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ABSTRACT 

In this paper the conventional description of adiabatic perturbations of stationary fluids in 
terms of a Lagrangian displacement is reexamined, to take account of certain difficulties that have 
been overlooked in other treatments. A class of displacements—called trivials—that leave the 
physical variables unchanged is identified; these define “gauge” transformations of the initial 
data in the Lagrangian picture. The conserved canonical energy Ec (Hamiltonian) and angular 
momentum Jc (in the case of axisymmetric unperturbed fluids) associated with the dynamical 
equations are shown not to be invariant under these gauge transformations. Since Ec has formed 
the basis of previous criteria for secular stability of stars, it is necessary to eliminate the gauge 
freedom in order to regain a meaningful criterion. To this end a conserved inner product (the 
symplectic structure) is introduced and used to define a dynamically invariant class of “canonical” 
displacements orthogonal to the trivials. In general, canonical displacements obey the extra 
restriction that the Lagrangian change in p~1Vs>V X V vanish; in fluids with uniform entropy s 
they obey the more restrictive condition that the Lagrangian change in p~1V X Vvanish. Restrict- 
ing consideration to canonical displacements guarantees that Ec and Jc will be invariant under any 
residual gauge freedom. For nonaxisymmetric perturbations of axisymmetric fluids, to every 
physical perturbation corresponds a unique canonical displacement. 

In an appendix the relationship between Ec and Jc and the (gauge-invariant) second-order 
changes in the total energy and angular momentum of the fluid is derived. Another appendix, 
dealing with uniformly rotating fluids, reexpresses the gauge-invariant combination Ec — £IJC 
in terms of Eulerian changes in the fluid variables. A subsequent paper applies these results to the 
study of secular instability in stars. 
Subject headings: hydrodynamics — instabilities — stars: rotation 

I. INTRODUCTION 

This and a subsequent paper (Friedman and Schutz 1978, hereafter Paper II) are concerned with fluid perturba- 
tion theory, and with secular instability of rotating Newtonian stars. Although the subjects have received the 
attention of various authors in recent years (Clement 1964; Lynden-Bell and Ostriker 1967; Tassoul and Ostriker 
1968; Chandrasekhar 1970; Chandrasekhar and Lebovitz 1968, 1973; Friedman and Schutz 1975; Hunter 1977), 
several points have been consistently overlooked, and they substantially alter the previously accepted picture. First, 
stellar perturbations have conventionally been described in terms of a Lagrangian displacement; but Schutz and 
Sorkin (1977) have recently pointed out the existence of a class of trivial displacements which leave the physical 
variables unchanged, but which do not leave invariant the functional that governs secular instability to radiation 
reaction. One must therefore eliminate the trivial displacements in order to regain a meaningful stability criterion.1 

(A special kind of trivial had been pointed out by Lynden-Bell and Ostriker (1967), but these are harmless in that 
the criterion is unaffected by them.) A second previously unsuspected result is the presence of a generic instability of 
rotating stars to radiation reaction. That is, we find that in all rotating stars2 gravitational radiation reaction will 
excite an instability or marginal instability in nonaxisymmetric modes of the form with m sufficiently large. As 
has been pointed out, for example, by Hunter (1977), the criterion for secular instability to viscosity is not identical 
to that governing instability to radiation reaction. Because the proof of generic instability to radiation reaction does 
not hold in the case of viscosity, one expects on the basis of our results that stellar models which are unstable against 
radiation reaction can nevertheless be stable against viscous dissipation. In fact, the work of Lindblom and Detweiler 

* Supported in part by NSF grant MPS 74-17456. 
1 The elimination of displacements that do not change the boundary of uniform-density ellipsoids (e.g., Chandrasekhar 1969) is 

similar in character, although this class of displacements is larger than the trivials. 
2 Technically, we consider rotating axisymmetric perfect fluids having equations of state of the form p = p(p, s). 
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(1977) suggests that in cases where the viscous and gravitational radiation time scales are comparable, viscosity 
may damp out the generic instability. 

Physical implications of this work, in particular the modification of instability points obtained by Ostriker, 
Tassoul, Bodenheimer et al, using tensor virial methods, have already been discussed in a Letter (Bardeen et al 
1977). 

In this first paper we develop a formalism for perturbations of a stationary Newtonian fluid. In § II, a description 
of fluid perturbations in terms of a Lagrangian displacement is introduced. The class of trivial displacements is 
identified, and an explicit form obtained for the generic trivial. Section III deals with the formal structure of the 
perturbation equations. The canonical energy and angular momentum are introduced, together with two related 
dynamically conserved inner products. We find that the canonical energy and angular momentum do not vanish 
on trivial displacements. They therefore cannot be identified with the second-order changes in the system’s energy 
and angular momentum, and following Bardeen (1975), we obtain the explicit relation between the canonical and 
physical conserved quantities. (The details of derivations in this section are in two appendices.) In the final section 
(IV), the inner products defined in § III are used to characterize a dynamically invariant class of canonical displace- 
ments orthogonal to the trivials. In Paper II the formalism developed here is used to treat secular instability of 
Newtonian stars. 

II. TRIVIAL LAGRANGIAN DISPLACEMENTS 

We will consider the perturbations of a stationary perfect fluid with density p, pressure p, entropy per baryon s, 
and fluid velocity v*. The equilibrium configuration is to be a solution (/>,/?, v1, s) to the equations 

p=p(p,s), (la) 

Vi(j>vi) = 0, (lb) 

ip'V.s = 0 , (1c) 
and 

+ ! V(/> + V,® = 0 , (Id) 
P 

where O is the gravitational potential, defined by the equation 

V20 = 4ttGp . (2) 

Small perturbations of such a star can be treated in either of two ways. The first is a “ macroscopic” point of view : 
one simply considers changes in fluid variables at a particular point in space. These perturbations, written Bp, Bp, 
Bv\ Bs, are the Eulerian changes. The other approach is “microscopic”: one defines a “Lagrangian displacement” 
vector field which connects fluid elements in the equilibrium with corresponding ones in the perturbed con- 
figuration. One then defines the Lagrangian change in any fluid variable as the change with respect to a frame 
dragged by i1. Formally this means ¿hat the Lagrangian change AQ in a quantity Q is related to the Eulerian 
change by 

AQ = BQ + £tQ, (3) 

where the Lie derivative has the meaning 

£*/= (4a) 
for scalars /, 

£iVi = gvjVi - vjVj^ (4b) 

for contravariant vector fields v{, and 

Mi = (4c) 

for covariant vector fields ^ (see, e.g., Yano 1955). The Lie derivative with respect to i? has an easy interpretation: 
in a coordinate system in which g is one of the coordinate basis vectors, the Lie derivative is the ordinary partial 
derivative with respect to that coordinate. Equations (4) simply enable one to compute it in any coordinate system. 

