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ABSTRACT 
We derive a period determination technique that is well suited to the case of nonsinusoidal time 

variation covered by only a few irregularly spaced observations. A detailed statistical analysis 
allows comparison with other techniques and indicates the optimum choice of parameters for a 
given problem. Application to the double-mode Cepheid BK Cen demonstrates the applicability 
of these methods to difficult cases. Using 49 photoelectric points, we obtain the two primary 
oscillatory components as well as the principal mode-interaction term; the derived periods are in 
agreement with previous estimates. 

Subject headings: stars: Cepheids — stars: individual — stars: pulsation 

I. INTRODUCTION 

In connection with a survey of RR Lyrae stars, 
Lafler and Kinman (1965, hereafter LK) proposed a 
technique of period determination designed for use on 
an electronic computer. This technique is simply an 
automated version of the classical method of dis- 
tinguishing between possible periods, in which the 
period producing the least observational scatter about 
the mean (derived) light curve is chosen. Apart from 
its historical flavor, this approach is appealing for a 
number of reasons. It is well suited to cases in which 
only a few observations are available over a limited 
period of time, especially if the light curve is highly 
nonsinusoidal. An optimum light-curve shape is 
obtained, which can be subtracted from the data to 
allow a search for other periods to be made (Stobie 
1972; Stobie and Hawarden 1972). Also, the computa- 
tion is very straightforward, allowing complete automa- 
tion of the period search. This technique has recently 
been applied to the double-mode Cepheid U TrA by 
Henden (1976) and to an analysis of theoretical 
variability by Cox, Hodson, and King (1978). 

Fourier techniques have also been applied to period 
determination in variable stars (Wehlau and Leung 
1964; Fitch 1967). They are particularly useful in 
complicated cases, especially if deconvolution is 
needed or if spectral information is required over a 
continuum of frequencies. If a power spectrum has 
been obtained and indicates the presence of discrete 
lines, then the LK approach can be used to obtain 
accurate periods and nonsinusoidal light curves for 
the component oscillations (Ostriker and Hesser 1968; 
Hesser, Ostriker, and Lawrence 1969). In the case of 
a very complicated spectrum, the maximum entropy 
technique (Percy 1977) should be considered. 

In this paper a generalization of the LK technique is 
presented. This generalization greatly increases the 
utility of the algorithm, allows an arbitrary degree of 
smoothing, and provides complete statistical informa- 
tion. A discussion of statistical significance is given by 

LK, but their results are model-dependent and essen- 
tially empirical. The need for smoothing can be seen 
by comparing the spectral curve in LK (Fig. 3) with 
those computed by Stellingwerf (1975, Fig. 1), who 
used a smooth theoretical statistic. The smoothing is 
accomplished in the present paper in a natural way, by 
increasing the number of degrees of freedom of the 
algorithm. 

II. CHARACTERISTICS OF THE PHASE 
DISPERSION MINIMIZATION METHOD 

a) Definitions 

A discrete set of observations can be represented by 
two vectors, the magnitudes x and the observation 
times t, where the ith observation is given by (.Xi, ¿0 
and there are N points in all (f = 1, N). Let a2 be the 
variance of x, given by 

2(xi- 
A- 1 ’ (1) 

where x is the mean; x = 2 Xi/N. For any subset of 
Xi we define the sample variance s2 exactly as in 
equation (1). Suppose we have chosen M distinct 
samples, having variances s2(j—l,M) and con- 
taining «y data points. The overall variance for all the 
samples is then given by 

,2 20*,- IV (2) 

as a consequence of equation (1). 
We wish to minimize the variance of the data with 

respect to the mean light curve. Let II be a trial period, 
and compute a phase vector <$>: fa = iJU — lA/n]; 
here brackets indicate the integer part. Equivalently, 
<|> = f mod (II). We now pick M samples from x using 
the criterion that all the members of sample j have 
similar fa. Usually the full phase interval (0, 1) is 
divided into fixed bins, but the samples may be chosen 
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in any way that satisfies the criterion. All points need 
not be picked, or, alternatively, a point can belong to 
many samples. The variance of these samples gives a 
measure of the scatter around the mean light curve 
defined by the means of the Xf in each sample, con- 
sidered as a function of </>. We define the statistic 

0 = s2¡<j2 , (3) 

where s2 is given by equation (2) and o2 is given by 
equation (1). If II is not a true period, then s2 ä or2 

and 0 £ 1, whereas if II is a correct period, 0 will 
reach a local minimum compared with neighboring 
periods, hopefully near zero. 

