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ABSTRACT 
Wave equations are derived in terms of gauge-invariant amplitudes for odd-parity electro- 

magnetic and gravitational perturbations of Oppenheimer-Snyder collapse. Numerical studies 
of the wave equations are presented, and it is shown that for the late stages of collapse (i) the 
radiation generated is insensitive to the dynamics of the stellar interiors, (ii) the radiation spectrum 
is dominated by radiation of quasi-normal frequencies, and (iii) /-pole fields fall off at very late 
times fin accordance with the predicted i_(2i + 2) law. 
Subject headings: gravitation — quantum mechanics — relativity — stars : collapsed 

I. INTRODUCTION AND OUTLINE 

This is the first in a series of papers in which we hope to provide a detailed study of radiation emitted in the late 
stages of gravitational collapse to a slowly rotating black hole. In the present paper we analyze electromagnetic 
and gravitational radiation due to odd-parity sources in a collapsing Oppenheimer-Snyder (1939) (homogeneous, 
pressureless) background. The sources and the fields they produce are treated as linearized perturbations. In 
subsequent papers we shall deal with (i) the even-parity problem, (ii) radiation which is second order in the source 
strengths, and (iii) applications to astrophysical systems. 

The emphasis in this paper is on an understanding of the special features of radiation peculiar to the late stages 
of collapse. We shall show that this radiation is rather independent of the internal dynamics of the collapsing star 
and that the nature of the radiation is governed by the background Schwarzschild spacetime surrounding the 
collapsing star. 

The concept of the “curvature potential” provides a useful way of viewing the influence of the strongly curved 
Schwarzschild spacetime near the event horizon. Multipole test fields (gravitational, electromagnetic, scalar) on 
a Schwarzschild background all obey equations of the form 

d^dt2 - d^ldr^2 + = 0, (1-1) 

where r* is the tortoise coordinate (Misner, Thorne, and Wheeler 1973) defined in terms of black hole mass M 
and Schwarzschild radius r as 

r* = r + 2M In (r/2M — 1) + const., (1-2) 

so that the horizon is at r* = — oo. (We use here and throughout this paper units in which c = G = 1.) At large r* 
the potential V(r) approaches the form of a centrifugal barrier, /(/ + l)/r2 ; but as r* — oo, the potential dies off 
very rapidly. The curvature potential thus has some of the characteristics of a potential barrier, and all effects of 
the exterior geometry can be understood in terms of this potential barrier. 

The Oppenheimer-Snyder collapse provides an extremely simple model for the interior, and its simplicity suits 
our purposes here very well. To get some first ideas on the effect of slower collapses, in which pressure is important, 
we have also computed the emerging radiation from modified Oppenheimer-Snyder models for which the collapse 
may be made arbitrarily slow. 

Simplicity is also part of the motivation for the choice of odd-parity perturbations, since they obey markedly 
simpler junction conditions at the star’s surface than do even-parity perturbations. The odd-parity gravitational 
perturbations are generated by small-amplitude rotational motions in the star’s fluid. The electromagnetic 
perturbations are generated by circulating currents in the collapsing star. 

* Work supported in part by National Science Foundation grants PHY74-16311 at the University of Utah and PHY76-82353 
at Yale University. 
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644 CUNNINGHAM, PRICE, AND MONCRIEF Vol. 224 

Even-parity perturbations, generated by deformations of the fluid or by separation of electric charges, will be 
considered in a later paper. Although the junction conditions are much different for even-parity than for odd-parity 
(particularly for the gravitational perturbations), preliminary calculations indicate that qualitative features of the 
emitted radiation will be similar in both cases. 

The physical model underlying the computations is that of a static star which suddenly, at time ¿ = 0, loses its 
pressure and begins an Oppenheimer-Snyder collapse. The initial conditions on the perturbation field are then that 
for t < 0 the star has a stationary external odd-parity gravitational or magnetic multipole. We should in principle 
also have to specify the nature of the source distribution and Cauchy data for the perturbation field inside the star, 
but for a particular choice of the nature of the stationary star prior to the onset of collapse (and, in the electro- 
magnetic case, for a natural choice of the behavior of the sources) this turns out not to be necessary. The source 
distribution and interior Cauchy data then contain only two numbers which influence the exterior field, and these 
two numbers are uniquely fixed by the magnitude of the initial stationary perturbation and by the radius (in units 
of the star’s mass) at which collapse begins. 

Two features of the emerging radiation are particularly interesting: power-law tails and quasi-normal ringing. 
The tails are the last traces of the dying field at very late times and have been predicted (Price 1972), for an initially 
stationary multipole of order /, to fall off as l/t2l+2. This falloif, as well as the predicted radial dependence of the 
tails, has been verified to considerable accuracy. 

Quasi-normal modes are damped oscillating modes of the Schwarzschild geometry, characterized by a single 
complex frequency. Previous studies (see Thorne 1978 for a review) indicate that these modes play some role in 
determining the nature of the radiation in the neighborhood of a black hole. We find in fact that the radiation emitted 
from the late stages of collapse is dominated by quasi-normal ringing and that an understanding of the excitation 
of the quasi-normal modes is necessary to understand the generation of radiation. 

The paper is organized as follows : Section II presents a description of odd-parity gravitational and electromagnetic 
perturbation fields using gauge-invariant quantities. The perturbations are found to obey simple hyperbolic partial 
differential equations. Numerical solutions of these wave equations are described in § III, in which results are given 
for the waveforms, the energies, and the spectra of the emitted radiation. In § IV two features of the numerical 
results are discussed. First, the behavior of the perturbation at very late times (“power-law tail”) is shown to conform 
to the theoretical predictions (Price 1972). Second, quasi-normal ringing is shown to dominate the emitted radiation, 
and the mechanism of the excitation of the quasi-normal modes is considered. 

II. PERTURBATION EQUATIONS AND JUNCTION CONDITIONS 

a) Gravitational Perturbations 

We adopt Regge-Wheeler (1957) (RW) notation and expand the perturbed interior line element in odd-parity, 
axisymmetric RW harmonics : 

ds2 = —dr2 + R2(T)[dx2 + sin2 x(^2 + sin2 9d</>2)] 

+ 2€[h0 sin 63 Yloldd]dtd<f> + lefa sin 63 Yl0l3d]d<l>d (sin x) 

+ 2€[i/*2(cos 63 Y10I36 - sin 632 Yl0l362)]d6d<f>. (II-l) 

It is straightforward to extend these considerations to nonaxisymmetric modes as well. We shall consider only the 
radiative modes with / > 2. In equation (II-1), R(t) is the (k = +1) Friedman expansion factor given by 

R(t) = (M/sin3 xo)(l + cos rj) , (II-2a) 

where 
T = (M/sin3 Xo)07 + sin 77) (II-2b) 

in which M is the total (unperturbed) mass and Xo is the (stellar) boundary value of x. 
The metric perturbations hßV = ^v/^

elc = o are determined by the RW expansion function (h0, ^). In 
terms of these we define 

qi = h + 
sin2 x 3 / /*2 \ 

2 cos x dx \sin2 XJ 

q2 = h2 . 

Under the gauge transformation generated by an arbitrary odd-parity vector field 

(X„) EE (XT, x0, XJ = (0, 0, 0, C(x, r) sin 63Y10I36) , 

(H-3a) 

(II-3b) 

(II-4) 
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(II-5) 

so that q1 is gauge invariant. 
The exterior line element is similarly expanded as 

No. 2, 1978 RADIATION FROM COLLAPSING STARS 

the functions transform as 
&7i = 0, hq2 = -2C, 8A0 = CT - 2R%C¡R 

ds2 = — (1 — 2M/r)dt2 + (1 — 2Mjr) 1dr2 + r2(dd2 + sin2 6d<f>2) 

+ 2€[Ä0 sin 6dYi0ldd]dtd(l> + 2e[Ä1 sin 6dYi0ldd]drd<l> 

+ 2€[ih2(cos ddYl0ldd - sin dd2Yloldd2)]dOd<t> (II-6) 

and we define, as in equations (II-3) : 

qlS ai+^yr(^, q2=h2. (II-7) 

