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ABSTRACT 
Details of the gravitational collapse of compressed gas behind an isothermal shock are pre- 

sented. The growth rate of an unstable mode is given as a function of its wavelength for a single- 
parameter family of layers. Simple formulae for the maximum growth rates, for the wavelength 
at which this maximum occurs, and for the critically unstable wavelength are given as functions 
of the model parameter. 

The astrophysical implications of these results are discussed. The minimum unstable mass in 
the plane-parallel case was found to be stable, if it collapses to a pressure-bounded isothermal 
sphere. The mass of the most rapidly growing instability is also stable as a sphere, unless the 
column density in this layer a is sufficiently large in proportion to the square root of the external 
pressure. A criterion is derived for this dominant, plane-parallel instability to lead to an unstable 
sphere. It is possible that this criterion marks the beginning of rapid star formation behind a 
shock. The maximum mass of a fragment that can collapse in a specified time r is also deter- 
mined. This maximum mass is independent of the sound velocity in the layer and of the external 
pressure. It depends sensitively on both r and o. Although magnetic fields are not included in 
the calculation, their influence on the results is briefly discussed. 
Subject headings: shock waves — stars: formation 

I. INTRODUCTION 

The suggestion that stars may form as a result of gravitational instabilities behind shocks is currently receiving 
some observational support. Large-scale shocks associated with spiral density waves have long been cited as pre- 
cursors of star formation in spiral arms (e.g., Roberts 1969; Woodward 1976), but it is now becoming evident 
that shock-induced star formation may also occur regularly on a much smaller scale. In the distribution of stars 
and molecular clouds associated with Ml7 (Lada et al. 1976; Lada 1976; Elmegreen and Lada 1977), W3 (Elme- 
green and Lada 1977), M42 (Orion) (Elmegreen and Lada 1977; Kutner et al. 1977), and NGC 281 (Elmegreen 
and Lada 1978), and in small regions of NGC 7538 (Habing, Israel, and de Jong 1972), the conspicuous position 
of star-forming regions adjacent to ionization fronts suggests that shocks from slowly expanding H n regions 
can trigger star formation. In NGC 1333 (Loren 1976), shocks in the region between two colliding clouds may 
have induced star formation. Around the Gum Nebula (Schwartz 1977) and in CMa RI (Herbst and Assousa 
1977), the presence of newly formed stars in regions adjacent to suspected supernova remnants is suggestive that 
a supernova shock has triggered the star-forming event in a nearby cloud. 

The implications of such forced mechanisms of star formation are overwhelming. In the first place, chain 
reactions of star-forming events are possible (Ögelman and Maran 1976; Elmegreen and Lada 1977), leading to 
recognizable patterns in star clusters (e.g., the subgroups in the Orion OB association [see Blaauw 1964]) or per- 
haps spiral structure in galaxies (Mueller and Arnett 1976). Many detailed properties related to the ages and 
relative positions of OB subgroups and star-forming regions were shown by Elmegreen and Lada (1977) to be a 
result of shocks that propagate along a primordial cloud’s magnetic field. 

Equally important is the implication that many different dynamical processes may be involved in cloud and 
star formation. In that case, large-scale spatial distributions of star-forming activity, as shown, for example, by 
chemical composition gradients in the Galaxy (Jensen, Strom, and Strom 1976), may be related to the spatial 
distribution of a variety of interstellar processes. Not only should we consider star-forming shocks that may be 
a result of spiral density waves, but also we should study the galactic distribution of supernova events or of large- 
scale variations in the sizes or pressures of H n regions. 

Obviously, a thorough investigation of star formation in shocked regions is warranted. The purpose of this 
paper is to determine the growth rates and masses of perturbations in compressed, isothermal, plane-parallel 
layers with no magnetic fields. This is done by numerically calculating the dispersion relation for gravitational 
instabilities in a pressure-bounded layer. The results will be compared in one limiting case with the work of Simon 
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1052 ELMEGREEN AND ELMEGREEN Vol. 220 

(1965tf), who derived the dispersion relation for an unbounded, plane-parallel layer. Comparison to an approxi- 
mate solution in another limiting case, when the layer is not significantly self-gravitating, provides a second check. 
Simple expressions for the maximum growth rates and for the wavelength of the mode at which this maximum 
growth occurs are given as functions of layer size and external pressure. 