Since this technique seeks to minimize the dispers- 
ion of the data at constant phase, we will refer to it 
as “phase dispersion minimization” (PDM). Mathe- 
matically, this is a least-squares fitting technique, but 
rather than a fit to a given curve (such as a Fourier 
component), the fit is relative to the mean curve as 
defined by the means of each bin. We simultaneously 
obtain the best least-squares light curve and the best 
period. The PDM technique is thus a “Fouriergram” 
method (as discussed by Faulkner 1911 a) of infinite 
order, since all harmonics are included in the fitted 
function. The Fourier series technique, a least-squares 
fit to a truncated series with variable amplitudes and 
phase, often requires additional constraints and rather 
high orders for nonsinusoidal variations (Lucy 1976). 

In an interesting, related method discussed by 
Whittaker and Robinson (1926, hereafter WR), one 
seeks the maximum variance of the bin means (as 
opposed to the mean of the bin variances). If sm

2 is 
the variance of the bin means, define ©WR = 1 — sm

2la2 

for comparison purposes. In general, 0WR will vary 
between 0 and 1 — <!/«;>, where <«,> is the mean 
number of points per bin. At a true period, sm

2 x a2 

and 0WR = 0. Here we seek periods at which the 
amplitude of the mean curve is a maximum, which 
in most cases will correspond to minimum phase 
dispersion. The calculation of am

2 is easier than the 
calculation of s2 (eq. [2]), but the much lower number 
of degrees of freedom suggests less sensitivity (see 
§ lie). We will show below that, in most cases, this 
supposition is true, although for one range of param- 
eters the WR technique may be preferable. The WR 
method is discussed in detail by Chapman and Bartels 
(1940) under the title “persistence analysis.” 

Although the individual samples may be chosen 
in many ways, it is convenient to define a standard bin 
structure. We divide the unit interval into Nb bins of 
length 1/A0, and we take Nc “covers” of Nb bins, each 
cover offset in phase by ll(NbNc) from the previous 
cover, using periodic boundary conditions on the unit 
interval to obtain a uniform covering. We thus obtain 
M = NbNc bins, each of length l/A*,, and whose 
midpoints are uniformly spaced along the unit interval 
at a distance of ll(NbNc). Clearly, each data point will 
fall in exactly Nc bins. Denote a given bin structure by 
(Nb, Nc). 

It is easily shown that the © statistic defined in LK is 
exactly twice that given by equation (3), provided that 

a bin structure of (N/2, 2) is used and that bin widths 
are adjusted to always include exactly two data points 
per bin. 

b) Computation Time 

Each data point is included in Nc bins; so the run- 
ning time per trial frequency is proportional to NNC. 
Let Nf be the number of frequency points desired. Nf 
will depend on the total time base and the frequency 
range desired (see § \\d). For large N the overall time 
will be roughly 5pNfNcN, where ¡x is the multiplication 
time for the machine. No trigonometric lookups are 
required; so, if the s2 computation is optimized, the 
calculation can be done very quickly. 

c) Statistical Properties 

Here we assume that the total “population” of 
possible observations of an object X is approximately 
normally distributed. Actually, the true distribution is 
a convolution of a nearly uniform distribution due to 
the time variation and a Gaussian noise component, 
but the statistical analysis is relatively insensitive to 
such subtleties. 