Here is gauge invariant. 
The perturbation equations for the exterior (vacuum) region are derived by Moncrief (1974) from a variational 

principle for the perturbation equations (wherein kly k2 are written for qu q<¿). The interior perturbation equations 
are given by 

j__a 
Rdr 

Ra sin2 x 8 T 8 
2 cos x dx L^t \^2 s^n2 X/ + 

2A0 )} [(/ - !)(/ + 2)1 
R2 sin2 x\j L sin2 x J 

¿ ¿ [2Ä*„ + Ä» ¿ (f2) ] - 11 [c°s Ml] - 0, 

1 g [ 1 . cos x ^ (/ - !)(/ + 2) [ a /g2\ 2ho 
2 8X [/(/ + 1)äJ sin xKl + l)i? 4 sin2 * [dr \R2) ''' R2 

in which ttj is defined by 

— %TTpU , 

= „al sin2y a r_a / <?2 \ . ih0 

/(/ + 1) cos x dr \i?2/ 2 cos x dx [dr \R2 sin2 xj R2 sin2 x 

(II-8a) 

(II-8b) 

(II-8c) 

(II-9) 

and U is defined in terms of the fluid velocity perturbation by 

8Uul8e\e=0 = [0,0, 0, U(x, t) sin eôYjse]. (II" 10) 

It is straightforward to verify from equations (II-5) and (II-9) that tt1 is gauge invariant and from the transformation 

SUU = X'UU.,V + 

that U is gauge invariant [Si7„ = 0 for (Utl) = (— 1,0, 0,0)]. 
From equations (II-8), and the defining equation for tt-j (eq. [II-9]), one can derive 

dUldr = 0, 

R‘ Tr [S Tr " I [ihk I <S‘n2 sin2 x 

sin2*0¿ 
1 d /cosx 

sin2 x dx\ R2 
4] 

(/ - 1)(/ + 2) cos y „ 
R2 sin2 x qi 

(11-11) 

(II-12a) 

(II-12b) 

(II-12c) 

Equation (II-12a) is the only nontrivial odd-parity perturbation of Euler’s equations, T/:v = 0. Equation (II-12c) 
is essentially the wave equation of Lifshitz and Khalatnikov (1963) which was rederived in RW formalism by 
Sengupta (1975). Equation (II-12b) is the basic equation we shall use since, as shown below, rr1 matches naturally 
to a solution of the RW wave equation in the vacuum exterior. A useful equivalent form of equation (II-12b) is: 

2!. 
dr]2 (R sin x7Ti) - (Æ sin x^i) + 

/(/ + 1) 
sin2 x 

3i?(0)l 
2R J 

R sin x77! 7^ [I6nPRaUJ(l + 1)]. (11-13) 
K 
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646 CUNNINGHAM, PRICE, AND MONCRIEF Vol. 224 

As in the work of Moncrief (1974) which used a slightly different notation, we define in the exterior region 

/(/ + 1) 

and find that obeys the RW equations : 

= l _ „2 = g _ i.r2 JL + 1,t dr \r2/ ^1,t ^ [ r2 r2 J 
(11-14) 

a2 , . , . /, 2M\ a f/, 2M\ a , . J /, 2M\f/(/+ l) 6M] . /TT ie, 
- s-, <«o + (i - —) a? Ll1 ' s? H ' l1 “ w i-?5- " ~r' “ - 0 s 

It is well known that the unperturbed interior and exterior metrics match (i.e., have continuous first and second 
fundamental forms) across the boundary surface 

X = Xo > r = R(t) sin xo • (II“ 16) 

By a suitable condition upon the gauge in a neighborhood of the boundary surface one can always require that the 
boundary surface of the perturbed spacetime have this same coordinate characterization. In Appendix A it is 
shown that the matching conditions at this boundary surface are 

#1 = 771 , nß7rlfll = nß7T1'll + /(/ + l)l6npU (11-17) 

where n11 and üß are the unit outward normal vector to the boundary surface expressed in interior and exterior 
coordinates, respectively. 

Since pR3 = 3M/(47r sin3 xo) and U are time independent, the source term on the right side of equation (II-12b) 
is time independent. We therefore seek a particular solution of the form R27t1 = C(x) for which equation 
(II-12b) reduces to 

A [~ 1 d 

d\ [sin2 x d\ 
(sin2 xC) + (/ - !)(/ + 2) 

sin2 x 
C = \6irpR3UJ{l + 1) . (11-18) 

For any particular solution C(x) of this equation we can clearly write the general solution of equation (II-12b) as 

*1 = Ellhorn + C{x)!R2 , (11-19) 

where satisfies the homogeneous equation obtained from equation (II-12b) by setting the source term to 
zero. 

We can now derive an interesting nonradiation result analytically. Consider a source term U(x) for which 
equation (II-12b) admits a solution C(x) which is regular (as discussed in Appendix B) at x = 0 and for which the 
boundary values obey 

^i(xo,t) = C(xo) = 0, (II-20a) 

R3[nß7rUu + 167TpUl(l + 1)]|X=X0 = [Cx + 167TpR3Ul(l + l)]\x=Xo = 0 . (II-20b) 

Since C, U9 and pR3 are all time independent, these conditions are satisfied by C at every instant if they are satisfied 
initially. They are thus consistent with putting = 0 everywhere in the exterior region and = 0 everywhere 
in the interior region. That appropriate source functions U(x) exist is obvious since we could simply choose a C(x) 
satisfying the regularity and junction conditions and then define U(x) from equation (11-18). Thus there exist non- 
trivial perturbations for / > 2 which are nonradiative at first order. 

Now consider an arbitrary source function U(x). We claim that one can always choose regular Cauchy data on 
the hyper surface of time symmetry (r = ¿ = 77 = 0) which satisfy 

*i(0, x) = C(x)IR2(0) , ^(0, x)/dr = 0 , ^i(0, r)ldt = 0 , (11-21) 

where C(x) is a solution of equation (11-18) and where #x(0, r) is (initially) a solution of the stationary RW equation 

('-“)! [(> - 2-f) IH - =„ („.î2) 

with the asymptotic form 

r*i 7—► q¡(2M¡ry , (11-23) 

where q¡ is a constant. The choice of Cauchy data then amounts to the choice of an initially stationary exterior 
multipole of magnitude qu and an initially stationary interior solution characterized by TTxIhom = 0 initially. That 
such a C(x) and ^ exist (and in fact are unique) for any regular source U(x) is demonstrated in Appendix B, where 
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RADIATION FROM COLLAPSING STARS 647 No. 2, 1978 

the explicit solution is given. The idea is simply that to any regular solution of equation (11-18) one can always add 
a multiple of the regular solution of the homogeneous equation. That freedom, together with the freedom to choose 
ql9 allows one always to satisfy the junction conditions on the initial surface. That one can also set 7r1>T|T=0 and 
ñi,t\t=o = 0 follows from taking the r-derivative of the junction conditions at r = 0. 

The choice of ^ to be initially a solution of equations (11-21), (11-22), and (11-23) is simply the natural choice of 
an initially stationary exterior multipole; the choice = 0 is not so easily justified. The natural candidate for 
the structure of the star prior to the t = t = 0 hypersurface would be the static interior Schwarzschild solution 
(Möller 1952), matched to the exterior Schwarzschild metric, and perturbed into slow stationary rotation. It is easy 
to show that this solution can be matched (continuous first and second background fundamental forms) to the 
Oppenheimer-Snyder solution across the i = r = 0 hypersurface. 

The “lapse function” N = (—g00)-1/2, however, is discontinuous across this surface. An examination of the 
electromagnetic and scalar wave functions reveals that this discontinuity makes it impossible for the wave amplitude 
to have a vanishing second time derivative both prior to and subsequent to ¿ = r = 0. Thus, our initial conditions 
applied to the model with a (background) Schwarzschild interior for t < 0, correspond to a perturbation which was 
not strictly stationary prior to the onset of collapse. If, on the other hand, we demand that the second time deriva- 
tive vanish at ¿ = r = 0, and that the wave amplitude be stationary prior to the hypersurface, then we are forced 
to adopt a precollapse structure which is unphysical (a star with negative uniform pressure and negative surface 
tension). 

The real justification of setting Tr^om = 0 lies in the fact that more realistic initial data do not significantly 
change the radiation into the exterior geometry. Preliminary work on collapses from initial radius r0 > 4M with 
a Schwarzschild interior solution as the precollapse star, indicates that a nonvanishing field changes the 
radiation by no more than 1 or 2%, and has a negligible effect if the collapse starts from a nonrelativistic (>>M) 
radius. For collapse from a large radius the reason for this is clear. The metric coefficients are determined primarily 
by the density distribution, which is homogeneous in both the Schwarzschild interior and in the Oppenheimer- 
Snyder metrics. The pressure has only a small effect. The discontinuity of the lapse function at ¿ = r = 0 must 
therefore be small. 

