar surface. We assume 
that this flow is steady, and use this assumption to 
determine the effective conductivity of the disk plasma. 
The resulting dissipation is roughly consistent with 
that expected from magnetic-flux reconnection. The 
accretion torque predicted by the model is in good 
agreement with the observed secular spin-up rates of 
all the pulsating X-ray sources in which this rate has 
been measured, including Her X-l, while the short- 
term period fluctuations and spin-down episodes 
observed in Her X-l and Cen X-3 follow naturally 
from the model as consequences of fluctuations in the 
mass-accretion rate. In particular, the model predicts 
a braking torque sufficient to account for the observed 
spin-down episodes if the accretion rate during the 
episodes is somewhat reduced. This same braking 
torque may also explain the paradoxical existence (see 
Paper I) of a large number of long-period X-ray sources. 

In the present paper we provide a detailed account 
of the accretion flow in this model, including the size 
and structure of the transition zone and the physical 
processes that occur there, while in a subsequent paper 
(Ghosh and Lamb 1979) we calculate the accretion 
torque predicted by our model, using the flow solu- 
tions described here, and compare the implied changes 
in stellar-rotation rates with those observed. Among 
the main conclusions reached in the present paper are 
(1) that the stellar magnetic field threads the disk well 
beyond its inner edge, and (2) that as a result, the 
transition zone is not narrow, but instead is rather 
broad. A brief summary of our principal results has 
been given previously (Ghosh and Lamb 1978). 

In § II we outline the model and the method used to 
calculate the structure of the accretion flow. We first 
show that the stellar magnetic field will penetrate the 
disk over a sizable area as the result of development of 
the Kelvin-Helmholtz instability, turbulent diffusion, 
and magnetic-flux reconnection. The stellar field lines 
that thread the disk are distorted in both the azimuthal 
and radial directions by the motion of the disk plasma. 
We assume that in a steady state this distortion of 
field lines is limited by reconnection, and thereby 
arrive at the following picture of the accretion flow. 
Far from the star, the motion of the accreting matter 
is determined by the effective viscosity in the disk and 
is unaffected by the stellar magnetic field, but in a 
broad transition zone between the unperturbed disk 
and the magnetosphere, the stress associated with the 
stellar magnetic field becomes increasingly important 
in determining the flow. The transition zone is com- 

posed of two parts, a broad outer part, where the 
azimuthal velocity is Keplerian, and a narrow inner 
part where it departs significantly from the Keplerian 
value. 

In § III we set up and solve the hydromagnetic 
equations in the inner transition zone. This zone 
behaves like a boundary layer, in that both the flow 
velocity and the magnetic field change on a length 
scale $0«r. Here screening currents reduce the 
magnetospheric field typically by a factor of ~ 5, and 
matter leaves the disk vertically, falling toward the 
star along stellar field lines. 

The structure of the broad outer transition zone is 
calculated in § IV. Here the magnetic stress carries a 
significant flux of angular momentum while energy 
dissipation associated with the motion of the disk 
plasma across the residual magnetospheric field adds 
to the heat generated in the disk by viscous dissipation. 
Even so, the structure of the accretion flow in this zone 
is very similar to that in a standard a-disk (Shakura 
and Sunyaev 1973). Currents flowing in this zone 
screen the residual magnetospheric field to zero on a 
length scale ~r. 

In § V we discuss our flow solutions. First, we argue 
that the structure of the transition zone found here, 
namely, a narrow inner zone where most of the screen- 
ing occurs together with a broad outer zone where the 
residual stellar flux threads the disk, is likely to be a 
general feature of disk accretion. Next, we discuss the 
existence of a maximum stellar-rotation rate consistent 
with steady accretion, the unusual nature of the inner 
transition zone, the stability of the flow from the 
inner edge of the disk to the neutron star, and the 
implications of our solutions for the pattern of X-ray 
emission from the stellar surface and period changes 
in pulsating X-ray sources. We also note some of the 
new features to be expected in accretion by oblique 
rotators. Finally, we compare the present calculations 
with the work of other authors, including the con- 
temporaneous work of Scharlemann (1978) and 
Ichimaru (1978). 

Our main conclusions are summarized in § VI. 

II. THE MODEL 

In this study we consider disk accretion by a neutron 
star with a dipolar magnetic field of moment We 
assume that the star is rotating with angular velocity 
Qs about the magnetic field axis, and that this axis is 
perpendicular to the plane of the disk. We assume 
further that the flow is steady and has axial symmetry 
everywhere. In the mathematical analysis which follows, 
we use the cylindrical coordinate system (¿ü, </>, z) 
whose origin is at the center of the neutron star and 
whose polar z-axis lies along the stellar-rotation axis. 
In this coordinate system, <j> is the azimuth angle, cö is 
the cylindrical radius, and r = (œ2 + z2)1/2 is the 
distance from the center of the star. If the disk is thin 
(semithickness h « r), then inside it r ^ ¿ó. 

In the present section we first show that complete 
screening of the stellar magnetic field from the disk 
plasma is not possible and then introduce a model for 
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No. 1, 1979 ACCRETION BY MAGNETIC NEUTRON STARS 

the steady-state configuration of the stellar field lines 
that thread the disk. Finally, we describe the overall 
picture of the accretion flow that emerges from our 
analysis. 

a) Failure of Complete Screening in Disk Accretion 

The picture of magnetic field screening in the case 
of roughly spherical accretion by a magnetic neutron 
star is well known (see Lamb, Pethick, and Pines 1973 ; 
Arons and Lea 1976; Eisner and Lamb 1977; Michel 
1911 a, b, c): currents in the transition region between 
the magnetosphere and the outside plasma completely 
screen the stellar magnetic field from the plasma and 
keep the field confined to the interior of the magneto- 
spheric cavity. This picture is not self-consistent in the 
case of accretion from a thin disk, however. To see 
this, suppose that currents on the surfaces of the disk 
were to screen the disk completely. Then the magneto- 
spheric field above and below the disk would be 
oppositely directed and of magnitude ~B0, where 
B0 ~ pr~3 is the strength of the unscreened stellar 
field, and would be completely excluded from the disk. 
But this configuration will evolve toward one in which 
the magnetospheric field threads the disk plasma, on a 
time scale much shorter than the radial drift time of the 
disk plasma. Thus the original assumption that the 
magnetospheric field is excluded from the disk is not 
self-consistent. The field penetrates the disk as a 
result of a variety of processes, three of which we 
discuss here: 

1. Kelvin-Helmholtz instability.—The velocity dis- 
continuity between the low-density magnetic field 
region and the disk drives the Kelvin-Helmholtz 
instability with a growth rate1 

Vkh ~ (k^Vçflc2 - K2 - kkg)
ll2vA 

(compare Northrop 1956 and Scharlemann 1978). 
Here k = krf + k^ is the wave vector of the mode, 
vQ = r(^K — 4*) < 0.1 c is the velocity discontinuity 
between the disk plasma and the stellar magnetic field 
in terms of the Keplerian angular velocity QK and the 
angular velocity £ls of the star, kg = gJvA

2 is a charac- 
teristic wavenumber defined in terms of the magnitude 
gz = (GMIr2)(hlr) of the gravitational acceleration 
perpendicular to the interface between the magnetic 
field region and the disk plasma, and vA = (Bf/top)112 

is an Alfvén velocity defined in terms of the radial 
component of the external magnetic field and the 
plasma density p in the disk. This expression for /kh 
shows that the interface is unstable despite the stabiliz- 
ing effects of magnetic tension and gravity if k# > 

1 In the present case, v0 « c and the modes of interest 
satisfy kr « k#. In this regime, the growth rate is almost 
unaffected by compressibility. One can see this by taking 
Northrop’s expansion scheme to the next higher order; for 
unstable modes, the growth rate is only increased by an amount 

~ i(Wc)2(/>mag/p)(ô/W0P) ~1 

< 2 X 10-4ar8
-9/2(d In pe&sl^ hi />)-1 

times the leading term, where pmag is the pressure of the 
external magnetic field and pe&a is the gas pressure in the disk. 
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krclv0 » kr and k{^kf) is larger than the critical 
wavenumber kc = \clv^)2kg. 

For a standard a-disk (Shakura and Sunyaev 1973) 
and Br ~ 2?0, the characteristic wavenumber kg may 
be expressed as 

kg ä 1.1 x 10-7a-4/5/x3o-2(Af/Afo)6/5^i73/5r812/5 cm-1, 

a) 

where a is the viscosity parameter of the disk, pl30 is ju- 
in units of 1030 gauss cm3, Mis the mass of the neutron 
star, M17 is the mass-accretion rate til in units of 
1017 g s_1, and r8 is the radius r in units of 108 cm. 
Thus the critical wavenumber kc is ~ 102 kg ~ 103 r "1 

at r ~ 108 cm and increases rapidly with increasing 
radius. Assuming that kr can be as small as 27r/r, the 
stabilizing effect of gravity completely dominates that 
of magnetic tension. Then, for the unstable modes 
(those with k > kc), the ratio of the radial-drift time 
in the disk, rd ~ r |pr|

_1, to the linear-growth time of 
the instability tkh is 

Td/TKH - 1.4 X 105a ~ 5/V-30 “ \M¡M©)5/8 

x (1 - njQK)-v
7,fm)1'2. (2) 

Thus, the Kelvin-Helmholtz instability grows initially 
on a time scale much shorter than the radial-drift 
time. Since fccA/27r ~ 2 at r ~ 108 cm, the marginally 
unstable modes only need to develop a short way into 
the nonlinear regime for the perturbation 8A of the 
interface to become comparable to h, and we therefore 
expect the Kelvin-Helmholtz instability to lead to 
thorough mixing of the disk plasma and the stellar 
magnetic field in less than the radial-drift time. 