To compute 0, we take the ratio of variances of the 
two subsets of X, that of the actual observations or, and 
that of the bins. Therefore, 0 has a probability density 
given by an F distribution with ^n, — M and N — l 
degrees of freedom. It is convenient to define F as a, 
number greater than unity; so F == 0_1. The proba- 
bility P that a given value of 0 is due to random 
fluctuations (also called the “significance”) is twice 
the area of the F distribution above 0“1 (two-sided 
test). This probability approaches unity as ©->1. 
Thus, for significance P, we compute 

^r(PI2tN1ftN2f) = ^-1® 9 Aiy = TV — 1 , N2f = — M. 

(4) 

P may then be obtained by reference to an F table or 
by using an approximation to P(F, Nlf, N2f) (see § 26 
of Abramowitz and Según 1965). 

If N is large ( > 100), we may take ct2(jc) ä cr2(X). In 
this case we may use the somewhat simpler x2 test: 

X2(Pi2,Nf) = A/0 , Nf = ^nj — M. (5) 

Here P is twice the area of the x2 distribution below 
TV/0. 

These results may be applied to the analysis of 
AX Vel by Stobie and Hawarden (1972). These authors 
suppressed the annual sidelobes in an initial frequency 
scan by computing s2 separately for each year’s 
observations and combining them according to 
equation (2) above. Their Figures 2 and 3 show 
©LK computed in this way, using data spanning 4 years 
and N = 60. The LK technique, with (A/2, 2) bin 
structure, yields TV/ = TV degrees of freedom, which 
then must be decreased by the number of annual 
means estimated. For an F test we therefore have 
Ai/ = 59, TV2/ = 56. Including the factor of 2 (§ lia), 
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the three 0 minima shown in Figure 3 of Stobie and 
Hawarden (1972) yield ©min £; 0.60, 0.40, and 0.63. 
Consulting an F table, we find significances of 0.05, 
less than 0.01, and 0.10. The middle period is thus 
highly significant; the others are marginally significant. 
The first minimum occurs at half the frequency of the 
second (most significant) minimum and is undoubtedly 
the first subharmonic. It will be shown below that this 
spurious minimum could have been suppressed through 
the use of a larger bin width. 

A statistical criterion may also be derived for the 
WR technique. The distribution of bin means is 
normal if M is large with am

2 = or2/^. Since M is 
generally not large, however, a t distribution with 
M — \ degrees of freedom will actually be obtained, 
with Cjjj2 æ (M — l)l(M — 3)cr2lnj. We may always 
select bins with nj = NINb, for all j. Note that normal 
constant-phase bins will produce binomially distributed 
n}- and will increase <7m

2, since a harmonic mean of nj 
appears in (7m

2. We wish to test whether the observed 
sm

2 is significantly larger than <7m
2. Evidently sm

2Jam
2 

follows an F distribution with Af — 1 and ÎV — 1 
degrees of freedom. Using the definition of @WR, we 
have 

(M - 3) AT 
(M - 1) Nh 

®wr) • (6) 

d) Line Characteristics 
The character of 0 near a minimum (i.e., a spectral 

line) is easily obtained. An oscillation with amplitude 
A will produce a maximum variance in x of aQ

2 = 
A2I12, since the resulting distribution is approximately 
uniform. In addition, suppose x contains a variance 
due to “noise” (observational errors, other periods, 
etc.) given by aN

2. We then have signal-to-noise ratio 
€ = oTo/cTtf and overall variance a2 = a0

2 + aN
2. 

The bin variance s2 will depend on the distance from 
line center (All in trial period or A/in trial frequency) 
and will also contain contributions from noise and bin 
width. Let g((/)) represent the mean light curve as a 
function of phase, with average slope <g'> ^ aA. 
Here a is a parameter depending on curve shape; in 
general, a ^ 2. Numerical tests give a = 1.7 for a sine 
wave, a = 2 for a picket-fence function, and a = 2.7 
for a sawtooth mean curve, all relative to a (5, 2) bin 
structure. We obtain <g'> £; (12)1/2cccj0. Now a change 
in trial period of AH will induce a scatter in phase 
over a range A<^ = 0-> (An/II)(r/II), where T = 
tN — t1 is the time base. We thus obtain for the induced 
variance 

= (7A/)VV , (7) 

using An/n = A///for/ = l/II. Since each bin width 
is 1/Ab, the variance caused by variation of g across a 
bin is 

_ J_ 
“ 12 

cc2a0
2 

(8) 

and the total bin variance is given by 

S2 = S#2 + Sb
2 + <JN

2 . 