Defined in this way, the Lagrangian change in a vector (or tensor) measures the change in its components with 
respect to a “Lagrangian frame”: the frame (or coordinate system) is embedded in the fluid and dragged along 
with the fluid by the perturbation. This definition was introduced by Taub (1969) for relativistic fluids and has been 
used in that context by Carter (1973), by us (Friedman and Schutz 1975), and by Schutz and Sorkin (1977) who 
studied the resulting formalism in some detail. The definition agrees with that of Chandrasekhar et al. and of 
Lynden-Bell and Ostriker (1967) only for scalars (the latter authors use À = S + f • V). The form of A given in (3) 
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is mathematically somewhat more natural,3 and it simplifies the formalism developed here. In particular, such key 
results as equations (59) and (70) below take more complicated forms (and might have been more difficult to derive) 
using the older definition of A. 

The Lagrangian change in the fluid velocity, 

A^ = dt? , (5) 

follows from the fact that a fluid element with trajectory ¿(t) in the unperturbed fluid has the perturbed trajectory 
cXt) + t]. Conservation of mass is expressed by 

Ap = -PVi?. 

We suppose that the perturbation is adiabatic, so that 

A^y = 0 ; 

and it then follows from the equation of state (la) that 

(6) 

(7) 

(8) 

where y = (plp)(dpldp)s is the adiabatic index. Equations (5)-(8) can also be written in terms of Eulerian perturba- 
tions, by means of equation (3). We have 

(9) 

Ss^—^ViS, (10) 

- iwy, (ii) 
and 

Sp = -ypV,? - ?ViP. (12) 

These expressions are identical to those used by Chandrasekhar et al. The Eulerian charge in the gravitational 
potential 80 is then given by 

V280 = AirGSp = — AttGVj(pH*) . (13) 

In this way one writes all variables of the perturbed configuration in terms of the displacement The perturbed 
equation of motion for the fluid, 

pA^8t + + ~pViP + VifcJ = 0, (14) 

then takes the form 

o = + ipv^Mi + p(^v3.)2£ - v^rpv^o + 

= A}dn¡ + BtH1 + C/r. (15) 

By introducing a Lagrangian displacement, one automatically satisfies the linearized conservation equations 

S(d(s + v^jS) = 0 (16) 
and 

8[S(p + V/p^O] = 0 . (17) 

As a result, one acquires an unconstrained action for the dynamical equation (14) (see § III) and a related Hamilton- 
ian formalism useful for stability theory. Moreover, any initial perturbation (8/?, 8p, 8^, Ss) can be characterized 
by some displacement ^ via equations (9)-(12), provided that the total mass and entropy of the configurations are 
unchanged.4 (In the case of isentropic fluids, one is restricted to isentropic perturbations.) 

It is not true, however, that a physical perturbation uniquely determines a displacement £*. In fact, there is a 

3 This is essentially because the reference frame is “ Lagrangian,” whereas the older definition refers a Lagrangian perturbation 
to an Eulerian frame and thereby complicates the mathematical description. The fundamental element underlying Lagrangian 
perturbation theory is a map between the perturbed and unperturbed stars (see, for example, Appendix B). The Lie derivative is 
defined only by this map; the derivative requires in addition the Euclidean structure of the space. 

4 These are natural restrictions in the following sense: any perturbation that changes the total mass and entropy can be viewed 
as a perturbation of a nearby equilibrium having mass M + 8M and entropy S + 8S. The corresponding pertubation of this new 
equilibrium leaves its mass and entropy unchanged. 
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class of trivial displacements rf for which the corresponding Eulerian changes in p, p, v\ and s all vanish. Two 
displacements ^ and t then correspond to the same physical perturbation if (and only if) they differ by a trivial 
displacement, 

£ = r + V, (18) 

where rf satisfies the equations that result from setting the left-hand sides of equations (9)-(12) to zero, namely 

ViW) = 0 , (19) 

7^ = 0, (20) 
and 

drf + v’Vrf - w = 0. (21) 

(Note that when £/> and 8s vanish, 8p vanishes as well by virtue of the equation of state (1), or, equivalently, by 
eq. [12]). 

The general solution to equations (19)-(21) is 

V = 1 €ilkV ¡SV kf, (22a) 

where the function / is a scalar, constant along fluid trajectories, 

(^ + £v)/=0, (22b) 

but otherwise arbitrary. That equation (22) provides the general trivial can be seen in the following way. Equation 
(20) implies that the vector rf lies in surfaces of constant s. Equation (19) can therefore be written in the manner 

A(PX'V) = 0, (23) 

where x = (VisV\s)1/2 and where A is the covariant derivative operator in the ¿■-constant surfaces. Equation (23) 
implies that 

pr)i = €mVjSWkf (24) 

(in the language of differential forms, px-1*7? ^ a closed 1-form on s = constant surfaces and all closed 1-forms 
are exact on surfaces with spherical topology). Finally, to see that the time dependence of rf is necessarily that given 
by equation (22), it suffices—by uniqueness of solutions to ordinary differential equations—to show that rf satisfies 
equation (21), which can be written in the form 

Now 

so that 

= o. 

£v€iik = - ViVl€iik , 

£v -1 V,0>l>!)eyfc = 0 . 

Moreover, 
= tfViS = 0 , 

and therefore 

= I ^V^VA/, 

where we have used the fact that Lie derivatives commute with ordinary derivatives on scalars. Thus 

(25) 

(26) 

(27) 

(28) 

(8t + £„)V = 1 ^ViSVk(dt + £„)/ 

= 0. (29) 

The trivial displacements are permutations of fluid elements in surfaces of constant entropy that preserve the 
volume of each fluid element. They amount to a relabeling of particles, and the time evolution of equation (22) 
means that the initial relabeling is carried along by the unperturbed motion of the star. In the special case of an 
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isentropic fluid, equation (25) is automatically satisfied, and the trivial displacements comprise a larger class of 
vector fields having the form 

„i _ (30) 

where the time dependence of the vector £fc, like that of the function / above, is given by 

(dt + £„)£, = 0 . (31) 

III. FORMAL PROPERTIES OF THE EQUATIONS AND OF THE CONSERVED QUANTITIES 

a) Symmetry of the Operators and Existence of a Variational Principle 

The following identities show that the operators A^, B^, and C'y of equation (15) are, respectively, symmetric, 
antisymmetric, and symmetric on any vector fields f‘ and f : 

= PVi? , (32) 

= pWVfi - WVrf) + VjipvW), (33) 

ntOj? = —pV-VrjfV-Wi1 + ypW -rjV-1 + Vfrj-'Vp + + pV¡Vy<l>) 

- V8„4>-VSjO) + V)^ - ypfV ■ | - iffVp + V'S^d» + » (34) 

where and 8„ are the changes due to Ç and r¡. It follows (cf. Lynden-Bell and Ostriker 1967) that equation (15) 
can be derived from a variational principle whose action is 

/ = J ¿?dV = i J - bO^dV. (35) 

The existence of an action of this sort was apparently first discovered by Chandrasekhar (1961). Conversely, the 
fact that variations of £ in (35) are unconstrained guarantees the symmetry properties (32)-(34) (Kulsrud 1968; 
Friedman and Schutz 1975), and these account for the power of the Lagrangian framework in analyzing stability, 
as we shall see below. 