2. Turbulent diffusion.—If the vertical temperature 
gradient in the disk leads to vigorous, large-scale con- 
vection, as in some disk models (Liang 1977 ; Shakura, 
Sunyaev, and Zilitinkevich 1978), and pu2 > B0

2IStt, 
where ut is the rms velocity of the turbulence, the exter- 
nal magnetic field will diffuse vertically through the disk 
in a time Tt ~ h2^'1. Here 7jt is the turbulent diffusivity, 
which may be estimated as 0.15 w*/* (Parker 1971), 
where lt is the length scale of the largest eddies. Using 
the a-disk relation utlt ~ acsh, where cs is the sound 
velocity, one finds 

Tdlrt Ä 8.6 Xl02a1/5^r17-
2/5(M/Mo)7/10r8-

1/10 . (3) 

Thus for reasonable values of a (> 10'10), the external 
magnetic field will diffuse to the midplane of the disk 
in less than the radial-drift time. 

3. Reconnection.—The magnetic field above and 
below the disk will reconnect to the small-scale mag- 
netic field within the disk plasma, near the top and 
bottom surfaces of the disk. Subsequent shearing and 
reconnection of the small-scale magnetic field loops 
to one another, driven by differential rotation and 
circulation in convective cells, will cause the magneto- 
spheric field to penetrate inside the disk. The efficiency 
of this process depends on the strength of the small- 
scale magnetic field within the disk and the rate of 
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reconnection between magnetic fields of unequal 
strength. If the small-scale magnetic field in the disk 
is everywhere strong enough to supply most of the 
effective “viscous” stress (Eardley and Lightman 
1975), then it can be shown from the theory of the 
standard disk that the rms strength of this small-scale 
field is greater than that of the stellar magnetic field 
above and below the disk at r8 > 1. Further, if the 
reconnection rate between magnetic fields of unequal 
strength is determined by the weaker field, then the 
relative efficiency of this process is described by the 
ratio of time scales 

TdlTR ^ 5 xl03^-7/2V30^i7~4/5(M/Mo)11/45r8-
73/40 . 

(4) 

Here we have used the reconnection time scale tr æ 
2h(tvA)-\ where vA is the Alfvén velocity in the weaker 
reconnecting field and f is a numerical factor which 
depends on the flow pattern (see Yasyliunas 1975). 
Once again, for reasonable values of £ the external 
field will penetrate the disk in a time much shorter 
than Td. 

In summary, there are a variety of processes which 
cause the magnetospheric field to invade and mix with 
the disk plasma in a time short compared to the radial- 
drift time. As a result, the stellar magnetic field will 
thread the disk well beyond its inner edge. Consider 
now the shape assumed by the magnetic field in a 
steady state. 

b) Steady-State Configuration 

The angular motion of the disk plasma with respect 
to the star stretches the stellar field lines in the azi- 
muthal direction, thereby generating a toroidal field 

from the poloidal field Bp. Similarly, the radial 
focusing of the flow compresses any azimuthal field 
that is present, thereby amplifying it. In a steady state, 
the increase in B# due to these processes must be 
exactly balanced by the diffusion of the magnetic field 
through the disk due to the finite conductivity of the 
disk plasma. If the effective conductivity of the disk 
plasma had the usual Coulomb or Bohm value, the 
equilibrium value of B# would be extremely large. But 
long before it becomes this large, the oppositely 
directed toroidal magnetic fields in the upper and lower 
halves of the disk reconnect. Thus, the actual value of 

is determined by a balance between amplification 
by the plasma flow and reconnection. 

Our picture of stellar field lines stretched azimuthally 
by the different angular velocities of the star and the 
disk requires the presence of a small amount of 
plasma on those parts of the field lines which lie 
between the star and the disk, since if this region were 
a perfect vacuum, the field lines would continually 
reconnect there and no toroidal field would develop. 
However, even a very small quantity of plasma 
suffices to change the electrodynamic properties of 
this region from that of a vacuum to that correspond- 
ing to our picture. We illustrate this by estimating the 
number density « of particles above and below the disk 

required to support the currents implied by the azi- 
muthal pitch given by equation (37) below. Making 
the reasonable assumption that the plasma in this 
region is not charge-separated, the required poloidal 
current Jp = (c/47t)|V X B^l is a conduction current; 
thus the electron-ion relative velocity can easily be 
comparable to, but cannot exceed, the local sound 
speed. If we estimate the sound speed by that in the 
disk and assume that the azimuthal pitch of a stellar 
field line threading the disk decreases toward the star 
on a length scale r, reducing to a very small value at 
the stellar surface, we obtain 

n > 0.2(yJ£)2(1 - Üs/QK)r8-
2 cm"3 . (5) 

Such a small density (~10-21 that in the disk) is 
certain to be present around a neutron star accreting 
matter from a binary companion. This estimate shows 
how small a mass in the form of charged particles 
suffices to change a vacuum electromagnetic field into 
a typical plasma field, and underscores, as Mestel 
(1975) has pointed out, the strength of the Coulomb 
force: although the region above and below the disk 
is a vacuum, dynamically speaking, it has very non- 
vacuum electrodynamic properties. 

In a manner analogous to the stretching of field lines 
in the azimuthal direction, the inward radial drift of 
the disk plasma pinches the stellar field lines inward in 
the disk plane, thereby generating a radial magnetic 
field component Br from the z-component Bz. Again, 
the radial focusing of the flow amplifies any radial field 
that is present, and the actual value of Br is determined 
by a balance between amplification by the plasma 
flow and reconnection. 

c) A Self-consistent Picture 

In the next two sections we set up and solve equa- 
tions which describe in detail the accretion flow and its 
effect on the stellar magnetic field. It will be helpful, 
in following this development, to have in mind the 
overall picture that emerges from our analysis. 

The region where the stellar magnetic field threads 
the disk constitutes a transition zone between the un- 
perturbed accretion disk and the magnetosphere. The 
motion of the disk plasma across the stellar field lines 
in this transition zone generates currents which con- 
fine the stellar magnetic field inside a screening radius 
rs, which may be 10-102 times larger than the radius 
rco inside which the plasma is forced to corotate with 
the star.2 Thus the transition zone, which extends from 

2 In our brief summary of the present model (Ghosh and 
Lamb 1978), we followed widespread convention in identifying 
the corotation radius rco, inside which the plasma is forced to 
corotate with the star, with the Alfvén radius rA, inside which 
the flow is sub-Alfvénic in the stellar magnetic field. Although 
the definition of the Alfvén radius can be made mathe- 
matically precise (see Paper I, § l\b) and provides a physically 
meaningful basis for estimating the radius inside which the 
stellar magnetic field controls the accretion flow (see Lamb, 
Pethick, and Pines 1973; Eisner and Lamb 1977; Paper I), we 
do not yet know whether the accretion flow is sub-Alfvénic 
everywhere between the disk plane and the surface of the star 
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TABLE 1 
Distinct Regions of the Accretion Flow 

263 

Length Scale 
of Change Dominant Mechanism 

Inner Outer in Physical of Angular Momentum 
Region Radius Radius Variables Transport 

Unperturbed disk  rs Large r Effective viscous stress 
Outer transition zone  rQ rs r Effective viscous stress 
Inner transition zone  rco r0 80 « r Magnetic stress 
Magnetosphere  R rco r Magnetic stress 

rco out to rs, is quite broad. Within the transition zone 
the dominant stress transporting the angular momen- 
tum of the accreting matter changes from the effective 
viscous stress to the stress associated with the stellar 
magnetic field. This zone divides naturally into two 
parts, an outer part, where the angular velocity is 
Keplerian, and an inner part, where it departs signi- 
ficantly from the Keplerian value. The boundary 
between these two parts defines the radius r0. In § V 
we argue that this two-part structure of the transition 
zone is likely to be a general feature of disk accretion. 

The inner transition zone between rco and r0 behaves 
like a boundary layer, in that the flow velocity and 
the magnetic field change there on a length scale 
80 « rç. Hence the zone has a thickness 8 = r0 — rco ~ 
80 which is small compared to r0. In this zone 
the angular velocity of the plasma is reduced from the 
Keplerian value to the corotational value by the mag- 
netic stress, and circulating currents screen the mag- 
netospheric field, typically by a factor of ~5. The 
inner transition zone or boundary layer is also the 
region where the dominant magnetic stress disrupts 
the disk and the accreting matter begins to fall toward 
the star along the stellar field lines. The set of field 
lines threading the boundary layer therefore defines 
the accretion bundle, namely, those field lines along 
which matter accretes onto the star. The plasma in the 
accretion bundle at the disk plane and just above and 
below it has significant cross-field motion. Thus the 
field lines in this region are only approximate stream- 
lines of the flow. As matter falls closer to the star, its 
cross-field motion is decelerated by the increasing 
strength of the stellar magnetic field while its field- 
aligned motion is accelerated by the gravitational 
force of the star and approaches free fall. There is a 
flow-alignment radius rf on every field line of the accre- 
tion bundle, inside which the cross-field motion of the 
accreting matter becomes negligible compared with its 
field-aligned motion. This radius, which must be less 
than or equal to the Alfvén radius rA (see Paper I), is 
in general different on different field lines. Solutions 
for the field-aligned accretion flow inside rf have been 
given in Paper I. 

in our model, or even whether this is required for the flow to 
be stable under the conditions that obtain there (see § V). We 
have therefore preferred, in the present account, to use a 
terminology based on the properties of the flow that are 
calculated here. 

The broad outer transition zone between r0 and rs 
has a structure very similar to that of a standard disk 
except for the following modifications caused by the 
residual stellar magnetic field threading the disk. First, 
the magnetic stress associated with the twisted stellar 
field lines transports angular momentum between the 
disk and the star. Second, the viscous dissipation of 
energy associated with the effective viscous stress is 
augmented by the resistive dissipation of energy 
associated with the cross-field motion of the plasma. 
Weak screening currents are generated in this zone by 
the radial cross-field drift of the disk plasma; thus 
the residual stellar magnetic field which is left after 
partial screening by the current flowing in the bound- 
ary layer is further screened on a length scale ~r and 
kept confined within the screening radius rs which 
marks the outer edge of the transition zone. 

The characteristics of the different regions of the 
accretion flow are summarized in Table 1. 