We therefore find 

= S0
2 + Sb

2 + (JN
2 

ao2 “b gn2 

1 + e2a2[l/j\rb
2 + (TA/)2] 

1 + €2 (9) 

The line shape near minimum is parabolic. If we extend 
this parabola to the 0 = 1 level, we obtain the half- 
width for the line : 

1/1 l \1¡2 

= T t - ÎV?) * (10) 

For > 5 we may ignore Nb in equation (10), which 
yields fll2 ä 1/(2jT), in agreement with the results of 
Stobie and Hawarden (1972). The half-width in terms 
of trial period is AII1/2 # II2/(2r). This strong period 
dependence is clearly visible in the rather formidable 
aliased period shown in Figure 3 of LK. The true 
minimum and the spurious minimum would show 
similar widths if plotted versus frequency rather than 
period. 

The PDM technique finds all periodic components; 
so subharmonics (fn = where /i is the principal 
frequency) will also be found. For the «th sub- 
harmonic, however, an # In and the half-width is 
(A/n)1/2 £ 1/(27«), which implies that subharmonics 
should be identifiable by their narrow line widths (as 
well as by a doubly periodic mean curve). Note that 
harmonics (fn = «/J, if detected at all, will have 
«-valued mean curves («-peaked distribution in each 
bin) and line widths given by equation (10). 

The statistical significance of the line will be given 
by the value of 0llne at A/ = 0; equation (9) becomes 

0 min 
1 + e2a2INb

2 

1 + e2 (11) 

For observations with a low noise level, e is large and 
equation (11) becomes ©min = a2INb

2 x 4/Nb
2 for the 

principal minimum and 0min £ 4n2/Nb
2 for sub- 

harmonics. Coarse bin size can therefore be used to 
suppress subharmonics. In fact, fn with « > Nbl2 will 
not appear in the spectrum, since the variation of g 
becomes A within each bin. 

These remarks are illustrated by Figure 1, which 
shows the computed 0 transforms for (Fig. 1«) a 
sine-wave [sin(27r/¿)] and (Fig. lè) a “saw-tooth” 
function (fractional part of ft). These functions have 
been selected because they represent the two extremes 
found in variable-star light curves. In each case x 
consisted of 201 data points evenly distributed over 
10 periods with / =1, T = 10. A bin structure of 
(Nb, Nc) = (5, 2) was used. The main line at / = 1 is 
virtually identical to the Fourier power spectrum line 
shape [sin (x)¡x]2. The half-width is twice that given 
by equation (9), but a parabolic fit near ©min does 
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Fig. 1.—The 0 statistic versus frequency for the two test cases described in the text, (a) Sine-wave transform; (b) sawtooth func- 
tion transform. 

give the correct width when continued to © = 1 (in 
practice, the upper regions of the line will be obscured 
by noise, and so a width based on a fit near 0min is 
most practical). Two subharmonics are present (the 
third, just visible at / = ^, is below the cutoff n = 
Nbla £ 3 and is not significantly different from 1). The 
great similarity of the two curves shown in Figure 1 is, 
of course, the strong point of the PDM technique. 
Highly nonsinusoidal variations are handled very 
efficiently. The presence of subharmonic response 
could be a disadvantage if oscillations with widely 
spaced frequencies are present. We have shown, 
however, that, in practice, subharmonics can be 
distinguished in at least three ways: (1) light-curve 
shape, (2) narrow line widths, and (3) reduced signifi- 
cance with increasing bin size. If initial scans of the 
full frequency range use broad bin sizes [(5, 2), say], 
subharmonics should pose no problems. 