The results are applied to estimate the behavior of the compressed layers that occur behind isothermal shocks 
in astrophysical situations. The conditions for gravitational instabilities and star formation behind shocks that 
are derived here are a refinement of those given by Elmegreen and Lada (1977). 

The equations of hydrostatic equilibrium, the perturbation equations, and the boundary conditions used here 
are the same as those given by other authors (e.g., Goldreich and Lynden-Bell 1965, hereafter GLB; Simon 1965tf). 
The details of these equations are presented in § II. A discussion of the numerical methods used to solve them 
is deferred to Appendix A. The primary results of this work are shown in the figures of § III, and the limits of 
application to shocks are discussed in § IV. Several conclusions pertaining to gravitational collapse and star forma- 
tion in shocked gas are then given in § V. The possible role of magnetic fields is discussed in § VI. These results 
are summarized in § VII. 

II. CALCULATIONS 

The hydrostatic equilibrium and marginal stability of infinitely extended plane-parallel layers have been under- 
stood since the work of Spitzer (1942) and Ledoux (1951). GLB gave the perturbation equations and boundary 
conditions for a pressure-bounded, self-gravitating gas layer that rotates around an axis. Simon has given similar 
equations with and without rotation (Simon 1965fl, b). In this section, we follow the derivations of these authors. 

a) Hydrostatic Equilibrium 

In terms of the potential ifs, mass density />, pressure P, and constant sound velocity c, the equations of hydro- 
static equilibrium may be written 

V^o - I VP0 = 0, (1) 
Po 

VVo= -47TGP0, (2) 

P = c*P, (3) 

where the subscripts 0 refer to nonperturbed quantities. The distributions of p0, or P0 inside the layer are 
completely specified by these three equations and by the external pressure Pext and the total mass column density 
of the plane, a. 

It is convenient to transform the physical variable z, measured perpendicular to the plane, to a dimensionless 
variable /x given by 

p, = tanh (z/H), (4) 

where H is the scale height determined by the density pQQ at the point z = /x = 0: 

H — c(27rGp00)~112 . (5) 

The general solution to equations (l)-(3) may then be written 

p(p) = Poo(l “ P2) > (6) 

where p varies between the limits ±A ( < 1), which are determined by the external pressure and the central den- 
sity : 

The total mass column density in the layer is determined by the integral of p over z and becomes 

= 2p00HA . (8) 
The central density is thus 

Poo = (P + %7tG<j2)Ic2 . (9) 

b) Perturbations around Hydrostatic Equilibrium 

Perturbations around equations (l)-(3) require the inclusion of time-dependent terms and of the continuity 
equation. We let the subscript 1 on variables ß, and P denote small perturbations of the potential, density, and 
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No. 3, 1978 STAR FORMATION IN SHOCK-COMPRESSED LAYERS 1053 

pressure ; and u' will denote a small perturbed velocity. The perturbed equation of motion for the isothermal case 
then becomes, to first order in the perturbation (GLB), 

The equation of continuity and Poisson’s equation are similarly 

^ +v.O>o«0 = o, 

v2^ = -4*0/5!. 

The perturbation is now assumed to be of the form 

z, t) = i/<1(z) exp (iW + ikx) 

(10) 

(11) 

(12) 

(13) 

for variable x measured parallel to the layer. Hereafter, variables without a caret or a prime have only a z (or /¿) 
dependence. In terms of the variable z, equations (10)-(12) become 

i(x)Ux = ik\ 0i — c2 — I ’ 
\ PoJ 

1 (*>-c7.) 

iojp1 + ikpQux + ^ (poW2) = 0, 

dz2 01 — ^20i = “-47rGpi . 

(14) 

(15) 

(16) 

(17) 

The units of potential are taken to be c2, while H, c, and (47rG/ooo)”1/2 = 2~ll2H/c are the units of distance, 
velocity, and time, respectively. Then with 

Q, = w^TrGpoo)-112 , 

and using the transformation 
v = kH, 

d 1/1 2\ ^ 
dz ~ H^1 - 

(18) 

(19) 

(20) 

we obtain from equations (14)-(17) a single equation for the normalized perturbed potential 0(/x): 

(1 “ ^ |r^ _ 10M1 ~1x2)3 $* +(20^2 _ 4 + 2Q2 ~21,2X1 _ 1x2)2 £ * 

+ (2v2 - 402K1 - M2) ^ -A + (V - 4 - 2Q2 + V2>2^ = 0 . (21) 