III. THE BOUNDARY LAYER 

In this section we begin our detailed analysis of the 
flow in the transition zone by calculating the radial 
and vertical structure of the inner transition zone or 
boundary layer. We first develop a closed set of equa- 
tions for the boundary-layer variables and identify 
the relevant boundary conditions. Next, we show that 
a boundary layer exists and describe the method used 
to calculate its structure numerically. Finally, we 
discuss the characteristics of the boundary layer as a 
function of the boundary-layer constants and the 
angular velocity of the star. 

a) Equations 
The accretion flow and the magnetic field con- 

figuration in the boundary layer are described by the 
following equations. 

i) Radial-Structure Equations 

The radial structure of the boundary layer is de- 
scribed by five basic equations. The first of these is 
the equation expressing angular-momentum conserva- 
tion, which may be written in the form 

d{Mdr
2Q)ldr = r2a{dKidldr) + B^B.r2 , (6) 

where titd(r) = ATrrh\vr\p is the radial mass-flow rate 
in the disk plane and Ù is the angular velocity of the 
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plasma. The two terms on the right-hand side of this 
equation correspond to the two mechanisms by which 
angular momentum is transported in the boundary 
layer; the first describes the angular momentum 
carried away by the matter leaving the boundary 
layer vertically while the second represents the angular 
momentum transported by the magnetic stress. The 
viscous stress can be neglected, as explained in § V. 

The second basic equation, which expresses radial- 
momentum conservation, is 

vr(dvrldr) = —GMjr2 + Q,2r — p'Kdp/dr) 

+ (47rp)-1{(yxB)XB}-f. (7) 

Here is the thermal pressure and r is a unit vector 
in the radial direction. 

The third and fourth equations are a Maxwell 
equation, 

VxB = 4itJIc9 (8) 

and the appropriate version of the generalized Ohm’s 
law, namely, 

J= aef{(E + C-HXB). (9) 

Here J is the electric-current density, E is the electric 
field, and creff is the effective electrical conductivity of 
the plasma. 

The fifth basic equation is the one which relates the 
effective conductivity to the flow pattern within the 
boundary layer. Assuming that the flow is steady, this 
relationship can be expressed in terms of the average 
azimuthal pitch, 

Yo == ^(,B(plBz)s=h = (B(plB2)2 = , (10) 

at the upper and lower surfaces of the disk. The result, 
which follows from the radial components of equations 
(8) and (9), is 

*eff = (c2Mh-'r-\a - Ds)-V* . (11) 

In writing equation (10), we have used the facts that 
reverses on a length scale h between the upper and 

lower halves of the disk, and that the radial component 
of the electric field Er can be expressed as Er = 
— Qsrj92c

_1. The latter follows from the observation 
that when the angular velocity of the plasma exactly 
equals £2S, the magnetic field has no toroidal com- 
ponent and Jr is zero. The value of oreff is a measure of 
the rate of slippage of field lines through the disk 
plasma. We emphasize that the value of creff does not 
depend on the details of the dissipative process, but 
only on the assumption of a steady flow: any dis- 
sipative process, if it leads to a steady flow, must give 
an effective conductivity in agreement with equation 
ai). 

ii) Mass Flow Out of the Disk 

Now consider the vertical mass loss from the 
boundary layer. We describe this loss by the equation 

dtifaldr = 47rrpcsg(r) , (12) 

scaling the vertical flow velocity out of the boundary 
layer in terms of the local sound speed cs and introduc- 
ing a “gate” function g(r) which describes the radial 
profile of mass loss from the boundary layer. Although 
reconnection of the stellar magnetic field within the 
boundary layer cannot by itself produce complete 
threading of the disk plasma by the stellar field, we 
assume that when it is combined with turbulent diffu- 
sion and other dissipative processes, threading is 
sufficiently complete to channel the flow. We assume 
further that the flow from the upper and lower surfaces 
of the disk toward the star is stable. Then the mass- 
loss profile is largely determined by the shape of the 
poloidal magnetic field just above and below the 
boundary layer. Were the dipolar field of the star un- 
distorted, the gravitational potential along each field 
line would be highest at the magnetic equator, which 
coincides with the midplane (z = 0) of the disk in the 
present case of an aligned rotator, and matter could 
flow unimpeded along the magnetic field from the disk 
toward the star. However, the inward radial motion 
of the boundary-layer plasma pinches the poloidal 
field inward, distorting each field line into a shape that 
has a local minimum of the gravitational potential at 
the midplane of the boundary layer and two local 
maxima above and below it (Scharlemann 1978). The 
mass-loss rate is sensitive to the vertical distance z^ of 
these maxima from the midplane, since the field lines 
are approximate streamlines of the flow above and 
below the disk and hence the accreting matter must 
flow “over” the maxima of gravitational potential in 
order to fall toward the star, and since the density of 
matter varies rapidly with the vertical distance from 
the midplane [in a standard disk, e.g., p drops away 
from the midplane like exp ( — z2lh2)]. 

iii) Vertical-Structure Equations 

The vertical structure of the boundary layer is deter- 
mined by three equations: the vertically averaged 
equations expressing the conservation of vertical 
momentum and thermal energy, and the equation of 
state. We write the vertical-momentum equation in 
the abbreviated form 

p = Cpp(hlr)2(GMlr) , (13) 

where Cp is a number ~ 1, yet to be determined, and 
we have assumed that the vertical pressure scale height 
is ~ A. The choice Cp = l would correspond to hydro- 
static equilibrium in the vertical direction. In the 
present case, hydrostatic equilibrium does not hold in 
the vertical direction, since there is vertical mass flow, 
but the vertical-flow velocity of the matter is <cs. 
Hence the vertical-pressure gradient and the vertical 
component of the gravitational force of the star can 
differ at most by an amount comparable to each of 
them, and the existence of vertical mass flow does not 
invalidate equation (13). On the other hand, equation 
(13) neglects the vertical gradient of the magnetic 
pressure. While this is self-consistent near the outer 
edge of the boundary layer, the solutions obtained 
below imply that the confining effect of the magnetic 
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pressure gradient dominates that of gravity in the 
middle and inner part of the boundary layer, where the 
density drops sharply because of the increased radial 
velocity. Thus the present solutions overestimate h and 
underestimate p, T, and p. A fully self-consistent 
treatment of the vertical structure of the boundary 
layer must await a detailed calculation of the vertical 
structure of the magnetic field. The location of the 
boundary layer and its radial structure are not affected 
by this approximation. 

The equation which describes the vertical radiative 
transport of the energy generated in the boundary 
layer, which is dominated by that due to resistive 
dissipation of the electric current /, may be written in 
the form 

icaTVphK = (J2l<jeft)h . (14) 

Here T is the temperature, a is the radiation constant, 
and K = 0.4 cm2 g_1 is the electron-scattering opacity. 

Finally, we adopt an ideal-gas equation of state for 
the gas-pressure-dominated, fully-ionized plasma, 

p = p(2kBTlmp) , (15) 

neglecting constituents other than hydrogen. Here kB 
is Boltzmann’s constant and mp is the proton mass. 

b) Boundary Conditions 

The variables Ü, Bz, and tifd are subject to the 
following boundary conditions. The angular velocity 
Ü of the plasma is continuous at rco and r0, where it 
takes the values Í2S and QK(r0). The radial velocity vr 
and the mass flux Kid are continuous at r0, joining 
smoothly to the corresponding values given by the 
outer transition-zone solutions at this radius, while 

takes the value ^rco"
3 at rco.3 

The vertical-structure variables />, /?, T7, and h are 
all continuous at r0, joining smoothly to their values 
in the outer transition zone. 

c) Method of Solution 

We solve for the structure of the inner transition 
zone as follows. First, we show that the hydromagnetic 
equations exhibit boundary-layer behavior at a charac- 
teristic radius, which we denote by r0. We then eliminate 
the four vertical-structure variables, p,/>, T, and h from 
the radial-structure equations and solve the latter 
numerically, subject to the boundary conditions given 
above. Once the radial structure is known, the values 
of the vertical-structure variables as functions of the 
radius follow immediately. We turn now to the details. 

i) Existence of a Boundary Layer 

Equations (6)-(15) provide eight equations for the 
eight variables ü, vr. B, Md, h, T, />, and p. From these 
eight equations we eliminate the four variables that 

3 Since the screening currents within the boundary layer 
enhance the magnetic field within the magnetosphere, the 
true value of Bs at r0 is somewhat larger than this; however, 
the correction factor is not large (see § llld below). 

describe the vertical structure of the flow, using equa- 
tions (12)-(15). We are thus left with four differential 
equations for the four variables Q, B, and Md which 
describe the radial structure of the flow and the vertical 
mass loss from the disk. That these equations have a 
boundary-layer-type solution may be seen as follows. 

First, let us assume that the Keplerian motion ends 
at the radius r0 and that the four radial variables 
change there on a length scale 80 « f*o- Then within 
the boundary layer the natural unit for the radial 
coordinate is 80, so that the independent boundary- 
layer variable is 

x=(r - rco)lS0 . (16) 

The four dependent variables likewise have natural 
units. We therefore work with dependent boundary- 
layer variables consisting of the angular velocity 
scaled in units of the Keplerian angular velocity at r0, 

a> = Q>l(GMr0~
3)112 ; (17) 

the radial velocity scaled in units of the velocity that 
matter would attain if allowed to fall freely from 
rco + S0 to rco under the action of the gravitational 
field of the star, 

ur^ -vrl[(2GMIr0y>\S0lr0y>2]; (18) 

the magnetic field scaled in terms of the unscreened 
stellar field, 

b^BJBfrJ; (19) 

and the radial mass-flow rate scaled in terms of the 
mass-accretion rate, 

F=Kfd¡Kl. (20) 

Using definitions (16)-(20), the differential equations 
for Q, pr, and B can be rewritten in nondimensional 
form as 

dœjdx = C^F-1, (21) 

ur(durldx) = — (1 — fc>2)/2 

+ Cw(y,2 + l)ur
2b2F-i(a> ^ a>s)-

1, (22) 
and 

db/dx = -Cbb
3l%9l8F-ll8(a> - o>s)-

9/8 , (23) 

where terms of first and higher order in 80/r0 have 
been neglected. In equations (22) and (23), 

o>s = Qsl(GMr0-
8y12 

^ 0.82(n
11/63C0

16/63Cw -25/63Cp " 8/63) 

x p-^17-^p30
8i\MIMQr

5n (24) 

is the fastness parameter of the rotator (Eisner and 
Lamb 1977; Paper I), P is the rotation period of the 
neutron star in seconds, R6 is the stellar radius in 
units of 106 cm, and L37 is the accretion luminosity 
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in units of 1037 ergs s-1. Equations (21)-(23) contain 
the dimensionless parameters 

CM = 21,2yi>(r o/rA
<0)) " 7/2(S0/

r o) (25) 
and 

Cb = 61/8y(i,
7/8Cp1/2(ro/rA

(O))7/16(8o/^o)25/160"'5/4:, (26) 

which are not determined by the structure equations 
in the boundary-layer approximation. Here 

rA
(0) = fjLm(2GM)~in]\^~2n (27) 

is the characteristic Alfvén radius for spherical 
accretion (Eisner and Lamb 1977) and 

i/j EE [(9tif2l327T2)(Klac)(GMr0)
ll2(2kBIGMmpy]1110. 