The transforms in Figure 1 could be severely 
affected by nonuniform time coverage, as in the Fourier 
theory. In individual cases it is sometimes useful to 
compute a transform of sin(/¿) with the given 
amplitude, period, and t values; this will indicate the 
magnitude and spacing of sidelobes and aliased fre- 
quencies. The estimated noise level can also be 
included in such a test (see Lucy 1976). 

The 0WR transforms were also computed and found 
to be virtually identical to those of Figure 1. The 
minima were actually slightly deeper. We now com- 
pute the expected value of (©wiOmin- Clearly, we have 
v2 = ^o2 + vn2, as above. Also, at a true minimum, 
Sm2 ^ °02 + <^2/«r The effect of finite bin width here 
will be to smooth out the peaks of the light curve. If 
the light curve is roughly parabolic at maximum and 
minimum light, the amplitude of the mean light curve 
will be ^[1 — (ßlNb)

2], where ß is a constant depend- 
ing on the sharpness of the peaks. For a sine wave, 
ß = 1.28; a sharp maximum requires ß £ (aNbl2)112' 
We take ß x 2, appropriate to a pure parabolic wave. 

If we put S = (ßlNb)
2, we then have 

Sm2 = C70
2(l - 8)2 + VN

2NblN. 

We therefore find 

(®WIt)n 
1 + NbIN + €2S(2 - 8) 

1 + e2 (12) 

For low noise, (©wiOmin ^ ¿>(2 — 8), slightly lower 
than equation (11) for smooth variations. We see 
from equation (12) that the WR approach is likely to 
run into trouble in cases with small N (small %) in the 
presence of noise. 

e) Period Determination with Small N 

If a large number of observations are available, 
statistical significance is usually not a consideration. 
Indeed, exactly the opposite problem is almost certain 
to arise: many possible periods resulting from aliasing 
and sidelobes, all of which are well above the noise 
level. For small A, however, statistical effects will be 
extremely important. We may ask, For a given 
instrumental sensitivity and number of observations 
A, what is the minimum amplitude that will yield a 
significant period? Or, if the amplitude of the object 
is known, how many observations will be required to 
determine a period? 

The significance of a local 0 minimum may be 
obtained by equating 0mln in equation (10) to \¡F as 
given by equation (5). Solving the resulting expression 
for e, we obtain 

e 
F - 1 ]i/2 

i - («WfJ ’ 
(13) 

F here is Fæi2tNlfyN2r), where Nlf = N - 1 and N2f = 
NC(N — Nb). Since F is a function of N, equation (13) 
relates N, P, and e for a given bin structure. 
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€ 
Fig. 2.—Statistical characteristics of the LK algorithm. 

Lines of constant significance (P) of a O minimum (spectral 
line) are shown on the (N, e)-plane. Here N is the number of 
data points and € is the signal-to-noise ratio. 

Consider first the LK bin structure: (N^, Nc) = 
(N/2, 2) with two points per bin. Using equation (13), 
we have computed the relationship of c and N for 
significance levels 0.10 (barely above noise level) and 
0.01 (rather well determined) for the representative 
case a = 2 (e.g., an RRab variable of moderate 
amplitude). The results are shown in Figure 2. This 
figure is directly comparable to Figure 1 of LK, in 
which a semiempirical significance criterion is given. 
Note that, since cr0

2 ^ A2112 and cfn = 0.15 mag for 
the Lick survey, signal-to-noise ratios in LK are given 
by eLK = ^/0.52 mag; so €LK ranges from 1 to 3 in 
LK’s Figure 1. If one considers just the P = 0.01 curve 
of Figure 2, the present results are slightly more 
optimistic than the LK results at high €, indicating a 
minimum of 12 rather than 14 observations needed 
for e = 3. The P = 0.10 curve suggests that, with 
luck, 10 points might be sufficient. This assumes that 
adequate time base and phase coverage are present, 
and that the aliasing problem has somehow been 
avoided (e.g., an approximate period may be available). 
On the other hand, at small e Figure 2 is more con- 
servative than LK, calling for TV = 55 at 6 = 1 com- 
pared to TV £ 25 according to Figure 1 of LK. This 
result is in good agreement with the actual distribution 
shown in Figure 2 of LK, however, which clearly shows 
that the LK relation is overly optimistic at small 
amplitudes (eq. [11] provides an excellent fit to the 

c 
Fig. 3.—Statistical characteristics of the PDM method. 