The splitting of ^ into Trjuom and C(x) has the following important consequence. The term C(x)/7?2 is uniquely 
determined by the matter distribution U(x) and the regularity, junction, and initial conditions that we impose (see 
Appendix B for proof). It enters into the determination of the evolution of and tt1 only through the contri- 
bution to the boundary values of tt* and Furthermore, since the time dependence of C(x)IR2 is given a priori, 
we need only evaluate its initial surface contributions to the junction conditions in order to know these contributions 
for all time. 

The result is particularly simple in the case ^Ihom = 0 initially. From the initial junction conditions (eq. [11-17]) 
at R = Æ(0), r = jR(0) sin xo = we find that 

C(xo) = R\Q)*i(r0, 0) , (II-24a) 

[C * + 167rpim(/ + 1)]|,=X0 = ^3(0)[^1,,]|r=ro,t=o , (II-24b) 

so that the junction conditions can be rewritten as 

"ilhom = #1 - tflOo, 0)(ro/r)2 , (II-25a) 

»“Whom),« = «“*1,« - ('•o/',)3[ffBtfl,«]|r = r0.t = 0 • (II-25b) 

But the initial surface values of tti and can be read directly from the initial static solution and given explicitly 
as functions of M, r0, and The wave equations for |hom and for ^ are homogeneous, of course, and the Cauchy 
data for and for ^ require specifying only M, r0, and In consequence these three parameters suffice to 
specify the solution for the evolution of and so that the exterior field and hence the radiation is com- 
pletely determined by M, r0, and qx ; no further details of the source need be given. Once C(x) is chosen to satisfy 
equation (11-18) subject to boundary conditions (eq. [11-24]), the solution for ^ 4- C(x)IR2 is also 
complete. 

b) Electromagnetic Perturbations 

One can always do “test field” electrodynamics by solving the Maxwell equations on a given spacetime back- 
ground. This approach appears to ignore the possible influence of the electromagnetic fields upon the gravitational 
field. However, when the electromagnetic field vanishes in the background, one can regard the “test field” as a 
special solution of the perturbed Einstein-Maxwell system since, to first order, these equations do not couple 
electromagnetic and gravitational perturbations. 

Let us suppose that we perturb the (neutral) Oppenheimer-Snyder collapse interior by an electromagnetic current 

m = (0,0,0,jfa^smOdYnldd) . (11-26) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
78

A
pJ

. 
. .

22
4 

. .
64

3C
 

648 CUNNINGHAM, PRICE, AND MONCRIEF 

Any such current satisfies the continuity equation (gll'’8jv).u = 0 identically and drives a vector potential 

Vol. 224 

(A„) = (0, 0,0, a(x,r) sin 6dYl0ldd) (interior) , 

(Äß) = (0,0, 0, ä(r, t) sin 6dY,0¡dd) (exterior) . (11-27) 

The equation of motion for ä was first derived by Regge and Wheeler (1957). The interior equation for a is given by 

7(/+i) 12. -I- 
R dr \ dr) R2 dX

2 + R2 sin2 x a = 477/,, 

while the exterior (RW) equation is 

d2ä 
dt2 

2M\ /(/ + 1) 

7 
a = 0. 

(11-28) 

(11-29) 

The standard junction conditions imply the following equalities at the stellar boundary: 

a = ä, = Hßätll. (11-30) 

In the gravitational case, the evolution of the source field was determined by the Euler equations ; here it must be 
specified. The interior equation will admit a tin e-independent solution only if 

diR^/dr = 0, (11-31) 

in which case a may be separated into a homogeneous part and a time-independent particular part, as was possible 
for the gravitational perturbations. This is the natural choice if we consider the collapsing star to be highly conduct- 
ing. In the absence of radiation from the exterior we would then demand that in the rest frame of the fluid no electric 
field develop, or, from equation (11-27), 

Fot = « T sin ddYioldO = 0 , (11-32) 

which requires a>T = 0. 
Equivalently we can show that afT — 0 implies flux conservation. Let 2(0) be an arbitrary oriented two 

dimensional surface lying within the r = 0 hypersurface of the collapsing fluid and bounded by a curve d2(0). We 
can extend 2(0) and its boundary £2(0) to a one-parameter family of surfaces and boundary curves 2(r), £2(r) 
by letting each point comove with the (unperturbed) fluid. By construction 2(r0) and £2(t0) lie in the hypersurface 
r = t0. For any solution of the Maxwell equations we can define the magnetic flux ^ through 2(r) by 

^Pír)] = Í F^dx* A dxv, (II-33a) 
7s(t) 

where 

^F^dx* A dxv — d[Aßdxß], (II-33b) 

F,v = AVfU - AUtV. (II-33c) 

It is now straightforward to show that afT = 0 is equivalent to flux conservation 

d¿r[Z(T)]/dT = 0 , (11-34) 

i.e., to the magnetic field being “frozen into” the collapsing fluid. 
By equation (11-28) we see that atT = 0 requiresj)R2 to be independent of r, and we take this as our evolution law. 

Even with this condition, of course, we do not expect a(x, r) to remain time independent since the collapse will 
produce (except in special cases) a radiation field a\hom which can contribute a time-dependent flux through 2(r). 

With condition (11-31) imposed on jfy, r), the interior equation admits a static solution, and we can write in 
analogy with equation (11-19) 

a = a|hom + C(x) , ■ (11-35) 

where C(x) satisfies the static form of equation (11-28) : 

82C 

%2 
/(/+ 1) 
sin2 x 

C = 47rR2j, . (II-36) 
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RADIATION FROM COLLAPSING STARS No. 2, 1978 649 

We choose Cauchy data on the initial hypersurface (t = rj = r = 0) similar to the choice for the gravitational 
problem. The initial exterior function <z(0, r) is chosen to be a static solution of equation (11-29) such that 

«(0, q^MIr)1, dä(0,r)ldt = 0, (11-37) 

representing an initially static multipole. The initial interior solution is chosen such that 

da(0,x)ldr = 0, a(0,x) = C(x); (11-38) 

that is, as in the gravitational case, we choose a|h0m = 0 initially. The proof that this can be done is essentially 
similar to that given for the gravitational case in Appendix B. 

The values of C(xo) and CtX\Xo are fixed by the initial junction conditions. When these values are put into the 
junction conditions (eq. [II-3Ô]), they become 

fllhorn = ä - ä(0, r0), 

«"(ölhom),« = «“a „ - (ro/r)^,Jf=o • (11-39) 

Since the initial surface values of a and ñuáfll are determined by M, r0, we have, in complete analogy with the 
gravitational case, that specification of these three numbers completely fixes the evolution of alnom and à. No 
additional details of the source need be given. 

III. NUMERICAL RESULTS 

a) Wave Equations in Characteristic Coordinates 

The equations developed in the previous section are to be used to find the field that develops when an initially 
stationary star, with an initially stationary multipole field, collapses. The problem is pictured in Figure 1, in charac- 
teristic coordinates, so that ingoing and outgoing null lines are at 45° in this representation. The mathematical 
problem consists of solving an inhomogeneous wave equation in the stellar interior, and a homogeneous wave 
equation in the exterior, subject to boundary conditions relating the two wave functions at the stellar surface. 

In the exterior the characteristic coordinates are taken to be retarded and advanced time: 

ü = t - r*, $ = t + r*. (III-l) 

For both the gravitational and the electromagnetic case the exterior wave equation (cf. eqs. [11-15], [11-29]) may 
be written 

Admdüdv + = 0 , (III-2a) 
where 

4<a = &(t, r), >pG = rñ^t, r) , (III-2b) 

Fig. 1.—Regions of the collapse spacetime for constant 6 and <£, pictured in characteristic coordinates. The initial perturbation 
field is stationary on the initial hypersurface and remains stationary (in the “stationary region”) until information on the first ray 
signals the onset of collapse. The inner problem is numerically solved using characteristic coordinates equal to 77 ± * in the 
Oppenheimer-Snyder interior and extended outward smoothly across the stellar surface. The outer problem is solved numerically 
with characteristic coordinates ¿ ± r*. See text for further details. 
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650 CUNNINGHAM, PRICE, AND MONCRIEF Vol. 224 

and where the curvature potentials are 

VAs (I — 2M¡r)l(! + l)/r2 , (III-3a) 

F0 = (1 — 2M/r)[/(/ + 1) - 6M/r]/r2 . (III-3b) 

We use here subscripts A and G to denote electromagnetic and gravitational quantities, respectively; as in the 
previous section, a tilde (~) is used to distinguish quantities in the exterior from those in the interior. 