It may seem strange that an unconstrained action principle exists for the perturbations in the Lagrangian frame- 
work, since the unperturbed fluid equations do not follow from an unconstrained action principle. However, the 
discussion of the exact fluid variational principle in Schutz and Sorkin (1977) makes it clear that there should be no 
surprise. The constraints on the exact action uniquely limit variations in p, s, and v* to those that arise from a 
deformation of the paths of fluid elements (generated by an arbitrary vector field f*) in which the entropy and mass 
of each fluid element remain unchanged. The Lagrangian framework deals with perturbations that are in precisely 
this class, so the constraints that the perturbation’s action principle inherits from the full one are automatically 
fulfilled. In this way the existence of an unconstrained action and the resulting symmetry properties (32)-(34) are 
natural consequences of adopting the Lagrangian point of view. 

We shall find it convenient to discuss arbitrary complex solutions to equation (15). We use the conventional inner 
product notation 

W, & = j bVtidv, 

where the asterisk denotes complex conjugation. On complex functions the operators A*, and are Hermitian, 
while is anti-Hermitian: 

<7?, ¿0 = <f, ^>* (36) 
and similarly for C; 

<J), B£y = — Br)}* . (37) 

(We drop indices on vectors and operators where there is no chance of confusion.) 

b) The Symplectic Structure and Conserved Quantities 

Associated with any Lagrangian system is a symplectic structure, a dynamically conserved antisymmetric product 
involving the configuration space variables and their conjugate momenta. In our case, configuration space is the 
set of vector fields f, and the momentum conjugate to £* is 

. 
^ . (38) 
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942 FRIEDMAN AND SCHUTZ Vol. 221 

The sympletic structure, which we will denote by W, has the form 

Wiv, i) = <r), M + - (Arj + O . (39) 

The product W may be regarded as acting on the space of all pairs (f, £*) of vector fields at a given time, the initial 
data sets for the dynamical equation (15). If g and rf evolve as solutions to (15), this inner product will be conserved : 

dtW(r,, i) = (ÿ, A¿ + }BÍ> + <V, Aï + iBÍ> - (Ai) + }BV, ¿> - (Ai) + f> 

= (v, AÎ + iBO + <V, -iBi - CÍ> - (Av + ÍBV, Í> - <-}Brj - CV, Í> 

= ((v, AÏ) - (Arj, Í>) + i((v, Bi} + (Br,, O) - BÎ) + (Bv, I» + «Q, i} - (v, C|» 

= 0, (40) 

where equation (15) and the symmetry properties (36)-(37) have been used. 
We will use the symplectic structure in § IV to eliminate the trivial displacements by picking out a class of physical 

displacements orthogonal to the trivials with respect to W. In the meantime it gives us an elegant way to introduce 
the canonical conserved quantities that arise via Noether’s theorem from symmetries of the equilibrium configura- 
tion. In particular, because the background is stationary, the operators A, B, and C which appear in the dynamical 
equation (15) are time independent. Thus ¿^(x, t) satisfies the dynamical equation when ^(x, t) is a solution, and 
it follows that the product //(£, rj), defined by 

(41) 

is also conserved. By virtue of the symmetry properties (32) and (33), H is symmetric in its two arguments (Hermit- 
ian when complex solutions are considered). The canonical energy is defined by 

We have 
EÁ0 = W(i, 0 = Ki, Ai + - ^Ai + ÏBè, O 

= i<i. Ai + - K-iBi - a, O = Aiy + K£ «>, 

(42) 

(43) 

where equation (15) and the fact that B is anti-Hermitian were used. Equation (43) is the form of the more common 
(but equivalent) way of defining the canonical energy, namely, 

Explicitly, 

E’-S{i’w-ä’)dV- 

m) = 5 J - pkWI2 + ypiv-ll2 + i*-VpV-i + £•¥/>¥•£* 

✓ 
+ ¿ IVSOfji/K. 

(44) 

(45) 

Similarly, when the equilibrium configuration is axisymmetric, the operators A, B, and C commute with 8$ 
(with £0, where ft is the rotational symmetry vector). Thus one obtains another symmetric conserved product, 

and the associated canonical angular momentum is 

UO = 0 = -J d^^dV. 

We have 
Jc(£) = -Re (d^i, AÏ + iBi>, 

or 

Jett) = -ReJ + v-Vit)dV. 

(46) 

(47) 

(48) 

(49) 

The values of Ec and Jc for complex are the sum of the corresponding quantities for the real and imaginary 
parts of I*. In particular a normal mode, Ï = ¿;i(x)ei,Jt, has canonical energy 

Ec = cr[(Re a)<|, Ai) - id, Wi)]. (50) 
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Since W is Hermitian, the product <£, is real; and since Ec is real by equation (43), it follows that either a is 
real or Ec vanishes. This simply confirms the fact that if Ec is to be conserved for a mode which grows (or dies) 
exponentially, it must vanish. Similarly, when the background is axisymmetric, a normal mode ^ has the form 
^ = ^(r, 0)^i(m<i,+<Ti), and we find 

Jc = — m(Re o(L AO - • (51) 

Thus Jc also vanishes if a is not real. For real frequency modes we have the result 

Ec!Jc = -vim = cop , (52) 

where ojp is the pattern speed of the mode. This relation follows only from the Hermiticity properties of the 
operators A, B, and C and is generally true for linear Lagrangian systems. 

c) Gauge Dependence of the Canonical Energy 

If rf is a trivial displacement, then the Lagrangian displacements i* and i* + rf correspond to the same physical 
perturbation. Unfortunately, the canonical energy Ec is not invariant under such gauge transformations : in general 

EM + f)*EM)- (53) 

To prove this, one need only show that Ec(rj) ^ 0 for some trivial rf. In Appendix A we find that the canonical 
energy of a trivial displacement has the form 

JpV£,V(V^ - VX)JF. (54a) 

When the displacement rf is written in terms of a generating function / as in equation (22), the expression (54a) 
for Ee becomes 

Eáv) = i j , (54b) 

where the scalar a is defined by 

a = I eMV(SVjVk . (55) 

In particular, if the unperturbed star is axisymmetric and rotating with angular velocity Í1, and if the generating 
function /has the form / = z) cos at t = 0, then 

Eciv) = i77™2 j a[s,vr(g2Q),z - st2(g
20)tW]dmdz . (56) 

Now a necessary condition for stability against convection is that (Fricke 1971), 

a = — [s mOro^Q)^ — s s^Q) J 0 . (57) 
wp 

Thus, unless the equilibrium is everywhere marginally unstable to convection, one can give Ec any value at all, by 
suitably choosing the function g. 

d) Complete Expressions for the Energy and Angular Momentum through Second Order 

At first sight the noninvariance of Ec under a gauge transformation is surprising. Previous work seems universally 
to have assumed that Ec was the second-order change in energy of the star due to the perturbation.5 But this 
energy depends only on physical quantities, and hence should be invariant under a gauge change. Therefore, the 
canonical energy is not the full energy at second order. 