Notation as in Fig. 2, with various bin structures (Nb, Nc) as 
indicated. Solid lines refer to P = 0.02; dashed line is P = 
0.20. 

data of Fig. 2 of LK if used with a = 2-3, e = ,4/0.52, 
and doubled to match ©LK). 

The effects of varying bin structures are shown in 
Figure 3, in which all solid curves represent a signi- 
ficance of 2%. It is found that (TV*,, Nc) = (5, 2) has 
sensitivity nearly identical to the LK (N[2, 2) bin 
structure. At very small TV (TV < 20), Figure 3 indicates 
that coarse bin structure (TV0 < 10) is essential. A 
comparison of the (5,1), (5,2), and (5, 5) curves 
clearly shows the advantage to be gained from 
multiple bin coverings at small TV. Figure 3 indicates 
that a significant period may be detected with as few as 
10 observations if c > 2.5 and if a (5, 5) bin structure 
is used. At larger TV (TV > 100), the sensitivity is 
determined by the bin number M = NbNc; so, if sub- 
harmonics are not a problem, the TVC = 1 choice is 
computationally most efficient and will be preferable. 
It is clearly very difficult to obtain periods if the signal- 
to-noise ratio falls below € # 0.8, although, since 

1 at large TV, equation (13) indicates that €->0 
in all cases, and any signal-to-noise ratio can be over- 
come with sufficiently large TV. As an indication of the 
“theoretical limit” of sensitivity, the dashed curve in 
Figure 3 shows the (5, 5) result at P = 0.20 signifi- 
cance. Along this line there is a one-in-five chance that 
the signal will be lost in noise. 

The WR technique performed well on the test cases 
in § lid ; its statistical properties are therefore also of 
interest. Using equation (12) in equation (6), we may 
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Fig. 4.—Statistical characteristics of the WR method. 
Notation as in Fig. 3. 

solve for € to obtain the WR version of equation (13): 

€WR — 
F' - 1 ]i/2 

N{\ - hf¡Nb - FJ ’ 
(14) 

where F = (M — \)F¡(M — 3) and 8 is given in 
connection with equation (12). In this case, F is 
Fpi2,M-i,N-i* Solutions of equation (14) for various 
bin structures are shown in Figure 4. Comparison with 
Figure 3 indicates that the WR approach is inferior 
for the small N case (N < 50). It is also apparent that 
the WR technique does better for cases with severe 
noise if TV > 50. If TV = 100, for example, signal-to- 
noise ratios as low as e — 0.3 should yield highly 
significant periods. For the Lick survey in LK, for 
example, amplitudes of 0.16 mag would be detectable 
with 100 points and of 0.26 mag with 50 points— 
numbers substantially lower than those actually found. 
If the signal-to-noise ratios is greater than unity, the 
PDM method is preferred, since larger Nb results in 
better resolution of the mean curve. 

/) Summary 

We summarize the various possible computational 
requirements and how they can be achieved within the 
PDM technique. 

a) Run time can be minimized by using small TV, and 
TVC. Techniques that reduce the effective time base 
(Fitch 1967; Stobie and Hawarden 1972), thus widen- 

ing the lines, are also very useful (see “segmental 
averaging” in Brault and White 1971). 

b) Resolution of the mean curve increases with M = 
TVbTVc, but accuracy is lost if Nb > TV/5. 

c) Accuracy of the period depends primarily on the 
total time base T, provided TV and TV, are sufficiently 
large. 

