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ABSTRACT 
We have applied a general mechanism first proposed by J. A. Burke to red supergiants for deter- 

mining the spin-down rate and angular momentum loss of rotating stars. This model relies prin- 
cipally on sporadic mass ejection, which is assumed to be the result of turbulent elements accelerat- 
ing material in cool supergiant atmospheres. Mass is preferentially expelled in the forward direction 
of rotation, resulting in a rapid loss of angular momentum on time scales of 104-106 years in the 
supergiant evolutionary phase. Such rotational breaking will occur if the turbulent elements have 
characteristic sizes a few percent of the stellar radius, and rms velocities one-third the escape speed 
of the star. This model predicts the formation of a cool silicate disk or torus around the star because 
of the preferred expulsion of material near equatorial regions of the supergiant. 
Subject headings: stars: circumstellar shells — stars: mass loss — stars: rotation 

I. INTRODUCTION 

Sharp-line observations in late-type giants and super- 
giants are probably the best indication that evolved 
stars are very likely slow rotators. Typical equatorial 
rotational velocities for type I K and M supergiants 
are generally believed to be less than 10 km s_1 (Allen 
1973). In contrast to O and B supergiants that have 
equatorial velocities that range 100-300 km s_1 (Rosen- 
dhal 1970), post-main-sequence stars in general appear 
to have reduced their rotational speeds considerably. 
This in part is due to increased radius, and possibly to 
the dissipation of angular momentum through stellar 
winds and magnetic field interaction during main- 
sequence evolution that occurs on time scales of 1010 

yr (Weber and Davis 1967). 
In this paper we apply recent observations to a 

mechanism first suggested by Burke (1969, 1972), 
which involves the sporadic ejection of material from 
rotating stars, and the effect which mass expulsion has 
on removing angular momentum. In view of the large 
body of information that has recently been assembled 
concerning mass loss in K and M giants and supergiants, 
and spectral observations of macroscopic mass motions 
in late type stellar atmospheres, it would be of interest 
here to examine the suitability of this mechanism as it 
relates to the rotational properties of late type M stars, 
and large-scale velocity motions that are believed 
present in cool giant atmospheres. 

II. ANGULAR MOMENTUM LOSS 
AND STELLAR ROTATION 

Following Burke (1969, 1972), we assume that 
material is expelled isotropically at the stellar surface 

and is described by a Maxwellian velocity distribution 
with rms velocity iw- We adopt i>rmS as the mean 
turbulent velocity of elements present at the stellar 
surface. Furthermore, assuming that the star is rotat- 
ing, elements or globules moving in the direction of 
rotation are preferably ejected from the atmosphere, 
since they more easily attain velocities comparable to 
the escape speed of the star than do elements moving 
in the opposite direction. Accordingly, mass expulsion 
occurs preferentially in an equatorial plane in the 
forward direction of rotation. 

Intuitively, one would expect that if such a mecha- 
nism were operative, it would apply only to rapid 
rotators such as O and B supergiants. Late type red 
supergiants would seem unlikely candidates owing to 
their suspected rather low rotational speeds. However, 
if elements of material in the atmosphere attain rms 
speeds ^0.3 zw, then globules in the high-velocity 
tail of the Maxwellian distribution will have speeds 
exceeding the escape velocity of supergiants. Even at 
the low rotational speeds, less than 10 km s_1, en- 
countered in red supergiants, and even if the escaping 
material is only a small fraction of the total mass of the 
atmosphere involved in the sporadic activity, the fact 
that mass loss occurs principally in the direction of 
rotation could significantly affect stellar rotation. This 
is due to the exponential nature of the velocity distribu- 
tion. 

From Burke (1969, 1972) we can write the mass loss 
rate as 

M = (8/3)ImspvescR , (1) 

where Im is a parameter that is a function of ur = vraJ 
»rms and ue = flescArms, for which the values corre- 
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sponding to the rotational and escape speeds of a 
rotating star can be obtained from Burke (1969). In 
equation (1), 5 represents a linear size of the sporadic 
ejection elements, p is the average density of the 
medium in which the elements are emitted, and R is the 
stellar radius. 

For a working model, we postulate the existence of 
turbulent elements of scale size s ~ 5% of the stellar 
radius R; this corresponds to approximately 1600 
elements. If the characteristic velocity vTms ~ 30 km s_1, 
consistent with late type supergiant spectra, then 
approximately 3% of the elements will have velocities 
comparable to the ^100 km s_1 escape speed of super- 
giants. An additional 5 km s-1 imposed on the motion 
of the elements by rotation will significantly increase 
the number of globules having velocities exceeding the 
escape speed, owing to the exponential nature of the 
Maxwellian velocity distribution. Accordingly, ma- 
terial moving in the direction of rotation is preferential- 
ly ejected. It should be noted that Burke (1972) 
requires the minimum free path of the ejected elements 
to be comparable to the radius of the star for substantial 
angular momentum loss to occur. 