Part of the Cauchy data is based on the requirement that the exterior field consist of an initially stationary 
multipole, so that, at ¿ = 0, díftjdt = 0, and 0(r*, t = 0) is a solution of 

3*$! dr*2 = V$9 (III-4) 

which is well behaved at r* = oo. When we require (eqs. [11-23], [11-37]) that 

(III-5) 

the unique solution can be written as 

0) = qi(2MlryF(a, b; c; [2M¡r]) , 

ci a — l 9 ciq = l — 1 , bA = l + 2 9 bG = l + 3 9 cA = cG = 21 + 29 (III-6) 

where F is the hypergeometric function. 
Since the Cauchy data in the exterior are stationary, the solution will remain stationary in the exterior at any point 

which has not yet received information from the collapsing interior. The outgoing null line labeled “first ray” in 
Figure 1 separates the stationary region from the dynamic region at later retarded time. In the numerical solution 
of the partial differential system, we use the stationary solution as characteristic data on this first ray, rather than 
as Cauchy data on the exterior initial hypersurface. 

For the interior we can achieve significant simplification by choosing as our field variables 

Ïa = Ihorn = a - CA(x) , *Pg = R Sin x^ilhom = Sin - CG(x)IR) , (III-7) 

in which the functions C(x) are the functions, discussed in the previous section, which satisfy the interior wave 
equation and, on the initial hypersurface, the matching conditions. In terms of the i/j variables of equation (III-7) 
the interior wave equations (II-12b), (11-28) are homogeneous equations of the form 

Admdudv + Vi/j = 0. (III-8) 

Here u and v are characteristic coordinates in the interior 

u== 7) - x, v = rj + x, (III-9) 
and the potentials are 

^ = /(/+ l)/sin2
x, (III-10a) 

VG = /(/ + l)/sin2 x - (3I2)R(0)IR(t¡) . (III-10b) 

When definitions (III-7) are substituted in the junction conditions (eqs. [11-25], [11-39]) we get 

= ~ [0^]in > n^A.u — nß$A,u ~ (rolr)(l ^M/ro)172^,^, 

= & - OoWgL , nm,u = - ('o/'02O - 2MlrQr
2^GtT]in . (IH-H) 

Here the subscript “in” denotes evaluation at i = 77 = r = 0, and it is understood that equations (III-ll) are to 
be evaluated at the stellar surface. 

b) The Inner Problem 

The problem is now completely specified in either the electromagnetic or gravitational case by (i) wave equations 
in characteristic form (III-2) and (III-8), (ii) junction equation (III-ll), (iii) characteristic data (eqs. [III-6]) on the 
first ray, (iv) Cauchy data ^ = 0 and éi/r/d?? = 0 at 77 = 0 in the interior. To solve the problem numerically, it is 
convenient to split the dynamical region of the spacetime in Figure 1 into two regions separated by the ingoing 
characteristic v = fto which intersects the star’s surface at the event horizon. The exterior region for which v < v0 
may be covered with an extension of the inner characteristic coordinates by relabeling the rays ü = const., v = 
const., with the u and v values, respectively, that they assume at the star’s surface. This extension of coordinates is 
well behaved everywhere. In these coordinates the junction conditions become particularly simple since n = 
R~1(dldu — dldii). 
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No. 2, 1978 RADIATION FROM COLLAPSING STARS 651 

Fig. 2.—The wave functions 0G and $G for an / = 2 gravitational perturbation, for the collapse from r0 = 4M. The height of 
the surface above the base plane represents the magnitude of the wave function. The discontinuity in the figure is equal to the partic- 
ular part of the interior solution, which is not included in 0G. See text for further details. 

The numerical solution for i/jg and for this “inner problem” is shown in Figure 2 for the case of gravitational 
quadrupole perturbations of collapse from an initial radius r0 = 4M. (It should be noted that the discontinuity 
evident in the figure arises because ÿG represents only the homogeneous part of the field; the total field is, of course, 
continuous across the stellar surface.) Two points are of particular interest: First, the interior homogeneous field 
does not depart significantly from ifjG = 0. In fact, in all cases studied the interior homogeneous field never exceeds 
207o of the total field at the star’s surface, during the collapse from r = r0 to r = 2M, so that the dynamics of the 
field in the interior of the star plays an unimportant role in determining the exterior radiation. We shall explore 
this theme in a later paper. If we ignore the homogeneous interior fields, a good approximation for the values of 
the field at the stellar surface follows from equation (III-ll): 

(fA)s X = C¿(xo), 0Ag)s » 4o/r)[<£G]ln = sin2 XoCa(xo)lr ■ (III-12) 

Second, neither the interior nor the exterior field develops ripples that explain the oscillatory radiation found out- 
side (v > v0) this region. 

c) The Outer Problem 

The solution of the “inner problem” on v = v0 gives us characteristic data for the solution of the “outer 
problem,” the determination of the field in the dynamical region for which p > v0. The stationary exterior solution 
on the “first ray” w = w0 completes the specification of the exterior problem. In Figure 3 numerical results are 
shown for $G, in the exterior region, for the same collapses as pictured in Figure 2. We note in this figure the 
emergence of a wavelike oscillation which is outgoing at large r* and ingoing near the horizon. Figure 4 shows the 
location of the peak of this wave in t, r* coordinates and compares it with the quadrupole curvature potential VG. 
The interpretation suggested by this picture is clearly that the wave originates in the region of spacetime in which 
the potential is strong. 

Numerical results are given in Figure 5 for the exterior fields from collapses starting from r0 = 4M and r0 = 8M. 
The values of ißA and $G at r ä 40M are normalized to unity at their peaks and plotted as functions of time. In all 
the plots the curves for collapse from r0 = 4M have been shifted to align the late time nodes with those for collapse 
from r0 = 8M. The field starts from its stationary value and (at least in the case of r0 = 8M) undergoes a relatively 
long initial dynamical phase. For collapse from larger r0 this initial phase would be yet longer. 

The striking feature of Figures 5 is not this initial phase but the damped sinusoidal oscillations in which the fields 
attain their peak value and in which most of the energy is radiated. The frequency and damping rate of this ringing 
is independent of the initial radius of the collapse and, in fact, of all details of the collapse. This is precisely the 
behavior expected of fields exhibiting the quasinormal modes of the black hole and will be discussed in some detail 
in§IV6. 
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Fig. 3.—The wave function in the outer region for the collapse shown in Fig. 2. Waves develop in this region even though 
there are none in the inner problem, and the data on the outgoing first ray u0 ~ u0 is stationary. A wave crest of this radiation is 
indicated. 

Fig. 4.—The location, in r*, t coordinates, of the wave crest indicated in Fig. 3. The potential VG for / = 2 is also shown as a 
function of radius. The figure suggests that the wave is generated in the region of spacetime where the potential is large. 
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RADIATION FROM COLLAPSING STARS 653 

d) Modified Collapses 

It may be asked whether the picture of an initial phase followed by ringing is in any way an idiosyncracy of 
free-fall (i.e., Oppenheimer-Snyder) collapse. To investigate this, we consider a new spacetime for the stellar 
interior: 

ds2 = a2(r¡)[—dri2 + dx2 + sin2 x(^2 + sin2 d d<¡>2)], (III-13a) 

ab) = ia0(l + COS [rjlrj]), (III-13b) 

matched to a Schwarzschild exterior with mass M and initial radius satisfying 

M = ia0 sin3 xo , 

r(r) = a(r) sin xo , 

T = + V sin (r¡lrj)] . (III-14) 

For the choice rj = 1 this is the usual Oppenheimer-Snyder collapse, but a choice of ^ > 1 gives a slower collapse. 
Since the second fundamental form is not continuous across the stellar collapse for rj ^ 1, the collapsing star is 
rather unusual: a homogeneous star with uniform negative pressure surrounded by a shell containing time- 
dependent mass and negative surface tension. The collapse is slowed as if the interior were hung from the somewhat 
rigid (negative surface tension) shell, and we shall call such stars “drumhead” models. 

Drumhead stars of course cannot be taken at all seriously as stellar models. They do, however, provide analytic 
non-free-fall collapses for which all the equations and numerical techniques of this section apply, at least for 
electromagnetic perturbations. (In a subsequent paper the collapse of more realistic stellar models will be 
investigated.) The wave function for electromagnetic dipole radiation is shown in Figure 6 for ^ = 1 (Oppenheimer- 
Snyder), rj = 2, and rj — 3, with the curves shifted so that late time nodes align. It is clear that the effect of ^ / 1 
is not only to lengthen the initial phase (slow down the collapse) but also to decrease the strength of excitation of 
the ringing. The ringing is still characterized in all cases by a single frequency and a single damping rate, and the 
ringing still accounts for most of the oscillation in the wave functions. 

e) Spectra and Total Energy 

To relate the wave functions to observed power flux and spectra, we first note that in the electromagnetic case 
the vector potential of equation (11-27) implies that far from the star the electric vector is 

r (III-15) 

where is the physical (unit) basis vector in the </> direction. The power radiated per unit solid angle is then given 
by the Poynting vector in the radiation zone 

and the total power is 

c?Power _ r2 |F|2 _ 1 
dQ 4t7 11 4tt 

Power = 1 (/ + 1)! 
477 (/ - 1>! 