d) Subharmonics are suppressed for small TV0. 
e) Statistical significance depends on TV, e, and bin 

structure, as shown in Figure 3. 
/) Aliased frequencies can be minimized only 

through careful planning of the observing schedule. 
A very good general scheme would be to use a (5, 2) 

bin structure for a “rough cut” scan of the data. Once 
the main frequencies have been identified, finer bin 
structure and frequency steps should be used to obtain 
an accurate period and light curve. If multiple periods 
are suspected, each oscillation should be removed 
from the data before one searches for weaker modes. 
Mode interactions can be treated in the same way. 
Improved primary periods can sometimes be obtained 
with interaction terms removed, and this procedure 
can be iterated to obtain optimum results. 

In cases with very severe noise levels (e < 1), the 
WR algorithm may give acceptable results. 

m. MULTIPLE PERIODS OF BK CENTAUR! 

To illustrate the use of these methods, we briefly 
present an analysis of the light variation of the double- 
mode Cepheid BK Centauri. For this purpose we will 
use only the 49 photoelectric measurements made by 
C. J. van Houten in 1965 for which Leotta-Janin 
(1967) has published the A F values. This author 
comments that “their number is too small to allow a 
reliable determination of the beat period” and so uses 
25 years of plate estimates as well as knowledge of 
other Cepheid period ratios to obtain n0 = 3.17389 
days and II, = 2.2366 days. We have found that the 
photoelectric points alone unambiguously confirm 
these results and that they provide information on 
mode interaction as well. 

The 49 measurements span 137 days. Line widths 
will therefore be about 0.007 in frequency (eq. [10]); 
so the frequency step size was taken to be 0.0015 for 
moderate resolution. Twelve nights have two observa- 
tions, providing minimal alias discrimination. Al- 
though the measurements are quite accurate, we 
nonetheless estimate e ä 1.5 due to the secondary 
oscillation. Figures 3 and 4 indicate that the PDM and 
the WR techniques should be about equally good for 
this case, provided Nb < 10. We choose a (5, 2) bin 
structure to maintain about 10 points per bin. 

Figure 5a shows the 0 transform of the raw data. 
The primary period is clearly evident (minimum e), 
with minima a and b forming the standard sub- 
harmonic sequence found in Figure 1. Minimum /is 
narrow and showed a two-cycle mean curve; it is 
therefore the first subharmonic of a sizable minimum 
off the scale, at / ä 0.7. This is the main alias of e, 
occurring at 1 — /0. Comparison of the subharmonics 
b and/indicates that e is the principal frequency. The 
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Fig. 5.—The 0 transforms of the BK Cen data, plotted versus frequency in cycles per day. (a) Transform of the raw data. 
(b) Transform of the data after removal of the fundamental oscillation, (c) Transform of the data after removal of the fundamental 
and first-overtone oscillations. Labeled minima are identified in Table 1. 

TABLE 1 
Identification of Features in Figure 5 

Feature Identification Frequency^"1) Significance 

a. 
b. 
c. , 
d. 
e. . 
/.. 
g< 
h, 
i. , 
y.. 
k.. 
/.. 
m. 
n. . 
o. . 
p. . 

fo/3 
fol2 

(1 - /o)/3 
(1 -/i)/2 

fo 
(1 -fo)l2 
(1 +/o)/3 

fi 
1 -/i 
/i/3 

(1 -/i)/3 
/i/2 

(1 -/i)/2 
(/o+/i)/2 

/i 
1 - fi 

<1  U -(/o+/i)]/2 
r  1 - (/o + /i) 
*  (/o+/i)/3 
t  (/o+/i)/2 
U  /o + /i 

0.105 
0.158 
0.226 
0.276 
0.316 
0.344 
0.439 
0.447 
0.553 
0.148 
0.183 
0.224 
0.276 
0.385 
0.447 
0.553 
0.116 
0.235 
0.253 
0.383 
0.764 

0.13 
0.00 
0.39 
0.09 
0.00 
0.00 
0.24 
0.27 
0.05 
0.50 
0.55 
0.04 
0.08 
0.33 
0.00 
0.00 
0.60 
0.27 
0.55 
0.43 
0.11 

identifications of the minima, together with their 
approximate frequencies and significances, are given 
in Table 1. Among the barely significant group, we 
identify g as the second subharmonic of the second 
alias of e, at 1 + /0, while d, h, and i are first-overtone 
features. 