Using observational values of M from infrared mea- 
surements of Gehrz and Woolf (1971) and circumstellar 
line observations of Sanner (1976), adopting a mean 
atmospheric density p ~ 10"10 g cm-3 appropriate for 
cool giant atmospheres, and using values of radii and 
masses for red supergiants (Allen 1973), we obtain Im 
from equation (1). 

One can estimate the maximum theoretical values 
for zw by assuming that the original angular momen- 
tum on the main sequence has been conserved, at 
least to a first order approximation, during the evolu- 
tionary course of the star off the main sequence. Mean 
rotational velocities on the main sequence for 20 Me O 
and B supergiants are of the order of 200 km s-1, with 
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a maximum upper limit of 400 km s-1. Conserving 
angular momentum as the star enters the red super- 
giant region, such stars would have surface rotational 
velocities of <5 km s"1. This agrees with the observed 
upper limit of 10 km s-1 (Allen 1973). 

Since Im is a function of ur = twAims and ue = 
^'es e/ï'Vmsj knowing its value from equation (1), and 
knowing ^esc and zw, enables us to find the flrms necessary 
for such sporadic loss to occur. 

In Table 1, supergiant observations by Gehrz and 
Woolf (1971) and Sanner (1976) are given, together 
with the respective masses and radii (Allen 1973), 
effective temperatures (Lang 1975) and computed 
luminosities. The escape speeds and Kelvin time 
scales tk are also given for reference. 

In Table 2, we show the main-sequence rotational 
speeds (mean and maximum), and the corresponding 
rotational velocities in the red supergiant region that 
these particular stars would have assuming conserva- 
tion of angular momentum during post-main-sequence 
evolution. The deduced turbulent velocities zws are 
given. Decreasing the cell size by an order of magni- 
tude, and correspondingly increasing the number of 
elements, tends to result in velocities that are large 
compared to the observed turbulent velocities of 
supergiants. From the computed values of uej ur one 
can estimate the fractional mass AM/M lost during a 
characteristic spin-down time r of the supergiant 
(Burke 1972, eq. [7]). Writing the time r in the form 

r = (AM/M){M/Hi) (2) 

and using the observed value for M/M, we may 
obtain r. From Burke (eq. [6]) we know the ratio 

and hence, using our calculated tk, we obtain/, 
the fraction of the stellar luminosity that drives the 
ejection process. These quantities are displayed in 
Table 2. Whether one uses the mean or the uppe 
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TABLE 1 
Supergiant Observations 

Star Type 
M(X10-6 

Moyr-1)* M*(M0)t R*(Re)î Teff(K)î L* (Lq) § i>esc(kms !) rK(yr) 

H Cep. 

RW Cep. 
RW Cyg. 
TV Gem. 
a Ori. . . . 

BC Cyg. 
BI Cyg. 
5 Per. . . 
UY Set. 
119 Tau. 
6 Gem.. 
'I'1 Aur. 
a Sco... 
VV Cep. 

M2 la 

K5 Ia-0 
M2 Ia,b 
Ml Ia,b 
M2 Ia,b 

M3.5 la 
M3 Ia,b 
M4 la 
M4 Ia,b 
M2 lb 
Ml la 
K5-M0 Ia,b 
Ml Ia,b 
M2 Ia,b 

10 GW 
1 S 
5 GW 
5 GW 
1.2 GW 
0.7 GW 
0.17 GW 
7 GW 
7 GW 

27 GW 
6 GW 
0.24 GW 
2.1 S 
0.48 S 
0.1 S 
0.13 GW 

20 

16 
20 
18 
20 

22 
22 
25 
25 
20 
18 
16 
18 
20 

800 

400 
800 
630 
800 

900 
900 

1000 
1000 
800 
630 
450 
630 
800 

3500 

4410 
3500 
3680 
3500 

3295 
3360 
3230 
3230 
3500 
3680 
4160 
3680 
3500 

8.6X104 

5.4X104 

8.6X104 

6.5X104 

8.6X104 

8.6X104 

9.3X104 

9.7X104 

9.8X104 

8.6X104 

6.5X104 

5.4X104 

6.5X104 

8.6X104 

100 

125 
100 
100 
100 

100 
100 
100 
100 
100 
100 
115 
100 
100 

180 

366 
180 
245 
180 

195 
180 
199 
199 
180 
245 
325 
245 
180 

* GW = Gehrz and Woolf 1971. S = Sanner 1976. 
t and R* from Allen 1973. 
t Teff from Lang 1974. 
§ L* computed from reff and R*. 
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TABLE 2 
Rotational Speeds 

Main Sequence Red Giant 
iw(km s“1) w(km s“1) 