In principle, the second-order part of the energy is the sum of two pieces: one piece quadratic in the first-order 
changes of the fluid variables p, p, v\ and 5-, and another linear in the second-order perturbations of these quantities. 
In many physical theories (e.g., vacuum electromagnetism, vacuum general relativity) the piece linear in the second- 
order perturbations of the field variables vanishes identically; the reason is that it has the same functional form as 
the first-order change in the energy, which vanishes identically: the energy of stationary solutions is an extremum. 
For fluid dynamics, however, the energy of a stationary solution is not an extremum against all perturbations; this 

5 See Schutz (19726) for a “proof” of this in the relativistic context. His equation (80) is incorrect because step (6) of his argu- 
ment fails: Ec and Jc do not necessarily vanish if the physical perturbation is zero. The existence of the trivials was not suspected 
at that time. 
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has been discussed in detail from a field-theoretic viewpoint by Schutz and Sorkin (1977). In particular, a first-order 
Lagrangian change in the velocity leads to a first-order change in the (kinetic) energy of a solution: 

S£ = J dVpv'Avf. (58) 

In Appendix B, we calculate the change in energy and angular momentum accurate to second order in the 
perturbation. We find for the change in energy the expression 

8£ = J dVpv'AVi + EC, (59) 

where now 8 and A are complete to second order. Thus the energy at this order includes in addition to isc a term 
involving the Lagrangian change in ^ and which (like £c) is gauge-dependent. Because 8E is a physical property 
of the configuration, it is independent of gauge; and because it is the change in energy, it is conserved. Then 
conservation of Ec implies that the term 

J dVptfùaVi 

must also be conserved. This additional conserved quantity can be related to the circulation in the fluid, at least 
when the unperturbed flow is circular: 

J dVptfÙAVi = J d2xpQ. (j> dx^Vi = ^ J dMilA (j) Vidx*, (60) 

where dM is the mass of the ring around which the circulation integral is calculated. This was in fact the form in 
which the correction to Ec was first found by J. Bardeen (private communication, 1975). 

The analogous expression for the second-order change in the angular momentum is 

8/ = J dVpfi Avi + Jc, (61) 

where 8 and A are complete to second order. Again, neither term is gauge-invariant but their sum is, and both 
terms are separately conserved. 

It is remarkable that for uniformly rotating stars a gauge-invariant expression quadratic in £ does exist (Bardeen 
et al. 1977). If vl = for Q constant, then inspection of (59) and (61) shows that 

8E- Ù8J = Ec — njc . (62) 

Since the left-hand side is gauge-invariant, so is the right. This quantity has a simple interpretation: it is ECfB, the 
canonical energy of the perturbation with respect to the frame rotating with the star. This is easily seen by applying 
the definition (42) in the rotating frame. If we denote by t' the time coordinate of a rotating observer (whose angular 
coordinate is ^' = <£ — üí)> then t' = t and 

dt, = dt+ Cld# . (63) 
Thus 

Ec,r = 0 = 0 + 0 = Me . (64) 

In the rotating frame, the fluid is not moving; since gauge problems arise only in moving fluids, it is not surprising 
that ECtR is gauge-invariant. 

The energy ECfB has been discussed by Howard and Siegmann (1969) in connection with the stability of rotating 
flows. Their treatment is entirely Eulerian, and they find the expression for EC>B in terms ofEulerian perturbations; 
this must exist because is gauge-invariant. Appendix C expands on this briefly. 

IV. CANONICAL DISPLACEMENTS 

The description of fluid perturbations in terms of a Lagrangian displacement involves, as we have seen, a gauge 
freedom associated with the trivial displacements : the same physical perturbation can be described by more than 
that one Lagrangian displacement. This ambiguity is particularly unsatisfactory for stability theory, where, as we 
shall see in Paper II, one would like to test stability by asking whether the canonical energy Ec is positive definite. 
To make sense of such a criterion, the functional Ec must have the same value for two displacements that describe 
the same physical perturbation, and, as was pointed out in § IIIc, this will not be the case if one allows the full class 
of trivial displacements. 

We would therefore like to restrict in some way the class of displacements—to pick out a subclass of “canonical” 
displacements. The subclass should be large enough to include all physical perturbations, small enough that Ec is 
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invariant under any remaining gauge freedom, and should be such that the time evolution of a canonical displace- 
ment is canonical. That is, one requires of a class of “canonical” displacements that 

i) the class be dynamically invariant, 
ii) to each physical perturbation correspond at least one “canonical” displacement, and 
iii) if £ and are two “ canonical” displacements corresponding to the same physical perturbation, Ec($) = Ec(§). 

One can often do somewhat better than this, in the sense that it is ordinarily possible to find a dynamically preserved 
class small enough that to each physical perturbation corresponds a unique displacement in the class. On the 
other hand, it is apparently not always possible to satisfy (ii), and in such cases restricting consideration to the 
“canonical” displacements may then be a genuine restriction. 

Each of the conserved inner products W, H, and J introduced in § Illè can be used to define a natural class of 
displacements satisfying (i)-(iii) above (except in special cases) by requiring that a canonical displacement be 
orthogonal to all trivial displacements with respect to the inner product. That is, a displacement g will be canonical 
with respect to the inner product W if rj) = 0 for all trivial r¡. In fact, the three inner products provide the 
same substance of displacements orthogonal to the trivials, and we conjecture that the class obtained in this way 
is the only subspace satisfying conditions (i)-(iii).6 However, uniqueness of the subspace is not required for the 
stability criterion obtained in Paper II. 

a) Fluids with Two-Parameter Equations of State 

Consider the condition that a displacement be orthogonal to all trivials, rf, with respect to W. We have 

W(v, 0 = J pWdi + m + v’ViVi)W = J pM + + v’V&W, (65) 

where we have used equation (21), valid for a trivial displacement rf and integrated by parts to obtain (65). 
Substituting now for rf the explicit formula (22) for a generic trivial, we have 

W{rt, a = j + v’Viti + v^^)dV, (66) 

whence W{r], £) = 0 for all trivial rj if and only if 

J/e^V^sVfcdi + ü'Vjíi + vlVi€i)dV = 0 , (67) 

for all functions /. Thus is orthogonal to the trivials if and only if 

e^V/4 + Vlv¿k + vlVk$L) = 0 . (68) 

Now the expression in parentheses in equation (68) can be written in the form 

ii + + v’Viéj = giji1 + viiçgtj = guApi + v’Açgij = Ajüj, (69) 

where the definition (3) of and the relation have been used. Equation (68) then has the form 

V'W^VyA^ = 0 . (70) 

In other words, the Lagrangian change in the vorticity, 

AfiVtVj - VjVt) = - VjAfVt » (71) 

is a tensor orthogonal to the constant entropy surfaces. (We have made use in eq. [71] of the fact that Lie derivatives 
commute with exterior derivatives, that, e.g., ^(V^y — Vy^) = V¿£^y — Vyf^)- An equivalent statement is 
that the circulation in surfaces of constant entropy be unchanged: 

A ^1^ = 0 , (72) 

where c is any curve lying in a constant-entropy surface. In the special case of isentropic stars (see below), all curves 
lies in surfaces of constant entropy and the canonical displacements conserve all components of the vorticity. 

A final equivalent form of the orthogonality condition is 

V = =0, (73) 

6 Strictly speaking, we are concerned here with displacements of the form ^ = ^(r, 0)eim<t> with m # 0. 
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which follows from the relations 

FRIEDMAN AND SCHUTZ Vol. 221 

= - V-^, A*p = -pV-f , and = 0 . 