(28) 

This expression for 0 can be conveniently evaluated 
in terms of the height hs and viscosity parameter as 
of a standard disk transporting no net angular- 
momentum flux, with the result ÿ = (hslr)0as

1110 oc 
- 1/20 ” 0 

Equations (25) and (26) give the radius r0 and radial 
length scale 80 within the boundary layer in terms of 
the dimensionless quantities Cœ9 Cb, Cp, y0, and i/j. For 
example, if one neglects the very weak r0-dependence 
of 0 and evaluates it at r0 = 108 cm with as = 1, 
M = 1 M0, and til = 1017 g s-1, one obtains 

80 = 0.031 {y0~ 16/27Cö
16/27Cco

2/27Cp“8l27)r0 « r0 (29) 

and 

density, and pressure in the boundary layer in terms 
of the corresponding quantities in a standard disk 
(denoted by a subscript s) at the same radius, can be 
calculated from the vertical-structure equations and 
the equation of state, completing the boundary-layer 
solution. 

For the solutions presented here, we make the 
following choice for the functions y^ix) and g(x) and 
the constants Cb9 C^, and Cp. First, we take y^x) = 
const. = y0 in the boundary layer. The structure of 
the boundary layer is relatively insensitive to the 
precise value of y09 as may be seen from the solutions 
for several values of y0 in the range 0.5-5 which are 
described below. Second, we note that the gate 
function g(x) can be determined accurately by an 
iterative procedure in which the magnetic field con- 
figuration for an assumed g(x) is calculated and 
checked for self-consistency. However, use of this 
procedure must await a quantitative description of the 
accretion flow and the magnetic field configuration 
in the region between r0 and the flow-alignment radius 
rf. Nevertheless, the other properties of the model are 
insensitive to the precise form of g(x), provided that 
g(;t) satisfies the conditions (1) that g # 0 at and out- 
side the outer edge of the boundary layer, and (2) that 
g = 1 well inside the boundary layer. These conditions 
ensure that essentially all the accreting matter leaves 
the disk plane within the boundary layer. We assume 
that the gate function satisfies these conditions, and 
therefore adopt a simple mass-loss profile for the 
results reported in this paper, namely, 

g(x) = 1, 0 < x < xm9 

r0 * 0.41(y/1/27C&
16/27Cw-

25/27Cp-
8/27)2/7rA

(0). (30) 

Thus, the boundary-layer approximation is self-con- 
sistent. Since ^ as2/27 and rQ cc as

4/189, both are 
quite insensitive to the effective viscosity in the disk. 

ii) Internal Structure of the Boundary Layer 

Equation (12), which describes the mass loss from 
the disk plane, can now be recast in nondimensional 
form using equations (13)-(20) and (29), with the 
result 

dFIdx x O.nSiy^8/27^8/27^1/27^19/5^)^-1. 

(31) 

This equation and equations (21)-(23) form a com- 
plete set for the radial-structure variables and can be 
solved numerically for a rotator of given fastness, if 
the azimuthal pitch y^(x), the gate function g(x), and 
the boundary-layer constants Cb, C^, and Cp are 
known. With the resulting knowledge of o>, ur, b, and F, 
the variables 

e = hlhs, 6 EE T¡TS, £ = pips > and y ee pjps, 

(32) 

which specify the vertical semithickness, temperature, 

— (*0 *^') (*0 Xjf) , Xm < X < Xq , 

with x0 — xm = 0.6 . (33) 

Here x0 = &I80 in terms of the width 8 of the boundary 
layer and 80. With this gate function, the mass-loss 
rate saturates by the time the point xm is reached in 
the boundary layer. Finally, we take values ~ 1 for the 
boundary-layer constants Cb, Cw, Cp, and y0.4 The 
qualitative structure of the boundary layer is quite 
insensitive to the values of these constants, as shown 
below. 

In fact, only three of the four constants Cb9 C(û9 Cp9 
and y0 can be chosen independently, since the fourth 
is determined by a constraint derived from the condi- 
tion that the viscous stress be negligible compared 
with the magnetic stress at r0. This constraint follows 
immediately from the «-model for the disk and the 
assumption that the azimuthal velocity begins to 
depart from the Keplerian value at r0 and is, in non- 
dimensional form, 

Cb ~ 8/27Cw
25/54Cp

4/27yo8/27 = 0.1256o"1, (34) 

where b0 = b(x0). It can be deduced by combining 
equation (35), introduced below, and equation (30). 

4 One expects y0 ~ 1 from the picture of magnetic-flux 
reconnection in the boundary layer (see § V). 
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(a) (b) (c) (d) 

X X X X 
Fig. 1.—Radial structure of the boundary layer for a star of fastness <os = 0.3. Shown are the magnetic field b, angular velocity 

a>, radial velocity ur, and radial mass-flow rate F, in appropriate dimensionless units (see text) for the following values of the 
boundary-layer constants: (a) y0 = 0.5, Cb = 2.5, Cp - 2; (b) y0 = 1, Cö = 1.5, Cp = 1.5; (c) y0 = 2, Cb — 2, Cp = 1.5; 
id) y0 = 4, Ct, = 4, Cp = 1. These cases illustrate the insensitivity of the boundary-layer structure to the values of the boundary- 
layer constants. 

We incorporate constraint (34) into our solutions by 
adjusting Cw according to the following iterative 
method. First, we fix the constants Cb, Cp, and y0. 
Next we choose an initial value for the constant 
solve equations (21)-(23) and (31) to obtain è0, cal- 
culate Cc from equation (34), and check the initial 
and final values of for self-consistency. We then 
choose a new value of Cw, iterating until a self- 
consistent value is obtained. 

d) Examples of Boundary-Layer Structure 

We now describe the calculated structure of the 
boundary layer in some typical cases selected from the 
large number of examples that we have calculated. 
Each case is labeled by four numbers, namely, the 
values of the boundary-layer constants, Cb9 Cp, and 
y0, and the value of the fastness parameter œs. 

The structure of the boundary layer is very insensi- 
tive to the particular values of the boundary-layer 
constants, Cö, Cp, and y0, a property characteristic of 
boundary layers generally. This is illustrated in Figure 
1, which shows the radial structure for œs = 0.3 and 
various values of the boundary-layer constants. This 
insensitivity demonstrates that the basic structure of 
the boundary layer presented here is quite general, and 
that the actual values of the boundary-layer constants 
are not crucial to the theory. Henceforth we shall 
adopt the values Cb = 2.5, Cp = 2, and y0 = 1. 

Figure 2 shows the radial structure of the boundary 
layer for three different values of cüs. The currents 
circulating in the boundary layer screen the magneto- 
spheric field by a factor b0 ~ 0.2. The angular velocity 
of the matter, which is Keplerian at the outer edge, is 
reduced by the magnetic stresses in crossing the layer, 
and reaches corotation at the inner edge. The radial 
velocity of the matter equals the slow radial drift 
characteristic of the outer transition zone at ro, as 
required by the velocity boundary condition; within 
the boundary layer it first increases inward as centri- 
fugal support fails and then passes through a maximum 
and decreases inward as the opposing magnetic pres- 

sure gradient becomes very large, finally vanishing at 
the inner edge of the boundary layer. The maximum 
value reached by |t;r| in the boundary layer declines 
systematically as the angular velocity of the star 
increases, but is typically ~ 0. l-0.3(2GM/ro)1/2(âo/ro)

1/2. 
The radial mass flux F decreases inward steeply and 
monotonically in all cases. 

Because the screening currents in the boundary 
layer enhance the stellar magnetic field in the magneto- 
sphere, the value of /x in equation (24) and those that 
follow should be somewhat larger than the true dipole 
moment of the star. The factor of enhancement has 
been found to be in the range 1.7-3 in previous studies 
of static screening of the magnetospheric field by 
plasma (Cole and Huth 1959; Midgley and Davis 
1962; Arons and Lea 1976; Eisner and Lamb 1977). 
The enhancement should be smaller in the present 

Fig. 2.—Radial structure of the boundary layer for three 
values of the fastness parameter ws, and the canonical values 
of the boundary-layer constants, namely, y0 = L Cb = 2.5, 
and Cp = 2. The variables are the same as in Fig. 1. The gate 
function g(x) is shown in the first panel {dashed-dotted line). 
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gus=0.3 

Fig. 3.—Vertical structure of the boundary layer for a star 
of fastness <os = 0.3 and the canonical values of the boundary- 
layer constants (see Fig. 2). Shown are the vertical semithick- 
ness e, temperature 0, density £, and pressure in appropriate 
dimensionless units (see text). Note that the variables £ and x 
are plotted on a logarithmic scale. 

case, since the screening currents are concentrated 
near the disk plane. An accurate calculation of this 
factor requires quantitative knowledge of the magneto- 
spheric field all the way from the stellar surface to r0, 
however, and therefore must await a detailed mathe- 
matical description of the accretion flow between r0 
and rf. 