Star (average-max) (average-max) z;rms(km s_1) AM/M t//tk r(yr) / 

M Cep GW*  200-420 
p Cep S  200-420 
RWCepGW... 220-410 
RW Cyg GW. . . . 200-420 
TV Gem GW. . .. 200-420 
a Ori GW  200-420 
aOriS  200-420 
BC Cyg GW  190-413 
BICygGW  190-410 
5 Per GW  190-410 
UY Set GW  190-410 
119 Tau S  200-420 
6 Gem S  200-420 
4'1 Aur S  220-410 
a Seo S  200-420 
VV Cep S  200-420 

2.0-4.2 32.5 
2.0-4.2 28.9 
3.5- 6.5 41.9 
2.0-4.2 31.2 
2.5- 5.0 29.8 
2.0-4.2 28.6 
2.0- 4.2 27.0 
2.0- 4.3 31.4 
2.0-4.3 31.4 
2.0-4.3 33.9 
2.0- 4.3 31.0 
2.0- 4.2 27.2 
2.5-5.0 30.8 
3.0- 5.5 33.8 
2.5-5.0 26.8 
2.0- 4.2 26.7 

7 .OX 10~3 1.5 
5.2X10-3 9.0 
6.8X10“3 1.0 
6.2 X10“3 2.6 
8.9X10-3 8.5 
7.7X10-3 18.5 
6.5X10“3 57.2 
9.9 X10“3 3.8 
9.9X10“3 3.8 
1.OXIO“2 1.4 
8.6X10-3 4.5 
8.1X10-3 51.2 
8.9X10-3 5.1 
5.3X10"3 7.2 
4.7X10-3 43.1 
4.4X10-3 48.8 

1.4X104 1.9X10-2 
1.0X106 1.6X10-2 
2.2X104 1.7X10-2 
2.5X104 1.9X10-2 
1.3X105 1.5X10-2 
2.2X106 1.5X10-2 
7.6X105 1.3X10-2 
3.1X104 2.4X10-2 
3.1X104 2.2X10-2 
9.2X103 3.0X10-2 
3.6X104 2.5X10-2 
6.8X106 1.4X10-2 
7.6X104 1.6X10-2 
1.8X105 1.3X10-2 
8.5X105 1.6X10-2 
6.8X105 1.3X10-2 

* GW = Gehrz and Woolf 1971. S = Sanner 1976. 

value for the supergiant rotation does not greatly 
affect these results for AM/M, t//tk, t, and/. These 
four columns in Table 2, therefore, represent an 
average. 

III. RESULTS AND DISCUSSION 

The turbulent velocities we find necessary to drive 
the observed rate of mass loss are in the range flrms = 
27-34 km s-1. These values are consistent with the 
observed values of ^30 km s-1, and hence yield a 
workable model. The number of cells in the model is 
about 1600. On average, 4 X 10-3 to 10~2 of the 
original stellar mass is lost during a time scale r, 
where r is in the range 104-9 X 105 years. During this 
phase, the star loses a considerable fraction of its 
angular momentum, this being the result of sporadic 
emission or bursts of material possibly associated with 
propagating shock waves. About 1-3% of the total 
stellar luminosity is generally required to drive the 
mass loss. It is further found that a smaller turbulent 
scale size 5 does not greatly affect the time scale r. 
The turbulent velocity flrms increases slightly, but the 
fraction of energy required to drive the mass loss / 
decreases significantly. Similar sensitivities result in 
the opposite sense when the scale size 5 is increased 
slightly. During a time scale r, the number of ejected 
elements is 91 = (AM/M)/(ß/M), where ß is the mean 
mass of the elements. Therefore, one needs an element 
to be ejected on average every t/W years. This time 
scale is rather small (~10 days) for relatively large 
mass loss rates, i.e., ~10-5 Mö yr-1. Note that while 
an element needs to be ejected every 10 days, there 
will be many more elements moving with a velocity 
less than the escape speed. Since t/9? ^ ^ tjlen for 
a particular value of M, a smaller scale size s yields a 
smaller interval between bursts. However, the observed 
mass loss rates are more likely not constant. We would 
expect a correlation between M and i>rms or 5. It would 
be important to have observations that simultaneously 

measure M, cell size, and turbulent velocities. A direct 
correlation among these three quantities would support 
the model developed here. 