We see here a distinct advantage of the subharmonic 
response of this method : Any other major frequency in 
the range 0.6 </ < 1.2 would show a subharmonic 
on Figure 5a comparable to b or /. Any minimum in 
the range 1.2 < / < 1.8 would show a second sub- 
harmonic comparable to a or g. Since all features have 
been identified, no high-frequency components exist. 
This “look-ahead” feature can be extended by increas- 
ing Nb, at the expense of further complicating the 
spectrum. 

Having identified the principal frequency (/0), we 
then removed this component from the data (using 
linear interpolation between bin means). The trans- 
form of the reduced data is shown in Figure 5b. Here 
y, /, o are due to the first overtone, while k, m, and /? 
represent the aliases. Note that each alias feature is 
slightly less significant than the corresponding “real” 
feature. A mode interaction feature (n) has also 
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TABLE 2 
Summary of Principal Components 

Mode Frequency {d ~1) Period {d) 
Amplitude 

(mag) 

Adjusted 
Amplitude 

(mag) Phase* 

/o  
/i  
/o+/i. 

0.3153 
0.4473 
0.7682 

3.172 
2.236 
1.302 

0.544 
0.222 
0.151 

0.598 
0.244 
0.166 

0.40 
0.56 
0.16 

* Phase is (¿max — O/n0, where h = ID 2,438,813.48. 

appeared. We can again conclude that no more 
significant modes exist to /= 1.8, since no sub- 
harmonics appear. 

Figure 5c shows the transform of the doubly reduced 
data. No significant feature appears, but many marginal 
features are related to the mode interaction term 
/o + A- An extension of the transform to higher 
frequencies showed that this mode did indeed appear 
at the P = 0.11 level. This is the only remaining 
significant mode. This particular interaction term 
(/o + /i) has also been found to be excited in several 
other studies of similar objects (Fitch 1967; Renden 
1976; Faulkner 1977a, è; Fitch and Szeidl 1976). In 
particular, this term invariably dominates the beat 
frequency (/i — /0) component. At present, the mean- 
ing of this is not clear. 

The periods and amplitudes of the three components 
were determined using a finer frequency scan and are 
given in Table 2. When the bin size is allowed for, the 
actual amplitudes should be about 10% larger (i.e., 
eq. [12]); this is shown in the corrected amplitudes. 
The sum of these estimates is 1.1 mag, in agreement 
with the range of the photoelectric measures. (Obtain- 
ing the final amplitudes using smaller bin widths is 
impractical here because of the small data set.) The 
standard deviation of the residuals (triply reduced 
data) was crfit = 0.048 mag. Since the amplitudes are 
based on means of two bins, <Tamp £; am(2NbIN)112 ^ 
0.022 mag. 

The frequency labeled f0 + /i in Table 2 is listed as 
derived and differs from the sum of the principal 

components. The discrepancy may not be real, since 
it amounts to about l/T—suggestive of a sidelobe 
problem. 

IV. CONCLUSIONS 

We have presented detailed analyses of two time- 
domain period determination techniques. The PDM 
method incorporates all the data directly into the test 
statistic and is thus well suited to small data sets. The 
WR method calculates an initial average that reduces 
its sensitivity, but it produces excellent noise suppres- 
sion for sufficiently large N. Both methods are easy 
and efficient to use, work well on irregularly spaced 
data, and are ideally suited to highly nonsinusoidal 
time variations. 

An analysis of the double-mode Cepheid BK Cen 
shows that a straightforward analysis of the three 
primary component variations is possible with 49 
observed points (for a review of multiple-mode 
variables, see Stobie 1977). The availability of reliable 
statistics forms an important part of such an analysis. 
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