Consider now the variables that describe the vertical 
structure of the boundary layer. Their variation 
through the boundary layer is shown in Figure 3 for 
the case ojs = 0.3 (rotators with other values of ws 
have very similar vertical structures). The density at 
the outer edge is comparable to the density of a 
standard disk. It first decreases inward as the radial 
velocity increases and matter is lost from the disk, then 
passes through a minimum, and finally increases 
inward as the radial velocity decreases. The behavior 
of the boundary-layer temperature follows from that 
of the density. Since the heat dissipated in the layer is 
transported vertically by radiation, the radiant-energy 
density, which varies as T4, is directly proportional 
to the rate of energy generation per unit volume by 
magnetic field dissipation, which scales as the energy 
density Bz

2I%tt of the magnetic field, and inversely 
proportional to the mean free path of the photons, 
which scales as p-1 (since electron scattering is the 
dominant source of opacity). At the outer edge of the 
layer, Tis comparable to the standard disk temperature. 
Going inward, T first decreases as Bz

2I%tt rises only 
slowly and p quickly falls. Subsequently, T becomes 
roughly constant as the increase in Bz

2ß7r roughly 
balances the decrease in p. This constant temperature 
is ~0.1-0.3 of the standard disk temperature, since 
in this region pis ~ 10-2-10“3 times the standard disk 
density while the energy dissipation rate is ~ 0.1-1 
times that in a standard disk. 

IV. THE OUTER TRANSITION ZONE 

We turn now to a detailed calculation of the structure 
of the outer transition zone. We first present the 
equations that describe the flow in this zone and 
compare them with the corresponding equations of 
the standard disk model. We then introduce the 
boundary conditions and show that the equations can 
be solved in a manner similar to that of the a-disk. 
Finally, we discuss the character of the solutions, pay- 
ing special attention to the behavior of the residual 
magnetospheric field. 

a) Equations 

Equations to describe the accretion flow and the 
magnetic field configuration in the outer transition 
zone can be obtained by generalizing the set of 
standard disk equations so as to include the effects of 
the residual magnetospheric field which threads the 
disk in this zone. This generalization consists of both 
modifying some of the standard disk equations and 
adding some new equations. 

First, however, two equations can be taken over 
unchanged from the standard disk model. These are 
the equation of state (15) and the equation of hydro- 
static equilibrium in the vertical direction, that is, 
equation (13) with Cp set equal to unity. 

Three further equations can be obtained by modify- 
ing standard disk equations. The first of these is the 
equation which expresses angular-momentum con- 
servation, 

(d¡dr)[tilr2ílK + ATT^ida^dr)} = B0Bzr
2 . (35) 

Here r¡ is the coefficient of effective viscosity. The new 
term on the right-hand side takes into account the 
angular momentum transported by the magnetic 
stress associated with the twisted stellar field lines. 
The second equation obtained by modifying a standard 
disk equation is the one which describes the vertical 
radiative transport of the energy dissipated in the disk, 

%caT*lphi< = 7)hr2(dQ.Kldr)2 + (J2l<Jefi)h. (36) 

Here k is the Rosseland mean opacity. The two terms 
on the right-hand side represent the two dissipative 
processes by which energy is generated in this zone. 
The first is the usual one representing viscous dis- 
sipation, while the second describes the resistive 
dissipation of the current generated by the cross-field 
motion of the plasma. 

The third modified equation is the one which 
defines the «-model of the dissipative stresses. The 
expression on the right-hand side of equation (36) 
can be regarded as representing the energy dissipated 
through an effective stress Wefi at the Keplerian rate 
of strain (rdQ.Kldr), and can therefore be written as 
Wett(rd£lKldr)h. The stress Wef{ then consists of two 
parts, the usual effective viscous stress, 7](rdQ.KJdr), 
and the magnetic stress associated with the residual 
magnetospheric field. The following arguments show 
that Weff cannot exceed the thermal pressure p. The 
effective “viscous” stress, due to turbulence or 
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the reconnection of small-scale magnetic fields in the 
plasma, cannot exceed p, since neither the turbulence 
nor the small-scale magnetic field can attain super- 
thermal energy density (Shakura and Sunyaev 1973). 
Similarly, the magnetic stress associated with the 
residual stellar magnetic field threading the disk plasma 
cannot exceed p, since such a strong stellar field would 
disrupt the disk. Thus we can write Wef{ in the form 
IFeff = op, where the parameter a is less than or of 
order unity; we assume that a is constant on a length 
scale ~r. This equation and equation (36) are then 
completely analogous to the corresponding equations 
in the standard disk model of Shakura and Sunyaev 
(1973), and can be used to solve for the vertical struc- 
ture of the outer transition zone in the usual way. 

Finally, we need to determine the magnetic field 
configuration in this zone. As mentioned in § lib, 
shear in the toroidal velocity field generates a toroidal 
magnetic field from the existing poloidal field, and 
this is further amplified by the converging flow. At 
the same time, the growth of the toroidal field is 
limited by reconnection. As a first approximation, we 
model this complex process by assuming an amplifica- 
tion rate ya\^K — ^s|> where ya is a numerical factor 
~1, and a reconnection rate Çvjlh, where vA = 

Then, balancing the growth and decay of 
B# gives an average azimuthal pitch 

r<j> 2A(47t/o) 1/2 Qk 

b2 
(37) 

Assuming the flow to be steady, this pitch determines 
the effective conductivity of the disk plasma for 
poloidal currents, via equation (11). We further 
assume that the effective conductivity of the disk 
plasma for toroidal currents is the same as for poloidal 
currents, and that the ratio yJÇ is constant throughout 
the outer transition zone. Adding equations (8) and 
(9) then completes the description of the magnetic 
field. 

b) Boundary Conditions and Method of Solution 

As in the standard model, the angular velocity in 
the outer transition zone is assumed to be Keplerian. 
The ratio yJÇ is fixed by requiring that join 
smoothly to its value y0 at r0. Given a trial vertical 
disk structure, this boundary condition, together with 
equations (9) and (11), determines the screening 
current /, the residual poloidal magnetic field Bz, and 
the energy-dissipation rate due to cross-field motion. 
The last determines the new vertical structure, which 
can be compared with the trial structure, and the 
procedure can then be iterated until a self-consistent 
vertical disk structure and residual magnetic field is 
found. 

c) Character of the Solutions 

The structure of the outer transition zone is very 
similar to that of a standard disk at the same radius, 
as may be seen from Figure 4, which compares the 
temperature, density, and vertical thickness in this 
region to the corresponding quantities in a standard 
disk. 

Consider now the magnetic field configuration in 
this zone. The poloidal field is screened on a length 
scale by the azimuthal current J# = —^euC~1vrB2 
generated by the radial cross-field drift of the plasma. 
We can express this screening by writing Bz ~ 
nb0r~

3 — Bs, indicating that the stellar dipole field, 
screened to a fraction b0 of its unscreened value by 
the boundary-layer currents, is further reduced by the 
screening field Bs. Solving for Bs using standard 
techniques, one finds 

Bs = y0*o-M«2(l - ^sY^-^y-^Bár,), 

(38) 

Fig. 4.—Structure of the outer transition zone for a star of fastness ws = 0.3. Shown are the vertical semithickness c, temperature 
6, and density £, in appropriate dimensionless units (see text) as a function of the dimensionless radius y = r/r0. Also shown is 
the residual poloidal magnetic field, ¿>0ut = BzliLb0r~

3. The point y = ys marks the outer edge of the transition zone. 
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where e0 = <K)o), 
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+ jn-3F(j -2)j , n = 40/47 , (39) 

in terms of the hypergeometric function F(t) = 
2F1(3I2, 1/2, 2, t), and y = r/r0 is the dimensionless 
radius. The function/, which is ~ 3 at >> = 1, decreases 
monotonically with increasing y, closely approaching 
its asymptotic value 0.78 for y > 3. The z-component 
of the magnetic field in the outer transition zone is 
conveniently described by the dimensionless variable 

bout = B^bor-* = 1 - [f(y)IO.n](ylysy°'*°. (40) 

The form of the right-hand expression emphasizes 
the fact that f(y) reaches its asymptotic value at 
y = ys (see below). 

Two approximations have been made in obtaining 
the solution (40). First, in writing Bz in the form 
fib0r~

3 — Bs it has been assumed that the screening 
currents inside r0, consisting of (/) the boundary-layer 
currents and (//) the currents generated by the cross- 
field flow between the boundary layer and the flow- 
alignment radius rf, reduce the basic dipolar field of 
the star to exactly that of a dipole of moment /x60. 
This does not follow from the boundary-layer solu- 
tions presented above. However, the facts that 
(1) Bz(ro) = ^bQrQ~

3, and (2) the total screening 
currents inside r0 reduce the stellar field at radii » r0 
to roughly that of a dipole of moment /xè0, mean that 
the dipolar approximation is good except for higher 
multipole components in Bz which may be significant 
at radii less than or of the order of several times r0. The 
calculation of these higher multipoles is another refine- 
ment which must await a quantitative description of 
the accretion flow and the magnetic field configura- 
tion in the region between the boundary layer and the 
flow-alignment radius rf. 

The second approximation made in obtaining the 
solution (40) was to assume that (jei{ is given by equa- 
tion (11) with y0 given by equation (37). Among other 
things, this implies <7eff oc which leads to a 
very large value of cjeff at large radii. In reality, o^ff is 
limited by dissipative processes other than reconnec- 
tion which are not included in equation (37). Thus a 
better approximation is to use the result (40) inside 
the screening radius 

^ rs/r0 * 103«“ 32/73yo “ 40/73(l - , (41) 

where Bz first vanishes, and i?2 = 0 outside. This 
approximation is shown in Figure 3. 