The quantity a that appears in equation (73) was previously introduced in IIIc. In a rotating (nonisentropic) fluid, 
a is conserved: 

(^ + ^¥> = 0; (74) 

and the gauge condition can be interpreted as a requirement that the perturbation also conserve a for each fluid 
element. In the general unperturbed flow, exactly three quantities are constant on a fluid element: its mass, its 
entropy, and the value of a. Conservation of a is called Ertel’s theorem (Ertel 1942¿z, b).7 

Having explicitly characterized the space of displacements orthogonal (in W) to the trivials, we can show that 
the spaces arising from the products H and J are identical and that the canonical displacements so defined satisfy 
(i)-(iii) above. We will specialize our considerations to the case where the unperturbed configuration is axisymmetric 
without meridional circulation, and first deal only with perturbations having angular behavior eim<i> for m ^ 0. 

The fact that W, H, and J define the same class of orthogonal displacements follows from the defining equations 
(41) and (46) for H and J together with the fact that if rf is trivial (and nonaxisymmetric), so is dp/, j rfdt, 
and J0 rfdÿ. Condition (iii) follows from equation (42) for the canonical energy Ec together with the fact that 
orthogonality to all trivials with respect to W implies orthogonality with respect to H. That is, if ^ and corre- 
spond to the same physical perturbation, their difference, rf = I1 — ^ is a trivial displacement. If ^ and are both 
orthogonal to all trivials, rf is itself orthogonal to all trivials, including itself. Thus we have 

Ec(i) = + -n,i + ri) = mt, o + m, v) + w-n, v) = mt, a = ^(a. (75) 

Finally, consider (ii), the question of whether there is at least one canonical^displacement corresponding to each 
physical perturbation. That is, given any displacement we want to find a £' orthogonal to the trivials and with 
i1 — trivial. Let rf = £ — The displacement £ will be orthogonal to the trivials if 

We have 
A^cc = 0. 

0 = A^a = A^a + A„a = Açoc + £na = Aça + rfVjCi. 

Writing the trivial displacement rf in the form (22), we have for/the equation 

L»fcViaViiVfc/= — A{a . 
p 

In cylindrical coordinates (</>, vr, z), with m the distance from the axis, its solution is 

(76) 

(77) 

(78) 

- 
mpA(ci 

&fvrS,z 
(79) 

Thus one can always find such an / (and therefore a canonical |) provided that Va x Vs / 0 away from the axis 
of symmetry. Finally, it is not difficult to show that when such a | orthogonal to the trivials exists, it is unique. For 
if £ and £ are both canonical and represent the same physical perturbation, 77 = £ — f is a trivial orthogonal to all 
trivials. Thus 

0 = A„« = ±e'«V<aV,sVfc/; 
r 

and, except at points where Va x Vs = 0, the equation implies d0f = 0. Assuming that the locus of such points is 
of measure zero in the equilibrium fluid, we have d^f = 0 everywhere, implying that / = 0. Thus £ = f, and 
the canonical displacements are uniquely determined in the nonaxisymmetric case. 

7 By means of the symplectic structure we have related conservation of circulation to the trivial displacements. This relation can 
be understood in terms of Noether’s theorem in the following way. First, note that for any (not necessarily canonical) displacement 
IS the product W(£, rj) is conserved for all trivial rf; and this conservation law is simply Ertel’s theorem for the perturbed flow: 

(dt + t^V^AjOc = 0. 

Now each trivial displacement rf generates a one-parameter family of symmetries of the set of solutions to the dynamical equations, 
namely the transformation À*i1 4- A?/. These transformations change the Lagrangian density by a pure divergence and are 
therefore what Trautman (1967), in his extension of Noether’s theorem, calls generalized invariant transformations. The corre- 
sponding conserved quantity turns out simply to be the product fV(£, y). Thus Ertel’s theorem for the perturbed fluid arises via 
Noether’s theorem as the Conservation law associated with the trivial displacements. Furthermore, when one treats the exact flow 
as a Lagrangian system, trivial displacements again play a role as generators of symmetry transformations and the associated con- 
servation law is again Ertel’s theorem. 
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We turn now to axisymmetric perturbations of axisymmetric stars. A trivial displacement is generated by a 
function / which, by equation (22) and axisymmetry, must be independent of (f> and t. Therefore the trivial dis- 
placement Y) can have only a ^-component. From (73) it then follows that yj is orthogonal to all trivials, since 
A„<x = £va = ^daldtj) = 0. This means that Ec and Jc are invariant under the whole class of axisymmetric gauge 
transformations. We can conclude two things: first, that there is no real need to eliminate trivials in this case; and 
second, and conversely, that there is no unique way to define the trivial part of a given Lagrangian displacement. 
On the other hand, it is certainly possible to find displacements £ for which A^a / 0. These must clearly differ in a 
physical way from those for which A^a = 0, since all the trivials are in the latter class. 

In order to resolve this difficulty, it is helpful to understand another problem with axisymmetric perturbations. It 
makes sense to discuss Ec and Jc only if the first-order changes in E and J vanish for the given perturbations. For 
nonaxisymmetric perturbations this is automatic, since the integral over the entire star of any function linear in the 
perturbation vanishes. For axisymmetric perturbations one must impose the extra condition 

= 0 (80) 

in order to guarantee this (cf. eq. [58]). This condition also turns out to guarantee A^a = 0, for the following reason. 
Consider equation (70). If the perturbation is axisymmetric, then in coordinates (<£, td-, z), A^fc must not depend on <j>. 
This means that the two derivatives and V; (which are really only partial derivatives) must be chosen from 
and V2, forcing the index k to take the value <f>. Then condition (80) guarantees satisfaction of (70) and hence of 
(73). This shows that the only perturbations which do not satisfy our gauge condition are those which change the 
angular momentum and energy of the star to first order. These have been excluded in all previous treatments of 
axisymmetric stability (see, e.g., Lynden-Bell and Ostriker 1967 and Chandrasekhar and Lebovitz 1968) by the 
imposition of (80). 

b) Isentropic Fluids 

An isentropic fluid has an equation of state of the form p = p(p), and its adiabatic perturbations satisfy 

*p = p'(p)b • (81) 

It was pointed out in § II that the trivial displacements if of an isentropic fluid are proportional to curls of vector 
fields Ci, 

v‘ = ± , (82) 
P 

where ^ has the time dependence given by equation (31). 
The requirement that a displacement g be orthogonal to all trivials is again given by 

o = W(v, a = J PvKii + = J prf^dv 

(see eqs. [65] and [69]). Now, however, rf has the general form (82), and equation (83) becomes 

This will hold for all £* when 

Equivalent forms of the condition are 

0 = J eilkAfViV. 

eiikVjA(vk = 0 . 

&((ViVk - VkVf) = 0, 

and 

(83) 

(84) 

(85a) 

(85b) 

(85c) 

(85d) 

where c is any closed curve lying in the fluid. These express the requirement that the perturbation preserves the 
vorticity of each fluid element. 