(Ill-16) 

(III-17) 

For gravitational radiation the analogs of the electric and magnetic fields are the metric perturbations hedi h^, he(P 
in the radiation gauge, the gauge in which the physical components hmm, fall off as r -1 x functions 
of (t — r*), and in which all other physical components fall off as 1/r2 or faster. In this gauge the radiated power 
(Landau and Lifshitz 1975) is 

d Power 
dQ. 16it 

2[(JU[om) + \ (4 hiom - ] (HI-18) 

and for an axisymmetric odd-parity perturbation hmm = h[(})]m = 0. From the definitions of the Es (eq. [II-6]) 
we have that 

-2^/'-r1/27^f (III-19a) 

hmin = ir-%(cot 6 , (III-19b) 
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654 CUNNINGHAM, PRICE, AND MONCRIEF 

Fig. 5b 
Fig. 5.—(a)-(d) The exterior wave functions $A and at r ^ 40 M as a function of time t — t0 after passage of the first ray, 

for several multipoles, for collapse from r0 = 4M and 8M. The curves are normalized to a maximum of unity at their peaks, and 
the r0 — 4M curves are shifted so that late time nodes are aligned with those for r0 = 8M. 

and from the equations in the exterior (Moncrief 1974) we also have 

¿ £2 = -
2 (! - 2M/r)(& + 4G,r) - 2h0 . (III-20) 

In the radiation gauge, equation (III-19a) implies that h0 = 0(1/r) and equations (III-19b) and (III-20) require 
that <jja = 0(\) so that 

= (1 - 2M/r)-^0.r. = -(1 - 2M/r)-^^ + 0(l/r). (III-21) 

The power flux is therefore 

d Power 
i/O 

1 
l&JT 

V - 2)!' 
.(/ + 2)!j 

2i£ 
ea 

82Yl0 

SO2 (III-22) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
78

A
pJ

. 
. .

22
4 

. .
64

3C
 

Fio. 5c 

(t-t0) /2M 
Fio. 5d 

Fig. 5.—Continued 

Fig. 6.—Dipole electromagnetic radiation for modified (“drumhead”) collapses. The interior dynamics of the background 
collapse is similar to the Oppenheimer-Snyder collapse, but the expansion factor is taken_to be a(r¡) = (¿7o/2)(l + cos fr/i?]). (See 
text for details.) Curves are shown for = 2, 3 as well as for the Oppenheimer-Snyder case 17 = 1. All collapses start from r0 = 8M. 
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656 CUNNINGHAM, PRICE, AND MONCRIEF Vol. 224 

Fig. 7.—The spectra of gravitational quadrupole radiation reaching a distant observer for collapses from three different initial 
radii. Plotted is the ratio EVIE of energy per unit frequency to total energy, as a function of frequency v. The strong similarity of 
these spectra suggests that ringing radiation, the spectrum of which is independent of details of the collapse, carries most of the 
energy radiated. 

which, when integrated over solid angle, gives the total power 

Power = 1 (/~2)! 
167r(/ + 2)! 

For both the electromagnetic and gravitational wave functions we define the Fourier transforms 

(III-23) 

gi&0=JT e~Mda (in'24) 

so that the energy per unit frequency is 

Ev = d Energy/^ = 2/c|g|2 , 

^ = (47t)-1[(/ + !)!/(/- 1)!], 
kg — (167r)-1[(/ — 2)!/(/ + 2)!], 

V = wßTT. (III-25) 

Figure 7 shows the spectra for gravitational quadrupole radiation for collapses from three initial radii. Plotted is 
the quantity isv/(total energy) so the curves all enclose unit area. The radiation emitted in these collapses has a 
sharply defined frequency: the spectra are quite narrow, an indication of the importance of ringing radiation in this 
problem. Figure 5b shows that it is the behavior of the wave function immediately after the collapse, rather than at 
late times, which is influenced by the initial radius of the collapse. Therefore, it is these differences in this early-time 
behavior which produce the differences among the three spectra. The initial radiation emitted by a collapse from a 
large radius has, typically, a lower frequency than the ringing radiation which will follow, and the spectra differ 
primarily at low frequencies. However, the early radiation seems to boost the peak of the spectrum for the collapse 
fromr0 = 4M. 

Figure 8 shows normalized spectra for radiation in several different modes for collapses from r0 = 4M. The 
spectra are all fairly narrow band in character and similar to those in Figure 7. We shall see in § IVb that the narrow 
band character can be understood in terms of ringing at the quasi-normal frequencies. (The small secondary peaks 
in the octupole spectra are caused by early-time behavior and do not indicate a higher frequency quasi-normal 
ringing.) The total energy radiated for / = 1, 2, 3 is plotted as a function of initial radius r0 in Figure 9 for both 
the electromagnetic and the gravitational case. 

IV. DISCUSSION 

a) Power-Law Tails 

Figures 5 suggest that after an initial burst of radiation the fields fall off as damped sinusoids, but in fact at very 
late times this is not true. Figures 10, logarithmic plots of the time dependence of the fields at late times, show that 
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No. 2, 1978 RADIATION FROM COLLAPSING STARS 657 

Fig. 8.—The spectra of radiation emitted in several different modes from an r0 = 4M collapse. Note that in all cases the energy 
radiated is significant only over a narrow frequency band. 

in fact at very late times the fields develop power-law tails.1 The nature of these tails of the radiation in a Schwarz- 
schild background has been analyzed in some detail by Price (1972), and we summarize here the relevant results: 

Long after the collapse, in the region of spacetime for which |¿/r*| » 1 an initially stationary multipole perturba- 
tion will have the form 

# = (2Mlt)2l+2xF(r)[l + (Kt-1)]. (IV-1) 
1 The tails are nonradiative, carry no power, and are unimportant in an astrophysical context. 

Fig. 9.—The total energy radiated in different modes as a function of initial radius r0 of collapse. Initial multipole moments 
qJIM are taken to be unity. Points on the graph indicate the results of numerical computations for electromagnetic and gravitational 
radiation for Oppenheimer-Snyder (rj = 1) collapses as well as for “ drumhead ” (r¡ = 2,3) models. The curves represent an approxi- 
mation based on the assumption that the energy is mostly due to quasi-normal ringing. (See § IVb of text for details.) 
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RADIATION FROM COLLAPSING STARS 659 

Fig. 11.—Radial dependence of the dipole electromagnetic late-time tail for collapse from r0 = 4M, with an initial unit dipole 
moment (qißM = 1). The solid line represents the predicted behavior (^/2M) 4(2M/i)4(r/2M)2. The points are the numerical 
results from the solution of the wave equations. 

Here T is a stationary solution of the wave equation (cf. eq. [III-6]) with the following properties: (i) At large r 
(that is, r¡2M » 1), Y becomes 

T = qiClrl2M)^[\ + mir)}, 

C, = (—2)i+1(2/ + l)/!/(2/ + 1)!!, (IV-2) 

if q, is the initial multipole moment; (ii) VF(/-) is well behaved2 at the event horizon (r = 2M). For the electro- 
magnetic and for the gravitational case, stationary solutions well behaved at the event horizon can be written in 
terms of hypergeometric functions so that the solutions in equation (IV-1) are 

h = qiCi(2MIt)2i + 2KAF(l, -/ - 1 ; 1 ; 1 - r/2M)[l + 0(1/0], 

fa = qiC¡(2Mlt)2Í + 2(2M/r)KaF(l - 1, - / - 2; 1 ; 1 - r/2M)[l + 0(1/0], 

Ka = lim {xl + 1IF(l, -l - l;\;l - x)}, 
X~> co 

Ka = lim {xl + 2IF(l - 1, _/ _ 2; 1 ; 1 - x)} . (IV-3) 
X-KX> 

For the electromagnetic dipole the form of equations (IV-3) is particularly simple : 

^ = 4ql(2MIt)4(r/2M)2[l + ^(1/0]. (IV-4) 

Figure 10a shows the /- 4 falloff. To check the radial dependence of the tail we plot in Figure 11 the large t value 
°f f°r electromagnetic dipole radiation, as a function of r. The computed values show very good agreement 
with the prediction of equation (IV-4), differing noticeably only at large values of r where the condition \ tlr*\ » 1 
is not fulfilled. The disagreement at large r can be viewed as a contamination of the l//4 tail by a part of the field 
which falls off more quickly in time. (In fact, if the theoretical prediction of eq. [IV-4] is subtracted from the 
computed results, the difference falls off as i- 5 with considerable accuracy.) 

b) Quasi-normal Ringing 

Normal modes of dynamical systems are motions with time dependence ei(ùt at a real frequency a>. Perturbation 
fields in a black hole background cannot exhibit such modes (radiation damps any oscillation), but there are 

2 This is not explicitly stated by Price (1972) but is inherent in his analysis. For instance, the matching of his equations (53) and 
(56) imply that T(r) constant at r 2M. 