An increasingly large body of observational evidence 
now supports the theory that mass expulsion in late 
type stars is driven by large-scale shock waves in 
extended cool atmospheres. Willson (1976) has sug- 
gested that strong shocks in M giants that have 
velocities in the range z; = 50 km s-1 explain the 
observed luminosity variations in long-period variables. 
These shocks drive stellar winds from the immediate 
vicinity of the star to distances at which the continuous 
cooling of material allows the formation of grains and 
silicates, and radiation pressure can further expand 
the circumstellar shell (Salpeter 1974). Chiu et al. 
(1977), using high-resolution Ca n K line spectropho- 
tometry of a Boo (K2 Illb), find a variable mass loss 
rate of 10-9 to 8 X 10-9 Mö yr-1, which varies on a 
time scale comparable to the typical luminosity varia- 
tions observed in K and M supergiants. The expansion 
velocity deduced from these observations suggests 
Vrms = 13 km s-1, which would almost definitely 
constitute supersonic motion in an extended cool 
atmosphere. 

Additionally, Brooke, Lambert, and Barnes (1974) 
have found from interferometric spectra of a Ori 
(M2 Ia,b) that large-scale motions in the stellar atmo- 
sphere are evident. They attribute their results to 
sporadic bursts of material with estimated mass loss 
rates as high as 4 X 10-3 Me yr-1, consistent with the 
model here. The notion that strong atmospheric 
bursts of material are responsible for the observed 
mass loss rates in M giants and also determine the 
temperature and ionization structure of the cool 
giant atmosphere can also be inferred from spectro- 
scopic data of long-period variables and eclipsing 
systems such as £ Aur. 

The star R Aql, for example, is a Mira variable that 
ranges from M5 to M8 with a visual period of 293 days 
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(Kukarkin et al. 1969). Using the bolometric data 
obtained from Flower (1977), we estimate the mean 
radius at maximum and at minimum spectral phase, 
for which we have, at M5, 7? = 1.9 X 102 RQ, Te = 
3220 K, and at M8, Æ = 4.8 X 102 Re, Te = 2480 K. 
The difference between the radii found at extreme 
spectral phases M5 and M8, divided by half the pulsa- 
tion period II, should yield an average radial expansion 
velocity zJrad ~ Ai?/(II/2). For R Aql, Ärad « 80 km s-1, 
that is, a velocity well in excess of the mean sound 
speed of the envelope, and corresponds to a propagating 
shock wave Mach ~8. Spectral phase observations of 
M giants by Lockwood and Wing (1971) yield velocities 
that are typically vT&á = 50-100 km s-1. Calculations 
using bolometric magnitudes for the mean spectral 
classification of late type stars from Tsuji (1978) 
produce similar results. Accordingly, the spectral 
phase variation of long-period variables during a 
pulsation cycle appears in conflict with models that 
assume the star undergoes a substantial radial redistri- 
bution of mass, since actual material speeds would 
be far in excess of the sound speed of the medium, and 
unreasonable on physical grounds. Opacity and tem- 
perature changes in the stellar atmosphere could 
account for the observed variations in luminosity 
(Wallerstein 1977). 

We emphasize that the time scale between bursts 
computed here, 10 days <r/^l <6 years, is consistent 
with the observed time scale of irregular variations 
associated with late type supergiants such as a Ori. 

The rather small time scale for spin-down of r = 
104-9 X 105 years suggests that this phase is transitory. 
We therefore might expect that, if this mechanism is 
operative, approximately one-half of the angular 
momentum is rapidly dissipated from the star and 
leads to a further decrease in rotational speed. This 
would be consistent with the results of Kraft (1967a, ¿>), 
who finds that late type stars lose an appreciable 
fraction of their angular momentum in a relatively 
short period of time in the late giant phase. However, 
more recent work concerning the redistribution of 
angular momentum in late type giants by Sofia and 

Endal (1979) indicates that rapid loss of angular 
momentum does not occur if more current evolutionary 
models are considered. This important point remains 
open to further investigation. 

The observational detection of large cells comparable 
to the stellar radius in cool supergiants could be a 
manifestation of this mechanism, the general size 
being indicative of the rotation rate. It should also be 
noted that the size of the globules obtained from this 
model may require incorporation of spherical geometry 
effects in a more detailed treatment. A more convincing 
observation would be the apparent shape which a 
cloud of dust or ejected grains might assume around a 
star. The appearance of a disklike or torus feature in 
the infrared would suggest an equatorial ejection of 
material in the direction of rotation, consistent with 
this model. Very large array (VLA) observations 
would be very useful for searching for this effect. A 
possible confirmation of this model could be indicated 
by the results of Van Blerkom (1978), who finds that 
profiles of SiO and H20 maser lines in cool supergiants 
suggest a ring system as the best interpretation for 
fitting the observed line profiles. 

IV. SUMMARY 
We might summarize the general properties of this 

model as follows: 
1. Sporadic activity induces mass loss in supergiants. 
2. Sporadic mass loss and rotation also lead to 

angular momentum loss (without incorporating mag- 
netic fields). 

3. As a result of points 1 and 2 above, a disk or 
torus composed of silicate grains is formed preferentially 
at equatorial regions of the star. VLA observations 
might prove useful in discerning such a feature. 
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