To show that to each physical perturbation corresponds some preserving vorticity (condition [iii] for the isen- 
tropic case), we have to solve the equation analogous to (78), namely, 

Vita — — = %q(j, (86) 
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together with the requirement that V be trivial, 
= 0 . (87) 

For an axisymmetric, differentially rotating star having angular velocity Q, isentropy implies Û = Q(w). In 
cylindrical coordinates, equations (86) and (87) take the form 

(m2oya^ = (88) 

(OT2Q)'a,7)” = q^, (89) 

^[(m2^)'^] + d<¡,[(m
2ü)'ri',>] = qm<¡¡, (90) 

and 

- + dziprf) + d^pri*) = 0. (91) XU 

Equations (88) and (89) imply 

^ = (^ôÿ [\\ iw)
q™dz' + ^ ’ (92) 

r = (¿y [|_26(ot) 
q**dz' + ^ ’ (93) 

where zb(w) is the value of z at the boundary of the equilibrium star and £ = (£0, £w, 0) is a vector field independent 
of z. Making use of the identity 

dlzQvrd)] 0 > 

we find that in order to satisfy equation (90), £f must be a solution to 

This relation fixes up to 
dvrlm + z = -z&(xu), ^) . 

+ d^g, - dmg. 

(94) 

(95) 

(96) 

where g is an arbitrary function of xu and <f> (g must vanish on the axis in order that rf be regular there). Finally, 
from equation (91) we have 

rf = J aOT(w^w) + (97) 

In order that rf be defined at z = zb(m), where p = 0, the freedom in £‘ given in equation (96) must be further 
restricted to guarantee that 

dz' — dm(vrpT]w) + d^pr)"’) 
XU I = 0. (98) 

This can be done, but it leaves some ambiguity in £* corresponding to functions g in (96) which satisfy 

CZb 1 
dz' — dm 

xup 
(m^"' 

= o. (99) 

When g is smooth, with angular dependence eim<t), m ^ 0, and when (xu2Q)' is nonzero away from the axis, 
equations (92), (93), and (97) provide a smooth trivial displacement rf for which i* — rf is orthogonal to the 
trivials. Now the requirement of local stability against convection is precisely that xu2Q—the angular momentum 
per unit mass—increase outward, that (xu2^)' > 0 away from the axis of symmetry (Goldreich and Schubert 
1967). Thus for isentropic stars condition (iii) is satisfied: to each physical perturbation corresponds at least one 
canonical displacement. The canonical displacements are not quite unique, as we have seen, but the remaining 
ambiguity is harmless in that it leaves the canonical energy and angular momentum invariant. 

Using canonical displacements for isentropic stars is natural in the sense that isentropic fluids conserve vorticity, 
and, in addition, the canonical displacements are precisely those which preserve the vorticity of each fluid element. 
In the context of stability theory, J. Bardeen (1975) and C. Hunter (1977) have previously advocated using the 
condition. It has apparently not been recognized, however, that this involved no restriction on the corresponding 
physical perturbations. 
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Teukolsky. Some of the results developed here were derived independently by Bardeen. 
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(Al) 

(A2) 

(A3) 

APPENDIX A 

CANONICAL ENERGY OF A TRIVIAL DISPLACEMENT 

The canonical energy defined in equation (42) is 

Efy) = Wti,7?) = i J PÍvKií + v ■ Vl?i) - vKVi + v 'Vrjl)]dV. 

A trivial displacement has time dependence given by equation (21), 

v* = - £kV ; 
then 

and we have 

Ec(y) = i J p[£t>7g¡,£t>F - Zvrfv-Vrii - ■»?¡(£t>)V + . 

The third term in this expression for Ec can be integrated by parts in the manner 

J PViiZvfrfdV = -i J [p£v(^j£„V) - pivViï-vV'WV 

= -i J pv-Wiriii^dV + 1J pî-vV^vVidV = 1J p£vVl£vVidV, (A4) 

where the relation V • (pv) = 0 was used. After another integration by parts (of the last term on the right in eq. [A3]), 
we obtain 

Ec = i j pivvKgijZvV1 + £vVi - 2t> - Vvi)dV 

= 1 J - VjV^dV = J p£(jkioir],£vrikdV, 

where to* is the vorticity vector, 
CÜÍ = €ÍíkVjVk . 

When the general form (22) of the trivial displacement, 

= I e*«v^vfc/, 
p 

is inserted in equation (A5), the expression for Ec takes the form 

£c= -¿j1- *mo>Xd™VmsVJ)(S™VpsVq£vf)dV = -\j-p ojmV mseilkV ísVJV k£vfdV. 

(A5) 

(A6) 

(AT) 

In terms of the scalar a, 

a = I eiik^isWjVk = - aSViS 
P p 

introduced in the text, Ec can be written as 

Ec = -i j a^ViSVtfWk£vfdV. (A8) 

In particular, suppose the equilibrium is an axisymmetric fluid rotating with angular velocity Q. If/is a function 
of the form (at i = 0) 

/ = g(vr, z) cos m<l>, (A9) 
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We have 

FRIEDMAN AND SCHUTZ Vol. 221 

Ec — —ij ac^V^V/gcosm^Vfci —mQgsin m^)rfF 

= -^m2 J <x<iiikV¿[-VjgQgVk<j> cos2 m<f> + gV¡fiVk(Q.g) sin2 m<l>]dV 

= farm2 J aeilkW{sWj(g
2Li)'Victfiwd'w-dz 

= farm2 J - S'z(g2Q)'„]dwdz. (A10) 

APPENDIX B 

SECOND-ORDER PERTURBATION THEORY 

Our aim in this Appendix is to calculate the change in physical energy and angular momentum of a perturbed 
equilibrium configuration accurate to second order in the perturbation. 

Suppose first that (p, p, v\ s) is a solution to the equilibrium equations (1) and that [p(A), p(X), ¿7(A), 7(A)] is a 
family of solutions to the exact time-dependent equations, (la), (2), and 

d£ 
dt + VÁpi?) = 0, 

l + s'V.S.O. 

(dt + 1 Vip + ViO = 0. 
p 

(Bla) 

(Bib) 

(Blc) 

The family is to be smoothly parametrized by A and to coincide at A = 0 with the equilibrium configuration: 

m = p, p(o)=p, m = v\ m = s. (B2> 

We will further suppose that the family of time-dependent solutions is such that all of its members can be reached 
by an adiabatic deformation of the stationary solution. That is, there is to be a family of maps 0A(x, t) with the 
following characteristics : 

i) If c(t) is the path of a fluid element in the equilibrium configuration ^A[c(t), i] is a path in the perturbed 
configuration. 

ii) The entropy of each fluid element is conserved: 

t), t) = s(x, t) . 

iii) The mass of each fluid element is conserved: 

0? ~ pipe* 0 ? 

where J# is the Jacobian of the map 0. 
An exact Eulerian change in a quantity Q will be defined by 

SAß = 0(A)- ß; (B3) 

the Eulerian change in the linearized theory is then the first-order part of 8XQ, which one could identify with 

Similarly, the second-order change in energy that we want to evaluate is 

¿£[p(A),p(A),^(A),í(A)] 
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In order to construct a generalization in this exact framework of the linear Lagrangian displacement formalism, 
we write 

<l>Ax, t) = r‘ + ¿¡¿(x, t) (B4) 

where r' is the radial vector from the origin to the point x. [In Cartesian coordinates x = (x1, x2, x3), r' = x‘.] For 
simplicity we take 

L'ix, t) = A^(x, t) , (B5) 

so that (d2!d\2)^\ = 0.8 We will suppress the index A from now on, writing 0(|2) to mean 0(A2). The Lagrangian 
change in a quantity Q will be defined by 