Fig. 10.—Electromagnetic and gravitational wave amplitudes as a function of time, showing development of the predicted ¿-(21 + 2) ta¡is plots are for collapse from r0 = 4M, with unit initial multipole moment (qißM = 1), computed at four values of 
r/lM: (a) 3.1419, (b) 6.2491, (c) 13.3970, and (d) 20.9241. The oscillations appearing in the tail of the gravitational wave function 
for r/2M = 3.1419 are caused by round-off errors in the initial stationary solution and are not of physical significance. 
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660 CUNNINGHAM, PRICE, AND MONCRIEF Vol. 224 

nevertheless special frequencies of interest. If time dependence eicot is assumed in equation (1-1), the result is an 
ordinary differential equation in r*, and specification of boundary conditions at r* = ± oo leads to an eigenvalue 
problem for w. The boundary conditions of astrophysical relevance are those of ingoing waves at the horizon 

and outgoing waves at infinity 

Quasi-normal frequencies, the solutions to this eigenvalue problem, have been studied by Press (1971), Goebel 
(1972), and Chandrasekhar and Detweiler (1975). 

It should be noted that the boundary conditions on the eigenvalue equation are not of the Sturm-Liouville type 
and the problem is not self-adjoint. The usual conclusions, then, do not apply. In particular, the eigenvalues o>2 

are not necessarily real and the eigenfunctions are not likely to form a complete set. That œ2 is not real is intuitively 
obvious since a mode should represent a damped oscillation. 

Quasi-normal frequencies depend on the details of the curvature potential in equation (1-1) and therefore are 
different for each multipole, and are different for electromagnetic, gravitational, scalar perturbations, etc. The 
determination of quasi-normal frequencies is hindered by numerical problems, but Chandrasekhar and Detweiler 
(1975) have found two, three, and four modes for / = 2, 3, 4, respectively in the case of the gravitational potential. 
These are the modes with the least damping, but there may be other modes with greater damping. Studies of 
analytically tractable model potentials suggest that many highly damped modes may exist (Detweiler 1977). 

Quasi-normal modes should be of astrophysical relevance for any process involving dynamical perturbations 
close to the event horizon. Such perturbations in the region of strong potential should excite quasi-normal ringing 
of the field and result in radiation to a distant observer (and at the event horizon) exhibiting quasi-normal fre- 
quencies. These quasi-normal oscillations should be particularly evident at late times since they are typically more 
slowly damped than the source exciting them. [On a timelike line which crosses the event horizon, any perturbation 
field must die off at least as fast as exp ( —w/4M), where w is retarded time (Price 1972), so that quasi-normal 
frequencies with imaginary parts less than (AM)'1 will, at large times, dominate the “direct” outgoing radiation 
from the perturbing source.] Quasi-normal ringing has been found by Davis, Ruffini, and Tiomno (1972) and by 
Chung (1973) in the radiation from a particle falling into a black hole, and by Vishveshwara (1970) for waves 
scattered by a black hole. The question of quasi-normal ringing is discussed in a recent review by Thorne (1978). 

Figures 5 show clearly that after an initial burst the fields generated by a perturbed collapse are characterized by 
damped sinusoidal oscillations. The fact that the frequencies are the same (the nodes align) for different initial 
radii, and are the same (Fig. 6) for different rates of collapse, demonstrates convincingly that this damped oscilla- 
tion is not a peculiarity of the excitation but rather a feature of the background spacetime geometry. The frequency 
and damping rate of these damped oscillations can be read off the graphs and are given in terms of a complex 
frequency in Table 1. For comparison, the gravitational quasi-normal frequencies found by Chandrasekhar and 
Detweiler (1975) are also listed. The striking agreement of the observed complex frequencies with the values given 
by Chandrasekhar and Detweiler (1975) leaves no doubt that quasi-normal ringing is strongly evident in the 
emerging radiation. Unfortunately no computations of quasi-normal frequencies in the electromagnetic case are 
available for comparison. 

It is tempting to ask whether quasi-normal modes, other than the “fundamental” (least damped) mode, can be 
seen in the radiation. To search for the second mode in the gravitational quadrupole case we have subtracted, from 
the numerical data, a term proportional to pure ringing at the fundamental quasi-normal mode, with amplitude 

TABLE! 
Complex Frequencies* 2Ma> 

Quasi-normal 
Electromagnetic Gravitational Gravitational 

/ Fields Fields Frequenciesf 

1   0.497 ± 0.008 + (0.190 ± 0.008)/ 
2   0.914 ± 0.001 + (0.1892 ± 0.0003)/ (0.7466 ± 0.0008) + (0.1772 ± 0.0003)/ 0.74734 + 0.17792/ 

0.69687 + 0.54938/ 
3.    1.3112 ± 0.0003 + (0.1902 ± 0.0001)/ (1.1968 ± 0.0002) + (0.1843 ± 0.0001)/ 1.19889 + 0.18541/ 

1.16402 + 0.56231/ 
0.85257 + 0.74546/ 

* Numerical uncertainties stated represent scatter in the frequencies and damping rate of the late-time fields, 
t As determined by Chandrasekhar and Detweiler 1975. 
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No. 2, 1978 RADIATION FROM COLLAPSING STARS 661 

Fig. 12—Fundamental quasi-normal ringing subtracted from for quadrupole gravitational radiation. The subtracted curve 
represents — /I exp (—<0/0 sin — 8) where a>B, a>/ are the real and imaginary parts of the least damped quasi-normal 
frequency. The parameters A and 8 are chosen to minimize oscillations at late times in the subtracted curve. 

and phase adjusted to minimize oscillations at late times. The result is plotted in Figure 12. The signature of the 
second quasi-normal mode aj2 = (0.69687 + 0.549380(2M)_1 is a ratio between the magnitudes of adjacent peaks 
(maximum and minimum) of 

exp {Im (cu2)7r/Re (cu2)} ^ 12. (IV-5) 

There is some indication in Figure 12 of the appearance of an oscillation with a damping rate of this order. It 
should be noted that the last few oscillations in the residual curve must be ignored. These fall near or below the 
extrapolated t~6 tail of the field, and we should expect the tail strongly to contaminate the ringing. The early time 
region of the curve must also be ignored since it is contaminated by the initial burst of radiation from the collapse. 

Figures 5 not only show that quasi-normal ringing appears in the outgoing radiation, but in fact that quasi- 
normal ringing seems in some sense to dominate the radiation. To investigate this quantitatively, we consider in 
Figure 13 to what extent the quadrupole gravitational spectrum (cf. Fig. 7) for collapse from r0 = 8M can be 
approximated by (i) the spectrum of pure quasi-normal ringing at the fundamental quasi-normal frequency, and by 
(ii) the spectrum of the two Chandrasekhar and Detweiler (1975) quasi-normal modes (cf. Table 1) with relative 
amplitude and phase adjusted for a good fit to the actual spectrum. The one-mode spectrum gives only a rough 
approximation, but the two-mode spectrum provides an excellent approximation to the main peak of the spectrum. 
The fact that the two-mode approximation does not reproduce the small secondary low-frequency peak is consistent 
with the interpretation that this secondary peak is produced by the initial burst of radiation. A comparison of 
Figures 7 and 13 shows that the main peak of the spectrum for r0 = 20M is also very well approximated. The two- 
mode spectrum, however, does not give as good a fit to the rQ = 4M collapse, nor can it be improved with a different 
choice of relative amplitudes and phases; all such two-mode spectra are somewhat broader than the r0 = 4M 
spectrum. This is caused by the circumstance that the initial burst of radiation in the r0 = 4M case falls at about 
the same frequency as the quasi-normal ringing. (Note the absence of a secondary peak in the rQ = 4M spectrum 
in Fig. 7.) To check that the impressive agreement in Figure 13 is not a result of the freedom to choose two param- 
eters (relative phase and amplitude) in superposing two modes we have tried to reproduce the / = 3 gravitational 
spectrum with the same two (/ = 2) modes and have found it impossible to achieve even a rough agreement. 