The azimuthal pitch y# of the magnetic field can be 
calculated from equation (37) and the known vertical 

structure of this zone. The result is that as r increases 
from r0, y# increases from y09 passes through a maxi- 
mum value ~y09 then decreases, changes sign at the 
corotation point = (GM/Q.S

2)113, where ÜK = Qs, 
and remains negative for r > rc. increases with 
increasing radius for r > rc, scaling roughly as 
^out”1 for r»rc. Thus the magnetic field lines 
between rc and rs are swept backward and therefore 
exert a spin-down torque on the star. Most of the 
spin-down torque comes from the region where 
y0 < ly^l < 105yO5 as we show in a subsequent paper 
(Ghosh and Lamb 1979). 

v. DISCUSSION 

In the previous sections we have outlined a model 
for disk accretion by magnetic neutron stars and have 
used it to construct detailed solutions describing the 
radial and vertical structure of the accretion flow in 
the transition zone between the corotating magneto- 
sphere and the disk. In the present section we discuss 
these solutions, describe some of the implications for 
neutron-star X-ray sources, and briefly compare our 
results with other work. 

a) General Character of the Present Solutions 

The structure of the transition zone found in §§ III 
and IV, namely, a narrow inner boundary layer where 
most of the screening occurs, together with a broad 
outer zone where the residual stellar flux threads the 
disk, appears to be a general feature of steady, axi- 
symmetric disk accretion, as we now discuss. 

In the accretion disk, Ù ^ QK, the force of gravity 
and centrifugal force closely balance, and the radial- 
flow velocity is determined by the effective viscous 
shear stress, which is relatively weak and scales roughly 
as r~5/2. The disk ends where the azimuthal velocity 
begins to depart significantly from the Keplerian 
value. This occurs where the torque exerted on the 
disk plasma by the stress of the stellar magnetic field, 
which tries to enforce corotation, is large enough to 
brake the azimuthal motion in a radial distance 8 « r. 
Thus the inner radius r0 of the disk is determined 
implicitly by the relation 

(rÆ2Æ0/47r)o277ro2S ^ {rpv^v^lirrflh , 8 « r , 

(42) 

which also follows from equation (6). That there must 
be such a point may be seen as follows. Where the 
stellar magnetic field begins to control the azimuthal 
motion, one expects B# ~ BZ9 so that in the absence of 
screening the left side of equation (42) scales roughly 
as (8/r)r _3, whereas for disk flow the right side scales 
roughly as r1/2. Screening steepens the radial depend- 
ence of the magnetic field and only strengthens this 
conclusion. Viscous stresses do not appear in equation 
(42) because they are too weak, in a thin disk, to 
disrupt the Keplerian motion; thus, at the point where 
the magnetic stress becomes large enough to disrupt 
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this motion, the viscous stress is, of necessity, negli- 
gible (the viscous stress is negligible even within the 
boundary layer, as shown below). 

Consider now the width 8 of the angular-velocity 
transition zone or boundary layer. Even if there were 
no screening, this width would be only a fraction of 
the radius where it occurs, because of the steep radial 
dependence of B2. But the radial motion of the disk 
plasma is perpendicular to the poloidal magnetic field 
of the star, creating an azimuthal electric field which 
drives toroidal currents. These currents screen the 
poloidal magnetic field, confining it and reducing the 
width of the transition zone to the electromagnetic 
screening length, 

Here <7eff is the effective conductivity for toroidal 
currents. Now the effective conductivity of the disk 
plasma for poloidal currents is related to the toroidal 
component of the magnetic field; in the boundary 
layer, where B# æ Bz and the flow is steady, this con- 
ductivity satisfies equation (11) with ~ 1. To the 
extent that the same conductivity can be used to 
evaluate equation (43), one obtains the result 

S ~ (1 - ojs)(vKlvr)h, (44) 

where cus = Qs/iîK and vK = (GM/r0)
m. This is 

sufficient to show that the angular-velocity transition 
zone is narrow (8 « r0), as follows. 

First, suppose 8 were instead ~r0. From equation 
(44) , this would require vr ~ (A/r0)(l — ws)%. Since 
the typical value of Q in the boundary layer, although 
greater than Qs, is less than QK, the gravitational force 
is not completely balanced by the centrifugal force 
there, and will lead to a typical inward velocity of 
magnitude 

Vr ~ (S//o)1,2(l - <os
2)ll2vK , (45) 

which for 8 ~ r0 is much larger than allowed by 
equation (44). A self-consistent solution might still 
be possible if the radial component of the magnetic 
pressure gradient, dB2/dr, were large enough to balance 
the net radial force ~(1 — cos

2)pg. But from equation 
(42), dB2¡dr æ (A/r0)

2(l — <*>s)
2pg, which is too small. 

Thus 8 ~ r0 is not self-consistent. 
Ignoring for the moment the radial component of 

the magnetic pressure gradient, equations (44) and 
(45) can be solved for the self-consistent width of the 
boundary layer, with the result, 

8/r0 - (1 - <0^(1 + a>s)-
1/3(Ä/ro)2/3 « 1 . (46) 

That the magnetic pressure gradient does provide some 
support in the self-consistent solution may be seen by 
substituting the result (46) into equation (42) and is 
also evident in Figures 1 and 2, which show that vr 
decreases near the inner edge of the boundary layer 
where this gradient is greatest. The value of the ratio 
ya/| that emerges from the numerical solutions is in 

the range 0.1-3 for y0 — l9 which is consistent with 
reconnection being the dominant magnetic field dis- 
sipation process in and near the boundary layer. 

Next, consider the overall effect of the azimuthal 
screening currents flowing in the boundary layer on the 
magnetic field configuration. These screening currents 
cannot completely shield the disk outside r0 from the 
stellar magnetic field, since the magnetic field that they 
produce falls off more steeply with radius than r~3. 
Thus, even if these currents were to screen the disk at 
r0, they would fail to screen the disk outside the 
boundary layer, and some of the magnetic flux from 
the star would therefore penetrate this part of the disk 
as a result of the threading processes described in § lia. 
However, the numerical calculations of § III indicate 
that the azimuthal currents in the angular-velocity 
transition zone screen off only ^80% of the stellar 
magnetic field even at r0. This screening factor appears 
to be quite insensitive to the structure of the boundary 
layer. Hence the full transition zone extends outward 
some distance beyond the angular-velocity transition 
zone at r0. 

Finally, consider the extent of this outer part of the 
transition zone, where the angular velocity is Keplerian 
but there is still an appreciable magnetic coupling 
between the star and the disk. The slow radial drift 
of the disk plasma in this region generates toroidal 
screening currents in the same way as in the inner 
transition zone, but the currents here are much 
weaker due to the smallness of vr. The quantitative 
calculations of § IV, which assume a stationary flow 
and an isotropic conductivity tensor, indicate that the 
zone of appreciable coupling typically extends out- 
ward to several times >0. The present solutions for the 
magnetic field configuration are unreliable at larger 
radii, where they depend sensitively on the model of 
magnetic field dissipation adopted and predict values 
of which are quite large. Nevertheless, the nature 
of the outer transition zone and the qualitative be- 
havior of the accretion torque will be unaffected by 
improvements in the treatment of this region so long 
as the screening length remains >r, a result which 
seems relatively secure. 

In summary, the two-part structure of the transition 
zone in the present solutions seems likely to be a 
general feature of steady, axisymmetric disk accretion. 
Ftirthermore, the arguments presented here show that 
the inner radius of the disk and the width of the 
boundary layer do not depend on the details of 
the magnetic field dissipation process but only on the 
existence of a steady flow, the isotropy of the con- 
ductivity, and the reasonable assumption that ä 1, 
where the magnetic field begins to control the flow. 

b) Existence of a Maximum Fastness 

In our model, stationary inflow solutions can be 
found only for values of the fastness parameter œs 
less than a certain maximum fastness a>max ^ 1. The 
reason for this is that when œs > wmax the centrifugal 
force on the plasma in the boundary layer is so great 
that the net radial force at r0, which has gravitational, 
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centrifugal, and magnetic components, is outward and 
so large that the inflow velocity falls to zero in a 
distance much less than S0. We speculate that unsteady 
accretion may occur for values of œs larger than but 
comparable to wmax, while for ws » <omax, disk accre- 
tion may cease altogether (compare Davidson and 
Ostriker 1973; Lamb, Pethick, and Pines 1973). 

The range of values of /¿, Af, Aï, and spin period P 
which satisfy o)s < l can be estimated from equation 
(24). Given /x, M, and AT, steady-flow solutions can be 
found only if P exceeds a certain critical value Pmin. 
Conversely, given /x, M, and P, such solutions can be 
found only if tii exceeds a certain critical value ^min. 

c) Nature of the Boundary Layer 

The boundary layer has several novel and interesting 
features : 

1. It is an electromagnetic boundary layer, in that 
the dominant stresses are magnetic, rather than viscous 
as in ordinary shear boundary layers. This follows 
from equations (13), (42), and (45), which show that 
the ratio of the magnetic stress ~BzB(})I4tt to the vis- 
cous stress ~r¡rdQt¡dr\s >(r0/A)2/3(l + ws)

1/3(l - ws)-
1/3. 

Thus the neglect of the viscous stress in the boundary 
layer (§ III) is valid. 

2. The radial inflow is supersonic throughout most 
of the layer. This follows from equations (13) and (45), 
which imply vr/cs ^ (r/A)2/3(l - o>s

2)1/2 - 20. Were the 
structure of the boundary layer determined by the 
viscosity instead of the magnetic field, the radial 
velocity could not exceed the sound speed, since the 
effective viscous stress cannot exceed the thermal 
pressure. 

3. Energy generation within the boundary layer is 
the result of resistive dissipation of electrical currents 
flowing there, rather than viscous dissipation, and 
occurs at a rate ~GMtálr0. This rate is comparable 
to the rate of energy generation throughout the outer 
transition zone. The temperature in the boundary 
layer is also comparable to that in the outer transition 
zone near r0, and is ~ 0.1-1 times the temperature 
(~ 100 eV) of a standard disk at r0 (see Fig. 3). Thus, 
the UV and soft X-ray emission from the boundary 
layer is not readily distinguishable from that emitted 
by the broad outer transition zone. 

d) Flow from the Boundary Layer to the Neutron Star 

In constructing the present flow solutions we have 
assumed that the flow from the boundary layer to the 
neutron star is channeled by the poloidal magnetic 
field. A thorough discussion of this assumption would 
require a detailed knowledge of the magnetic field and 
the flow in this region. Here we simply outline the 
nature of the problem. 