Aß = <I>*Q - Q, (B6) 

where ifi* is the differential map. Its action on a tensor - expressed in a given coordinate system, has the 
form 

rr-1*.., = g-1 (*)• • -^(x) ^ mx)]- • ■^[ttx)]T” - \...Mx)] ; (B7) 

on the tensor density g1/2, where g is the determinant of the metric gí;-, 0* acts in the manner 

0V/2=4g1/2. (B8) 

In effect, Aß compares the components of ß at x with respect to a frame at x with the components of ß at 
with respect to a frame dragged along by the fluid to 0(x). To first order in A agrees with the operator of the 
linear theory: 

A = a + £,+ 0(£2). (B9) 

In terms of the Lagrangian operator A, conservation of mass and entropy, (ii) and (iii) above, take the form 

A^ = 0 (BIO) 
and 

A(pg1/2) = 0 . (Bll) 

The change in integrals over the entire fluid having the form 

jfpdV 

has the property9 

s J fpdV = J AfpdV. (B12) 

d) The First-Order Change in Energy 

Before doing the second-order calculation, it will be helpful to evaluate the change in energy to first order in 
f without assuming that As1 and A(/)g1/2) vanish. The total energy of a fluid has the form 

E = T + U + W, (B13) 

where the kinetic energy is 

T = jiv2pdV, (B14) 

8 No loss of generality is involved in making this ansatz: If a time-dependent solution is related to the equilibrium fluid by a 
map 0(jc), it can be reached by the family of maps x->x + A[«/r(*) - x]. 

9 This may be seen as follows : 
8 Í /päV== í fydV- Í fpdV. 

Jy Jy Jy 
Now 

í fpdv = Í r(jpgv2)d3x = f irfpdv 
Jy •AJ/ “ 1(V) 

when &(pg112) = 0. Taking for V the entire space, we recover (B12). 
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the internal energy 

{/ = J updV, 

(with u the specific internal energy), and the potential energy IF is 

W=ji<ï>pdV. 

When A(pg112) is nonzero, equation (B12) is replaced to first order by 

8 J fpdV = J AfpdV + J fg-^ACpg^dV, 

and we have 

Vol. 221 

(B15) 

(B16) 

(BIT) 

3£ = J [A(ii;2 + u + i<D)p + Qv2 + u + ityg-^ACpg^dV. (B18) 

We want to evaluate 
A(^i;2 + w + = iAv^i -F tyAvf + Àî/ + ^AO . (B19) 

The Lagrangian change in the velocity field, as before, is 

Av^d^; (B20) 

and the corresponding change in the covariant field is 

Avt = AigtjV1) = AguV1 + gijAv1 = . (B21) 

The specific internal energy changes by 

^ - (!)> + (S),1* +TAs; (B22) 

and, finally, the perturbed gravitational potential is 

AO = 80 + £'V,0, (B23) 
with 

V280 = AttGSp . (B24) 

Substituting these expressions for the Lagrangian changes in Av\ Avu Au, and AO in equation (B18), we find after 
an integration by parts 

8E = J p + iv2 + (t>)g~ll2A(pg112) + pTAs + pv'Av, + + pV^ + pv’VpdW, (B25) 

where h = u + pip is the specific enthalpy. The last term in the integrand vanishes by the equation of equilibrium 
of the unperturbed star, and we are left with 

8E = J [(h + iv2 + tyg-^Aifig1!2) + pTAs + pv'Av^dV. (B26) 

This equation was obtained by Schutz and Sorkin (1977) by slightly less direct means. 
It is clear from the expression for SE that the energy of a star is an extremum only against perturbations for which 

the Lagrangian changes in particle number, entropy, and a certain component of velocity either vanish or integrate 
to zero. Perturbations which do not satisfy these conditions can change the energy to first order; and this fact is 
closely related to the difference between Ec and the second-order change in energy. That is, to second order Sis'will, 
in general, have two contributions: terms linear in the fluid variables A^, Ap, and As occur in the combination (B26) 
as in the linearized theory, while a second group of terms, quadratic in the field variables, combine to give the 
canonical energy Ec. Thus Ec will be the second-order change in energy if A(pg112), As, and tfAvi vanish to second 
order in 

b) Second-Order Change in Energy and Angular Momentum 

We want now to calculate the change in energy and angular momentum to second order in the perturbation. We 
will assume that the mass and entropy of each fluid element are constant, and so we will find that hE — Ec involves 
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only v^Vi. As a by-product will follow the fact that for uniformly rotating stars, Ec — £IJC = 8E — Û8J. Conse- 
quently Ec — QJC is an expression in ^ invariant under gauge transformations -> ^ + rf, rf trivial. 

The conservation of the mass and entropy of each fluid element will allow us to express E in terms of the Lagrang- 
ian displacement We will first obtain expressions for Agiy, Ap, and A^ in terms of which we will then use to 
calculate ST, W, and 8W. In finding the Lagrangian change in the metric Agiy, it is simplest to work in Cartesian 
coordinates. Because = 0, we have 

Agy = </>*gy - gij, (B27) 

rga = + mo" + nsmnO + a 

= (8jm + öj|m)(8/ + Sjè^gmÂx) = gu + d&i + • 

The corresponding covariant expression is then 

rgil = gij + + Vf^V^m, (B28) 
and 

àgtj = . (B29) 

To express the change in density Ap in terms of the displacement vector, we use conservation of mass, 

0 = A(Pg112) = Apg112 + pAg112 + Ap Ag112 . (B30) 

From (B29) or (B8) it follows that 

+ 0(e), (B31) 
and we find 

^ = - + KV* W + + 0(e) . (B32) 
P 

The perturbed velocity field can be obtained from condition (i) above in the following way. Let ¿(t) be the 
trajectory of a fluid element in the equilibrium configuration. The trajectory of the corresponding fluid element in 
the perturbed configuration is 

cXt) = nc(t), t] = ¿(0 + e[c(t), t]. (B33) 

The value of the unperturbed velocity field at c%t) is 

and, similarly, the perturbed velocity field has at time t and position c*(0 the value 

vKm, t) = jt c
i(t) = jt{c'(t) + em, ^ + ? + v%e)m, t], 

where t Now the Lagrangian change in the velocity field Av* is 

Aü4 = i/**# — v1
9 

AvXx) = (8j>p^liv})['l>(x)] - v'ix), 
or 

(B34) 

(B35) 

(B36) 

where the time dependence is suppressed for simplicity of notation. We can obtain >fi~u iteratively by substituting 
ip ^(x) for x in the equation 

x* = ipxx) — e(x) 
to give 

<i>-u(x) = xi - eir^x)] = x* - ?{x - ar\x)]} = xi- e(x) + es^ix) + oca. (b3?) 
Then 

^ [^)] = - djtXx) + d^du? + 0(e). 