Although quasi-normal modes account very well for most of the radiation in the above example, we wish to 
caution against the assumption that quasi-normal ringing generally accounts for nearly all the radiation. That this 
is not so is made clear if we consider electromagnetic dipole radiation. In this case arguments based on the idealized 
potential (Price 1972) suggest that the single quasi-normal frequency given in Table 1 is the only quasi-normal 
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Fig. 13.—Gravitational quadrupole spectrum for collapse from r0 = 8M, compared with spectra for one (o>i) and for the two 
quasi-normal modes: wi = (0.64734 + 0.17792/)/2M and <a2 = (0.69688 + 0.5493/)/2M. A good fit to the actual spectrum is 
achieved by the two-mode spectrum plotted, 

$ oc Re [(1 — 0.3/) exp (/o>i/) — (1 + 0.5/) exp (/o^Ol » 
corresponding to roughly equal excitation of the two modes. 

frequency with small damping. We are constrained then to try and fit the dipole spectrum (cf. Fig. 8) with a single 
mode. The comparison, plotted in Figure 14, is not very satisfactory. Figure 5a also shows that the initial phase, 
rather than the quasi-normal ringing, probably accounts for most of the energy radiated in the electromagnetic 
dipole collapses from small radii. 

The limitations of quasi-normal modes in representing the field are also inherent in the fact that they do not 
provide a complete set of basis functions. (It is at least extremely implausible that the quasi-normal modes are 
complete. For the idealized potential [Price 1972] the modes are clearly an incomplete set since, for any /, there are 
only a finite number of quasi-normal frequencies.) 

There is a reason even more basic why quasi-normal modes will not be dominant in many cases. Oppenheimer- 
Snyder collapse, or the similar drumhead collapses, have no inherent hydrodynamical or other oscillatory time 
scales so that there is in some sense very little radiation being generated within the star and passing outward to 
infinity. The radiation is generated rather by the interaction of the surface and the potential, i.e., by the excitation 
of the exterior geometry into quasi-normal ringing. 

Most astrophysical processes of course do have some inherent time scale, and radiation at frequencies correspond- 
ing to that time scale should dominate the spectrum of outgoing radiation. The point we wish to emphasize, however, 

Fig. 14.—Electromagnetic dipole spectrum for initial radii r0 = 4M and r0 = 8M compared with the spectrum of the pure 
1=1 electromagnetic quasi-normal mode. 
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No. 2, 1978 RADIATION FROM COLLAPSING STARS 663 

is that at the late stages of the collapse of an astrophysical object, of a particle falling into a black hole, etc., these 
time scales are irrelevant. More precisely, the passage from, say, r = 6M to the horizon will occur in a proper time 
small compared to inherent dynamical time scales. So in the late stages of such processes the radiation generated 
will not depend on the internal dynamics of the system but rather on the extent to which quasi-normal ringing is 
excited. 

It becomes important, therefore, to be able to estimate the excitation of quasi-normal ringing in an astrophysical 
collapse. An analysis of quasi-normal ringing in the idealized potential (Price 1972) suggests that the first and 
largest peak $peak of the quasi-normal ringing is related to &, the field value at the stellar surface, by 

* [(^Ti)'4. 
(IV-6) 

Here r*(w) describes the location of the stellar surface as a function of retarded time ü. The right-hand side is 
evaluated near the peak of the potential ; evaluation at r = 4M gives good results. The approximation for the surface 
fields in equation (III-12) and our numerical results then give us 

peak ' 

$G peak 4á?) "(ffiM“-4; “) [(°-57 ^Ng (IV-7) 

where F is the hypergeometric function defined in equation (III-6). 
If the radiation is dominated by quasi-normal ringing, then the total radiation energy E emitted in a given 

multipole mode should depend only on the magnitude of the peak of the quasi-normal ringing. Assuming that 
little energy is radiated before this peak and that the least damped mode, of complex frequency w, is dominant 
thereafter, our approximation in equation (IV-7) suggests 

<iv-8> 

where /c, given in equation (III-25), depends upon / and on whether the perturbation is electromagnetic or 
gravitational. 

This approximation for the energy is compared to numerical values in Figure 9. As might be expected, the 
approximation is rather good for large values of r0, but fails for stars with initial radii near that of the potential 
maximum. 

We shall discuss elsewhere in greater detail the problem of estimating quasi-normal excitation and the relevance 
of quasi-rormal radiation to astrophysical processes. 

Equation (IV-8) allows us to estimate the maximum energy that can be radiated during the collapse of our 
models from large radii (r0 » M). Near x =: 0, regularity demands that U{x) oc (sinx)i + 1. For r0» 2M we have 
2M/av = sin2 xo ^ Xo2 « 1> and we take for £/(x) 

U{X) = C/o(sinx/sinxoy + 1 * U0(xlxo)l + 1, (IV-9) 

where U0 = U(xo) is a constant. With this form of the source we can calculate the magnitude of the multipole 
moment it produces (cf. Appendix B); using the “Newtonian” approximation of Appendix B, we find that 

61(1+ l)(l+ 2)U0 ( r0\i-i 
(21 + 1)(2/ + 3) \2M/ 

(IV-10) 

An upper limit for ^ now follows from the requirement that there be no centrifugal shedding. A particle freely 
falling in a bounded orbit in the Schwarzschild geometry can fall through the event horizon only if U#, its angular 
momentum per unit mass, satisfies 

U* < 4M (IV-11) 

(Misner, Thorne, and Wheeler 1973, pp. 660-662). Particles with larger angular momentum will reach a periastron 
outside the horizon. Since the fluid particles at the surface of our models are freely falling in the (approximately) 
Schwarzschild exterior, equation (IV-11) gives a natural upper limit on the angular momentum per unit mass of 
these particles : 

\U0\XQ=\U(xo)smedYloldd\ <4M. (IV-12) 

A more rapidly rotating model would presumably disrupt before all of its matter passed through the event horizon. 
Such disrupting models may indeed radiate more energy than our slowly rotating models, but they would not be 
amenable to a purely perturbative calculation. 
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664 CUNNINGHAM, PRICE, AND MONCRIEF Vol. 224 

For simplicity we consider only the dominant quadrupole (/ = 2) radiation and find, after calculating the 
maximum of the angular factor sin de Yl0¡dd, that equation (IV-12) requires 

|U0| = |t/(xo)| <2M(127t/5)1'2 (IV-13) 
and(eq. [IV-10]) 

q2 < (mi35)(l2nl5)ll2r0 . (IV-14) 

For r0¡2M » 1 the factor involving dr^jdu in equation (IV-7) is easily evaluated from (dr/dr)2 x 2M¡r, and 
equations (IV-8) and (IV-14) give the upper limit for the radiated energy £max. It is interesting to note that (for any 
/ > 2) the upper limit estimates EmaKIM approach a constant as 2M/r0 -> 0. For / = 2 it has the approximate value 

£maX^1.2 x 10-3M. (IV-15) 

We reiterate that this estimate applies only to the odd-parity “slowly rotating” models considered here, and makes 
use of a special form (eq. [IV-9]) of the source function U(x). 

We wish to thank Steven Detweiler and Kip S. Thorne for useful discussions of quasi-normal modes. We wish 
also to thank Anthony Hearn, Martin Griss, and Cedric Griss, of the Computational Physics group at the 
University of Utah, for their help in using the symbolic manipulation language REDUCE to derive the perturbation 
equations for the stellar interior. 

APPENDIX A 

JUNCTION CONDITIONS 

The derivation of the junction conditions at the boundary surface is facilitated if we introduce Novikov (1963) 
coordinates (r, R*, 6, <f>) in the exterior region. In these coordinates the exterior line element is 

ds2 = -dr2 + 2dR*2 + r\dd2 + sin2 6d<j>2) , (Al) 

where 
r = M(R*2 + 1)(1 + cos t,) , 

T = M(R*2 + l)3l2(r] + sin r,) ; (A2) 

and in this system the unperturbed boundary surface is simply 

R* = R0* = cos Xo/sin Xo , sin xo = (^o*2 + 1)~1/2 • (A3) 

We can always require, with a suitable choice of coordinates, that the boundary surfaces of the perturbed 
spacetime have the same fixed coordinate characterization. The surfaces labeled x — Xo (interior) and R* = Rq* 
(exterior) may be identified with one another as the perturbed star’s boundary provided (i) the perturbed fluid 
velocity is tangent to the surface and (ii) the perturbed first and second fundamental forms are continuous at the 
surface. For first (wth) order perturbations each condition must be satisfied up to first (nth) order in the perturbation 
parameter e. 