The accretion flow in the magnetosphere between 
the disk plane and the star divides naturally into two 
parts: (1) the flow between the disk plane and the 
flow-alignment radius rf and (2) the flow between rf 
and the surface of the star. We consider these two 
regions in reverse order. 

The flow between rf and the stellar surface is, by 
definition, completely field-aligned in the corotating 
frame of the star (see Paper I). Lamb and Pethick 
(1974) first pointed out that within the magnetosphere 
such a flow is stable only if it is sub-Alfvénic, and that 
this condition therefore limits the extent of the stable 
magnetosphere; detailed calculations performed since 
then (Williams 1975; Adam 1978) have clarified the 
nature of the instability that occurs in a field-aligned 
flow which passes from super-Alfvénic to sub-Alfvénic. 
A necessary condition for the stability of the accretion 
flow interior to rf is therefore that the Alfvénic Mach 
number, Jtp, = v^vA, not cross unity from above any- 
where in this region. Here is the flow velocity along 
the magnetic field and vK is the Alfvén velocity in the 
poloidal magnetic field. A determination of the field 
strength, plasma density, and velocity over the accre- 
tion bundle requires a detailed knowledge of the accre- 
tion flow at the flow-alignment surface. However, even 
without such knowledge one can estimate the Alfvén 
Mach number averaged over the accretion bundle, 
assuming that the magnetic field is dipolar in this 
region. Then the cross-sectional area of the accretion 
bundle is 

a{r) ^ 47rr2(8/r0)(r/ro)[4 - 2>{rlr0)]~
112 . (47) 

Using equations (29), (30), and (47), the equation of 
continuity, and the values of the boundary-layer 
constants chosen in § III, one finds 

<^a> ~ (^i,/%)1/2Wro)5/4[4 - 3(rlr0)]-^(B0IBp)9 

(48) 

where B0 = /xr _3[4 — 3(r/r0)]
1/2 is the typical strength 

of the unscreened poloidal field along the accretion 
bundle. Clearly, <^> is less than unity for r < rf < r0 
since < vfl and Bp > B0. Given <^A> < 1, we 
expect that < 1 over most of the cross section of 
the flow, and hence that the flow inside the flow- 
alignment surface is stable. 

The corresponding stability condition for the flow 
between the disk plane and rf is not known, since the 
stability of magnetohydrodynamic flows in the presence 
of finite electrical conductivity and appreciable cross- 
field motion has not been studied in detail. It seems 
likely, however, that a sufficient condition for the 
flow in this region to be stable is JÍA < 1. The Alfvén 
Mach number of the vertical flow at the disk plane 
can be calculated over the entire accretion bundle 
using the boundary-layer solutions obtained in § III. 
In terms of the dimensionless boundary layer variables, 
the result is 

-MrrKsr] « 

and is shown in Figure 5 for the case cos = 0.3. At 
this point the flow is sub-Alfvénic over the entire 
accretion bundle. The average Mach number well 
above and below the disk is given by equation (48), 
to the extent that the cross-sectional area of the 
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gus=0.3 

Fig. 5.—Alfvén Mach number of the flow in the accre- 
tion bundle just above and below the disk plane as a function 
of the boundary-layer coordinate for a star of fastness 
<os = 0.3. 

accretion bundle in this region is given by equation 
(47) and no mass is lost from the accretion bundle due, 
for example, to Rayleigh-Taylor instability (the latter 
would lower the Mach number). The quantities that 
appear in equation (48) take the values (rn/%)1/2 ~ 0.1, 
(r/ro)5'4[4 - l(rlr0)}-^ = 1, and 0.5 < (B0/Bp) < 5, 
at the disk plane. With increasing distance away from 
the plane, 1^/% increases slowly, while (r/r0)

5/4 x 
[4 — 3(r/r0)] ~1/4 rapidly decreases, and B0IBP ap- 
proaches unity. It therefore seems likely, though not 
certain, that < 1 also holds between the disk plane 
and the flow-alignment surface. 

e) Implications for X-ray Emission from 
the Stellar Surface 

The topology of the accretion bundle found here, 
with appreciable flux threading the disk outside 
the boundary layer, implies that matter within the 
bundle collides with the stellar surface in polar 
rings of radius Rr ~ 03(R/r0)

ll2R and width 8r ~ 
0.5(i?/r0)

3/2S ~ 0.12i?r, where R is the stellar radius. 
The area of each ring is typically ~ 109 cm2, giving 
a lower limit to the temperature of the emitting region 
of 9 x 107(M/Mo)1/2V301/7^375/28^6~23/28 K, assuming 
that all the accreting matter is channeled within the 
accretion bundle by the stellar magnetic field. 

In reality, all matter need not be channeled to the 
magnetic poles of the star. In its flow out of the disk 
plane toward the star, the accreting matter is supported 
against the gravitational force of the star by the 
pressure of the stellar magnetic field. This situation is 
Rayleigh-Taylor unstable, and, depending on the 
relation between the growth time of the instability 
and the time of infall from r0 to the stellar surface, 
may allow significant amounts of matter to penetrate 
near the stellar surface without becoming flux-frozen 
(Eisner and Lamb 1976, 1977; Arons and Lea 1976). 
The motion of matter entering the magnetosphere in 
this way and its implications for pulse shapes and 

spectra of pulsating X-ray sources has been discussed 
by Eisner and Lamb (1976). The accretion bundles near 
the disk plane are particularly likely to be unstable, 
since the centrifugal support due to motion along the 
curved field lines of the bundle is small there. 

/) Implications for Period Changes in 
Pulsating X-ray Sources 

In Paper I we derived bounds on the accretion torque 
by applying conservation laws and discussed the im- 
plications for spin-up and spin-down of the neutron 
star. In particular, we showed that if the star were 
accreting from a disk rotating in the same sense as the 
star and if the transition zone were narrow (width 
« r0), then the accretion torque N would satisfy the 
inequality 

¿(1 + a>s)N0 <N< No, (50) 

where N0 = Nf(GMr0)
112 and œs is the fastness param- 

eter, which satisfies 0 < < 1. Thus, if the transition 
zone in disk accretion were narrow, fast as well as 
slow rotators would experience a spin-up torque ^ A0. 
This in turn would make it difficult to understand the 
behavior of a fast rotator like Her X-l which is surely 
accreting from a disk but shows a spin-up rate ~40 
times smaller than would be implied by an accretion 
torque ~N0 (Eisner and Lamb 1976). Even an 
arbitrarily small stellar magnetic field would not be 
sufficient to reconcile this discrepancy, contrary to the 
conclusion of Scharlemann (1978), who postulated a 
narrow transition zone but a minimum accretion 
torque very much smaller than that allowed by 
inequality (50) (such a small accretion torque would 
require a substantial violation of energy conservation). 

The present calculations show that there is, in fact, 
no conflict between the theoretical and observed spin- 
up rates, since the transition zone in disk accretion 
generally is not narrow. In a subsequent paper (Ghosh 
and Lamb 1979), we use the accretion-flow solutions 
constructed here to show that the magnetic coupling 
between the disk and the star due to the stellar field 
lines which thread the disk in the broad transition 
zone is appreciable, and can be the dominant com- 
ponent of the accretion torque when the stellar angular 
velocity is sufficiently large. As a result, the accretion 
torque on fast rotators is generally less than NQ and 
can even become negative (braking the star’s rotation) 
while accretion, and hence X-ray emission, continues. 
The calculated secular spin-up rates are in quantitative 
agreement with the observed values for magnetic 
moments /x ~ 1029-1032 gauss cm3. 

g) Comparison with Oblique Rotators 

We have investigated here the problem of axi- 
symmetric accretion by aligned rotators because of its 
mathematical simplicity. On the other hand, the 
pulsating X-ray sources, at least, are almost certainly 
oblique rotators. Accretion by such stars will have 
several new features, four of which we note here. 

First, because the magnetospheric boundary in the 
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disk plane will no longer be circular, the magnetic 
forces acting on the disk plasma will be time de- 
pendent in the inertial frame and magnetic pressure 
gradients will affect the azimuthal, as well as the radial, 
motion. Although some of the details of the coupling 
between the star and the accreting plasma are certain 
to be altered, we expect the basic features of the flow 
that have emerged from the present calculations to be 
present, including the narrow shear boundary layer 
and the more extended region of magnetic coupling, 
and the inner radius of the disk to be determined by a 
condition analogous to equation (42). 

Second, only a subset of the magnetic field lines 
threading the boundary layer are likely to contain 
large amounts of accreting plasma. This is because 
field lines threading the boundary layer at other 
azimuths will be so tilted that the maximum of the 
gravitational potential along with them will occur far 
from the disk plane; matter accreting along field lines 
will therefore reach the stellar surface over only an arc 
of the “hot ring” described above, in a manner similar 
to that assumed by Basko and Sunyaev (1976). 

Third, the cross section of the accretion column will 
not be a circular arc since (as noted above) the distor- 
tion of the magnetospheric field by electrical currents 
flowing in the disk will no longer be axisymmetric. 

Fourth, the accretion torque acting on the star will 
have a component perpendicular as well as parallel to 
the rotation axis. Such a torque component could play 
an important role in pumping or damping free pre- 
cession of the star (see Lamb et al. 1975). 

h) Comparison with Other Work 

It may be helpful to compare the results of the 
present calculations with other work. We first com- 
pare the physical criterion that determines the inner 
radius of the disk in the hydromagnetic solutions 
found here with criteria suggested previously in the 
literature. Previous suggestions can be divided into 
three types according to whether they assume that the 
inner radius is determined by energy, stress, or pres- 
sure balance. After briefly discussing each of the three 
types of criteria and the values of r0 that they predict, 
we conclude by comparing the plasma flows assumed 
in some recent treatments of disk accretion with those 
expected on the basis of the present solutions. 