Finally, from (B34), (B36), and (B38), the expression for Aif has the covariant form, 

At;* = (8*y - V^* + + i* + v’Vj?) ~ vl + O(P) 

= ?- t’V,? ■ 

(B38) 

(B39) 
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The corresponding change in the covariant vector is 

Aüi = Aigijv*) = + Agi#* + AgyAv* = & + , 

where the expression for Ag{j and A^ given in equations (B29) and (B39) have been used. 
The calculation of 87", 8(/, and 8 IF is now straightforward. We have 

Sr = 8 J yv2dV = J ipAv^dV, 

from equation (B12). Now 

Av2 = A(gifv
ivl) = IrfAvi — AgijV'v1 + gfjAviAvj + 0(|3) 

= 2vlAVi - (Vil, + + VteVjLWv1 + gj'i1 = Iv'Avi - 2t>VV(& - + H 

Thus 

ST = J [p(y¡Ay, - dW.I,) + - v^^W^dV 

= J [^'ADj + pÇWjVi + ytëii - 

where Avi is given in terms of the displacement ? by equation (B40). 
For U we have 

Because As = 0, 

But 

and 

W = 8 j pudV = j pAudV. 

A“ - (l).Ä'> + 5 (PW + ^ 

í^i\ - L 
\8pJa p2’ 

/W| =im _?p = p, _2) 
WJs p2\dp)s p* p*(Y ¿)’ 

where y is the adiabatic index. Substituting expression (B45) in equation (B44) for SU and integrating 
we find 

st/ = J + iypiv^r + evipv,? + m’wœw. 

In calculating 8 IF it is useful first to establish a few identities. From the exact relation 

V28<D = AirGSp, 
it follows that 

J 8p<S>dV = ¿ J V2800i/F = J WpdV. 

J SpSOdF = ^ J ViSOV^Oi/F. 

SfF = 8 J ^«DrfF = J ipAOrfF, 

as usual. We also have, however, 

SJF = i J 8(pí>)í/F = i J (p8d) + 8P$ + 8p8$)</F = J PWdV ~ | ViS®VS^JF, 

Similarly, 

Now 

Vol. 221 

(B40) 

(B41) 

•i- (B42) 

(B43) 

(B44) 

(B45) 

(B46) 

(B47) 

by parts, 

(B48) 

(B49) 

(B50) 

(B51) 

(B52) 

(B53) 
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where the identities (B50) and (B51) have been used. Together the two expressions (B52) and (B53) for SW imply 

8W= ¡ p(A4) - 8<¡>)dV + 
1 

%ttG 
J ViSOVSO^F. (B54) 

Now 

Thus 

AO - 80) = (0*0 - O) - (O - O) = 0*0 - O = 0*0 - O + 0*80 - 80 

= i'ViO + WO + WV.V.O + 0(f). 

8W = j Jpi'ViO + pWO + VfSOV'SO + 

To first order, the Eulerian change in density is 

8p = -V,(Pf), 
from which it follows that 

J pWOrfF = J 8P8^dV + 0(f) = -¿ J ViSOV'SOrfF, 

by equation (B51); and the expression for 8Wthen takes the form 

8W = j ^VjO - ^ ViSOV'SO + ipff ViVyO^F. 

Finally, combining equations (B43), (B48), and (B58) for 8T, SF, and 8W, we obtain 

8E = 8T + 8U + 8W 

(B55) 

(B56) 

(B57) 

(B58) 

= J ^ Vjp + Vjoj + pdhv^dV 

+ ^ J [pi'ii - + YPWi?? + 2WVyf + f fiViVyp + pV,VyO) - ^ V.SOV'SO dV. 

(B59) 

The equilibrium of the unperturbed star implies that the first term in the integrand vanishes, and we have 

8£ = j pdkvtdV + Ec, (B60) 

where Ec is the canonical energy given in equation (45). As anticipated, when the mass and entropy of each fluid 
element are conserved, 8E differs from Ec only by a term involving the component of the change in velocity Avt 
along the unperturbed velocity field. 

Finding the second-order change in angular momentum is much easier. We will write ft for the rotational sym- 
metry vector (in cylindrical or polar coordinates, it has the form 8^). Then 

and 

/ = j pvtfdV 

8/ = J pkiv^dV = J pftAVidV + J p(d(A0‘ + At>(A0‘)¿F. 

(B61) 

(B62) 

Because 80* = 0, 

A0* = 0*0* - 0* = f Vy0* - 0íVyí* + (0'Vyf ~ f Vy0fc)Vk0‘ + if f VyVfc0‘ + 0(f) . (B63) 

It is easy to verify directly (and true of any Killing vector on flat space) that VyVfc0‘ = 0, whence—using the 
definition (4) of Lie derivative—we have 

Then 
A0‘ = -£*!' + £<t>f Vfcf + 0(f) . (B64) 

A0*yi + At;iA0i = - - £*f(f + fVyf); (B65) 
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and from equation (B62), 

8/ = J ppàv.dV - J [p^edi + v%i() + pi^ViW. (B66) 

Now 

j pi+evJV = j WpfvddV = 0, (B67) 

and we are left with 

SJ = J pftAvtdV - J pí+edi + v’V&W = J p^Av^V + Jc, (B68) 

where 

Jc = - J p£èXii + v’VitiW (B69) 

is the canonical angular momentum given by equation (48). 
As in equation (B60) for the energy, the difference between 8/ and Jc depends only on the ^-component of A^. 

In fact (as Bardeen first noted), when the unperturbed star rotates uniformly with angular velocity Q (v* = Q^), 
equations (B60) and (B68) imply 

SE - Q.SJ = Ec- ajc. 

Because SE and 8/ are physical quantities, the combination Ec — Q,JC = ECtR must be invariant under the gauge 
transformations + r¡\ rf trivial. One therefore expects to be able to write ECtR in terms of Eulerian changes 
in the fluid variables, and we do this in Appendix C. 

APPENDIX C 

ENERGY IN THE ROTATING FRAME 

The energy ECtR may be found from equations (64), (45), and (B69): 

ecb = \j dv[p\díldt'\* + i SpSp + (V-m-SO - ¿ |V8C|2j , (Cl) 

where 

(C2) 

and where is the time-coordinate of the rotating frame. Our object is to express ECfR in terms of the Eulerian 
perturbations. In this frame 8t> = d^/dt', since the unperturbed velocity is zero, so only the third term in (Cl) 
needs work. To do this we note that, because the star is uniformly rotating, the level surfaces of /?, />, and & all 
coincide. There are therefore relations inside the star 

Then the third term is 
p=p(s), p = p(s). (C3) 

<v' »(I)/- *=; +0 j MDK!).8'+(!)/* - s&] • <«> 

where the last term inside the brackets is the derivative inside the star as given by (C3). This suffices to express 
ECtR in terms of Eulerian perturbations, but the whole expression can be simplified considerably by using the identity 

= -1 . 

One combines the first term in (C4) with the second in (Cl), and one combines the last two in (C4) with each other 
to get 

pH2 + ^ (8p)2 + ; s p 
(C5) 
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This is equivalent to the energy integral defined by Howard and Siegmann (1969), apart from the 80 term which 
was absent from their treatment because they assumed an external gravitational field. 

The Howard-Siegmann paper is partly concerned with geostrophic flows, which are time-independent local 
perturbations. In this connection they use the energy ECtR as an inner product to define the “geostrophic part” of 
arbitrary initial data, a procedure which closely parallels our manner of defining the trivial part of initial data. 
Not surprisingly, this leads them to certain conditions involving Ertel’s constant. 
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