Condition (i) is trivially satisfied for first-order odd-parity perturbations since the unperturbed fluid velocity is 
U11 = and its first-order perturbation obeys 

dU* 
de 6 = 0 

±r , 1 dUx 
ß2 nXT + ^2 de 6=0 

= 0 (A4) 

(since hxx = dUxlde\€=:0 = 0 for odd-parity perturbations). 
To impose condition (ii) we express the exterior perturbations in Novikov coordinates (r, JR*, 6, </>). The match 

conditions are then simply 

hablxo = > 

d_ 
3e [te*9'1,2rV]|e=o.x=xo = ¿[(r'B’)“1/2fa6B‘]Uo,B.=Bo- (A5) 

where rab
x and Tab

R* are Christoffel symbols of the interior and exterior metrics and where a, b range over (r, 0, <f>) 
the (continuous) coordinate functions on the boundary surface. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
78

A
pJ

. 
. .

22
4 

. .
64

3C
 

No. 2, 1978 RADIATION FROM COLLAPSING STARS 665 

A straightforward computation (using the transformation from Schwarzschild to Novikov coordinates in the 
exterior) yields from equations (A5) : 

^olxo — rjR*(R*2 + 1)1/2(1 + COS rj)2h0  sin ir)ît1  
\ [0R*)2(1 + COS rj)2 — sin2 7j] (R*2 + 1)1/2(1 + COS rj) 

1(1 +1) 

R V1 + Sin x) J L 

x-(qA X dr \R2) 

— ^aUo* » 

h2R* ö(r27fi)/ÖT 
r(R*2 + 1)1/2 /(/ + 1)(/ - 1)(/ + 2) 

= <R cos 
R sin2 x d 

2 d^c 
i ^ (çA 

sin2 x dr \R2/ 
2h0 

R2 sin2 x /(/ + 1) 
(A6) 

where we have used the exterior field equations given by Moncrief (1974) to reexpress the (Schwarzschild) time 
derivatives of gl9 etc., in terms of 7rl9 etc. From these same exterior equations one can also derive 

 ~20*7ri),B* 
/(/ + 1)(/ - 1)(/ + 2) 

  R*(l + cos y)2 

2(1 + cos t?)2 + 3 sin 7](t} + sin rj) 

R*r2 8 /h2\ 20*!) (R*)2 

(R*2 + 1)1/2 8t V2/ /(/ + 1)(/ - 1)(/ + 2) (R*2 + 1) 

2R* [R*(R*2 + 1)1;2(1 + cos v)2h0 sin ^ _ 
(R*2 + 1)1/2 L i^*2(l + cos 7])2 — sin2 rj (R*2 + 1)1/2(1 + cos rj) 

(A7) 

From equations (A6) it is evident that, at the boundary surface, each term on the right-hand side of equations 
(AT) may be equated with the boundary value of an interior function (e.g., 7rl9 h09 h2) with the possible exception 
of h2,x- However, since h2 = h2 at the boundary, and since d/dr|Ä* is a derivative tangent to the boundary, we may 
equate 

^2,t|xo := ^2,t|b0* * (A8) 

Finally h2tX = q2t% (cf. eq. [II-3b]) can be reexpressed through the use of equation (II-8c) to yield the matching 
equation 

+ Kl + l)167rpí7]0o. (A9) 

Equations (A6) and (A9) provide the fundamental matching conditions used in § II. 

APPENDIX B 

INITIAL DATA AND MULTIPOLE MOMENTS 

We here solve the gravitational initial data problem formulated in § II for an arbitrary (regular) source function 
U(x). Setting ttiIhom = 0 on the initial (t = t = 0) surface, we must find the solution C(x) = R2^ of 

1 d . „ dC 
. o -7- Sin2 X ~T~ sm2 x dx dX 

lSL+^.C = -l6rTpR2UJ{l+\) (Bl) 

which matches smoothly to the stationary solution of the RW equation which is well behaved at r = oo. 
Let Creg(x) and Cirr(x) be the solutions of the homogeneous form of equation (Bl) which behave, respectively, as 

^regíx) x~*0 > X1 ’ 

Then, any solution of equation 

C(x) = 

(Bl) which is regular at x = 0 has the form 

r to 
yCres(x) + dx'{G(x, x) sin2 x'[-\67rpR?UtXd(l + 1)]} , 

Jo 

(B2) 

(B3) 
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666 CUNNINGHAM, PRICE, AND MONCRIEF 

where y is a constant, and where the Green’s function G(x, /) is given by 

Q( Y'\ _ Clrr(y')Greg(y) jf y < y' 
sin2

X'W(x') u x ~x 

Vol. 224 

  Cregix )Girr(y) Jf v > v' 
sin2 x'W(x') X ~X ’ 

in which the Wronskian 

satisfies 
W(X) = [CregixWQrrbdMX ~ Qrr(x)dCteg(x)ldx] 

sin2 xW(x) = constant ^ 0 . 

We must match this solution to the exterior stationary solution 

r^i = $G = q,rA 

of the RW equation which has the asymptotic form 

or 
(l/r)(2M/r)‘. 

Putting 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

(BIO) Qi = -\ dx'{sm*x'Cieg(x')[l6irpR3Ux.Kl+m, 
Jo 

we can write the initial matching conditions (eqs. [11-17] with t — t = 0, and with = 0 in eq. [11-19]) as 

yCM - ,,no)A(,0) - - [sJ^e)] a, 

y|c„(x.)-Ji*(0)(l -^)1'aA>>)g,--|[s‘fS.^a.ja+ i)|. (Bll) 

These are linear, inhomogeneous equations for the two constants y and qt which are thereby determined once the 
sources are specified. 

The solution for qi can be written 

<7i[sin2 xo*3(0)(l - 2M/r0)1'2Ä,r(ro)Creg(xo) - sin2 XoR2(0)A(r0)dCreg(xo)ldX] 

rxo 
= dX'{l6”pR3U(xy(l + msm3x'Creg(X)]ldx'}, (B12) 

Jo 

where the contribution proportional to U(xo) has been canceled by the surface term resulting from an integration 
by parts. 

Recalling that 

(47r/3MO)r0
3 = M, jR2(0) = r0

3/2M, lÓTrpR3 = 6r0(ro/2M)1/2, (B13) 

we can rewrite this result as 

q[r°2{m)ll2{1 ~ ~)m A.r(ro)Creg(Xo) ~ ^0) ^ CreK(x0)] 

= 61(1 + l)^)1'2 £ dx{u(x) [Sin2 x'CreK(x')]} ’ (B14) 

where xo and r0 are related by 
sin2 xo = 2M/r0 . (B15) 

The regularity condition on U{x) at x = 0 is determined by the requirement that 

= U(x) sin 6dYloldO (B16) 
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No. 2, 1978 RADIATION FROM COLLAPSING STARS 667 

be a regular function of locally Cartesian coordinates at the center (x = 0) of the star. (Here is the 
Killing field of azimuthal symmetry.) From the specified angular dependence it is straightforward to show that this 
condition requires 

U(x) > const, x (sinxy + 1. (B17) 

The solutions Clrr may be written as 
Cirr(x) = (sinx)-a + 1Wcosx) (B18) 

where O* is related to Gegenbauer polynomials (Abramowitz and Stegun 1965) and is given by the Rodrigues 
formula 

0,(1) = (1 - H-1,2(!)! + 1(l - I2)1'2 . (B19) 

The solution well behaved at x = 0 may then be found from Cirr(x) as 

Cres(x) = Clrr(x) p[sinx'Clrr(X')]-W- (B20) 
Jo 

The integrals arising in equation (B20) can always be evaluated in closed form. For the quadrupole (/ = 2) case 
the functions are 

Cirr(x) = -3 cos x/sin3 x, 

Creg(x) = 
sin3 x — 3 sin x + 3X cos x 

6 sin3 x 
(B21) 

If r0 » 2M (i.e., if the initial radius is much larger than the Schwarzschild radius), then xo « 1 and for any 
/ > 2 we may use the approximations 

Creg(x) ^ sin1 x - ^ 5 

Qrr(x) ^ (sinx) ^-1 ~ X~l~1 • (B22) 

These “Newtonian” approximations ignore the spatial curvature of the initial hypersurface. 
The problem of justifying the choice a^m = 0 (see eq. [11-35]), and of relating an electromagnetic multipole 

moment qt to the source current, is solved similarly. 
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