Lamb, Pethick, and Pines (1973) identified the inner 
radius of the disk with the radius at which the stellar 
magnetic field begins to channel the accretion flow. 
They assumed that the magnetic field rapidly threads 
the accreting plasma and therefore begins to channel 
the flow at the Alfvén radius rA, where the flow becomes 
sub-Alfvénic in the stellar magnetic field (see Paper I). 
In the absence of a detailed model of the flow, they 
estimated rA by calculating the radius where the 
energy density of the dipole magnetic field equals that 
of the accreting plasma as seen in the corotating frame 
or, in other words, where B2I%tt x %pv2 ; here v is the 
velocity of the plasma in the corotating frame (cf. 
Paper I, eq. [19]). In evaluating this expression, Lamb 
et al. adopted v ~ r£lK and a density comparable to 
that in the disk plane, with the result r0 ~ (hlr)211 x 

(Priva)217ra 0)> where vr is the radial velocity of the 
plasma just outside the Alfvén surface. If vr in this 
expression is evaluated using the typical radial velocity 
(8/r0)

1/2% in the boundary layer and the result (29) 
for S, one obtains the estimate r0 ~ 0.20Cœ

ll7rA
{0\ 

while if vr is evaluated using the radial velocity in the 
disk outside the boundary layer, the resulting estimate 
of r0 is still smaller. On comparing these results with 
equation (30), we conclude that this expression some- 
what underestimates rp in the case of axisymmetric 
disk accretion by an aligned rotator. 

Lamb and Pethick (1974) argued, for reasons similar 
to those given above in § Ya, that the stellar magnetic 
field first dominates the accretion flow where the 
magnetic stresses are comparable to the material 
stresses; this criterion is equivalent to equation (42) if 
8 ~ h (the algebraic expression given by these authors, 
namely pVrV# ~ is more appropriate to an 
oblique rotator, but gives the same value of r0 as 
eq. [42] if Br ~ Bz at r0 and 8 ~ h). Rees (1974) 
suggested a similar condition, pvrv0 ~ B2/47r, to deter- 
mine r0 ; this is equivalent to equation (42) if B# ~ Bz 
at r0 and 8 ~ h. Since the present model assumes 
B# ^ Bz at r0 and determines 8 to be ~4h (the latter 
follows from eq. [46]), the values of rQ given by these 
dimensional estimates roughly agree with the value 
obtained from the more detailed calculations described 
here. 

Finally, consider the estimates that were based on 
the idea of pressure balance. Pringle and Rees (1972) 
suggested that the magnetospheric boundary would 
be located where the pressure of the stellar magnetic 
field balances the gas pressure in the disk, that is, 
where B2¡8tt ~ /?disk. This criterion gives the estimate 
r0 ~ 0.57x-2/7y2/'VA

(0), if one uses the disk model of 
these authors, or r0 ~ 0.26a2/7rA

(0), if one uses the 
disk model of Shakura and Sunyaev (1973). Scharle- 
mann (1978) modified the Pringle-Rees condition by 
attempting to take into account the enhancement of 
the stellar magnetic field B by screening currents at 
the inner edge of the disk. His modified condition, 
{B + A2?)2/87t ä /?disk, where Ai? is the screening field, 
gave r0 ~ 0.86a2/7rA

(O). However, the first two of the 
three boundary conditions used by Scharlemann to 
choose a solution are actually the same equation 
approximated in two different ways. Thus, the inner 
radius of the disk determined using these boundary 
conditions is not logically consistent. Ichimaru (1978) 
modified the Pringle-Rees criterion in a different way 
by attempting to take into account gravitational and 
centrifugal forces acting on the plasma in the boundary 
layer. However, Ichimaru’s model is defective in 
important respects, some of which are noted below. A 
general question which arises with all criteria based 
on the idea of pressure balance is the relevance of this 
static criterion to dynamic accretion flows which 
penetrate the magnetospheric cavity. At the very least, 
these criteria ignore both inertial forces (see Eisner 
and Lamb 1977) and the coupling between the stellar 
magnetic field and the orbital motion of the plasma 
which results from the Kelvin-Helmholtz instability 
and other processes (see § II above). 
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In summary, the criteria previously proposed for 
estimating r0 have quite different physical interpreta- 
tions and show quite different scalings in terms of the 
physical parameters of the problem from that of the 
criterion found from the present detailed calculations. 
Despite these important differences, the earlier criteria 
typically give estimates for r0 which are within a 
factor of ~2 of the value found here, a consequence 
of the steep radial dependence of the stellar magnetic 
field and the resulting insensitivity of r0 to the particular 
criterion used. 

The flow of plasma from the disk toward the star 
has also been considered recently by Scharlemann 
(1978) and Ichimaru (1978). Scharlemann stressed the 
likely importance of the Kelvin-Helmholtz instability 
in mixing the disk plasma and the magnetospheric 
field and suggested a model of plasma flow from the 
inner edge of the disk toward the neutron star which is 
very similar to the model we have adopted in the 
present work. Ichimaru proposed a model of the flow 
in which plasma penetrates into a boundary layer by 
anomalous diffusion, but his treatment suffers from 
several deficiencies and inconsistencies. Among them 
we mention first, that his equation (7) implicitly 
assumes that the angular velocity of the plasma changes 
discontinuously from the Keplerian value outside the 
outer surface of the boundary layer to the stellar 
angular velocity just inside, even though there are no 
stresses in the model to effect this change. Second, his 
equation (29) assumes that the inflowing plasma within 
the magnetosphere rotates rigidly with the angular 
velocity of the star and that the flux of angular 
momentum toward the star is always zero. Both 
assumptions are too restrictive (cf. Paper I, eqs. [10] 
and [11]). In particular, the former requires that the 
stellar field lines be infinitely rigid, while the latter 
implies that the torque on the star is zero and hence 
that it spins down as it accretes (see Paper I, § IV.) 
Third, Ichimaru’s equation (31) implicitly assumes 
that the angular velocity of the plasma inside the 
magnetosphere is the same as that in the disk outside, 
contrary to the assumption implicit in his equation (7). 
Since these two angular velocities are in general 
different, his equation (31) should include an addi- 
tional term describing the change in the material stress 
across the magnetospheric boundary (see Lamb 1975, 
eq. [27]). 

VI. CONCLUDING REMARKS 

In the present paper we have described a first calcula- 
tion of the radial and vertical structure of the transi- 
tion zone at the magnetospheric boundary of an 
aligned rotating neutron star accreting matter from a 
Keplerian disk. The calculation indicates (1) that the 
inner edge of the disk is located where the integrated 
magnetic stress acting on the disk plasma becomes 
comparable to the integrated material stress associated 
with its inward radial drift and orbital motion ; (2) that 
the stellar magnetic field threads the disk near its 
inner edge via the Kelvin-Helmholtz instability, tur- 

bulent diffusion, and reconnection, producing a broad 
transition zone between the unperturbed disk flow and 
the corotating magnetosphere; (3) that the transition 
zone is composed of two qualitatively different regions, 
a broad outer transition zone where the motion is 
Keplerian, and a narrow inner transition zone or 
boundary layer where the departure from Keplerian 
motion is substantial; (4) that the stellar magnetic 
field is largely but not entirely screened by currents 
flowing in the boundary layer; and (5) that for suffi- 
ciently fast stellar rotation there are no steady-flow 
solutions. The inner radius of the disk and the width 
of the boundary layer do not depend on the details of 
the magnetic-flux reconnection process in the boundary 
layer but only on the existence of a steady flow and a 
crudely isotropic effective conductivity. Although 
magnetic flux reconnection is likely to produce 
fluctuations in the flow, at least on sufficiently small 
spatial and temporal scales, and hence variations in the 
size and structure of the boundary layer, the present 
stationary flow model may provide an adequate 
description of the average flow toward the star. 

In a subsequent paper (Ghosh and Lamb 1979), we 
use the results obtained here to calculate the torque 
exerted on the neutron star by the accreting plasma. 
There we show (1) that the magnetic field which 
threads the disk in the outer transition zone exerts an 
appreciable torque on the star; (2) that this torque 
can dominate the torque due to matter in the boundary 
layer, if the star is rotating fast enough, braking the 
star’s rotation even while accretion, and hence X-ray 
emission, continues; (3) that all the secular period 
changes so far measured in pulsating X-ray sources, 
including Her X-l, are consistent with disk accretion; 
and (4) that the short-term period fluctuations and 
spin-down episodes observed in Her X-l, Cen X-3, 
and 4U 0900 — 40 may be explained naturally as 
consequences of relatively small fluctuations in the 
mass-accretion rate. 

Work is currently under way (1) to develop a more 
sophisticated treatment of magnetic field amplification 
and dissipation in the transition zone, (2) to obtain 
solutions to the hydromagnetic equations that describe 
the flow between the disk plane and the flow-alignment 
radius, and (3) to use the understanding gained here 
to solve for the flow in the disk plane without making 
the boundary-layer approximation, thereby eliminating 
all undetermined constants and determining the varia- 
tion of the azimuthal pitch through the boundary 
layer. 

The present results also suggest several other 
problems that merit study. These include the mathe- 
matical description of the accretion flow in oblique 
rotators, the stability properties of steady axisym- 
metric flows of the type considered here, and the time- 
dependence of reconnection in the transition zone. An 
understanding of the last two problems would shed 
light on the origins of fluctuations in the luminosity, 
pulse period, pulse shape, and spectrum of pulsating 
X-ray sources, and would provide a basis for evaluat- 
ing the steady-flow assumption made in the present 
work. Finally, in view of the qualitative difference 
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between the transition zone in nearly spherical accre- 
tion and that in accretion from a Keplerian disk, it 
would be interesting to study how the transition zone 
changes from the one form to the other, by investigat- 
ing accretion flows in which the infalling matter has 
sufficient angular momentum to cause appreciable 
flattening of the flow but not enough to form a thin 
Keplerian disk. 
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