This equation may be solved numerically for the eigenvalue Q2 as a function of v, subject to the boundary condi- 
tions on 0 and its derivatives given in the following subsection. 

c) Perturbed Boundary Conditions and Constraints on 0 

The perturbed boundary conditions used here are identical to those given in GLB for the case of no rotation. 
Following their derivation, we assume that the z coordinate of a surface of the layer varies sinusoidally (according 
to eq, [13]) around the mean value (a) with constant amplitude Then one of the boundaries occurs at z = 
a + 7}1 exp (iojt + ikx). The total pressure at this boundary, P, is always the external pressure, Pext; so P0(a) — 
P(a + rjj) = Pext. The equation of hydrostatic equilibrium now provides a constraint on p± and rj1 after integra- 
tion over z from a to a + r)1: 

ra+*i / j \ na+m 

1 ('"14**1 
^-Pdz 
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1054 ELMEGREEN AND ELMEGREEN Vol. 220 

or 

’?1(po4^0)2 = o~i>(fl + ’?l)_jP(a) ^ 

for ??! a small quantity. Here the dependence on exp {mt 4- ikx) has been dropped from each side of the equation. 
Since P(a) = Po{d) + Pi{a) = Pext + we have for a boundary condition 

This may be combined with equations (3), (6), and the hydrostatic solution for di/jo/dz, which is 

^ = — 4ttGp00H tanh , (24) 

to give, after normalization and transformation to the independent variable /a, 

-2A« - A^í (Í) - "10+ ^ (25) 

Here the derivatives are to be evaluated at ^ = ±A. Recall that ^ is simply a constant representing the magnitude 
of the perturbation around the hydrostatic solution. The variable will be independent of the magnitude of 
the perturbation for small perturbations (r)1 « a). 

The equation of continuity gives a second boundary condition; namely, 

. (26) 

This gives an equation for the third derivative of i/j at the boundary. It may be combined with equations (15) 
and (17), normalized and transformed to the independent variable to give the equation 

<> -A^$(£) -‘M<1 -A^$(I) -c -- 2^({)+ 4SiS(i -^-0 <27» 

for the derivatives of at/x = ±A. 
Finally, a third condition comes from the requirement that, at the boundaries, ^ must equal the external poten- 

tial, which is a solution to Laplace’s equation: 

if/^z > a) cc exp (— \kz\) exp (iœt + ikx) . (28) 

The potential at the boundary also satisfies Gauss’s law in the approximation that the perturbed distribution of 
matter near the surface is confined to a thin plane; i.e., 

fzUa+) -jzUa-) = • (29) 

Combining equations (28) and (29), we obtain (GLB) 

l^l(a)l + Jr V'lU-a = +4i7Gpo’?i • (30) 

The normalized, transformed boundary condition is thus 

(1 - +v¿-~ 2(1 - A2) = 0 (31) 
dp Vh/ Vi 

for the derivative evaluated at n = A. 
Equations (25), (27), and (31) give the three derivatives of (normalized to the arbitrary but constant per- 

turbation t?i) at each boundary in terms of the unknown values of 0/^! at the boundaries. A solution for i/j/tjx as 
a function of /x now follows from the three boundary conditions and from equation (21) (which may also be divided 
by the constant as long as (i/j/tj^A), {ifslr¡^){ — A\ Q2, and v are specified. To determine the desired dispersion 
relation, i.e., D2 as a function of v alone, we must impose further conditions which involve our choice for the 
symmetry of the perturbation around the midplane. 
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No. 3, 1978 STAR FORMATION IN SHOCK-COMPRESSED LAYERS 1055 

The boundary conditions and equation (21) have symmetry properties about /* = 0; i.e., symmetric perturba- 
tions have 

and antisymmetric 

vÁ-p) = -’iiCf); 

perturbations have 

= •’hOf) ; 

íK-f) = '/'(E) ; 

’/'(-p-) = -^09; 

etc., 

I«-“)-«c- 

To determine the unstable modes, we seek symmetric perturbations by choosing Q2 and at a boundary to 
besuchthat 

di/j 
dfM n o d^ u = o 

(32) 

for various values of v. Antisymmetric solutions where 0(0) = (d2/dfji2)ilj(0) = 0 were also calculated. These 
solutions were found to be stable against gravitational collapse (Q2 > 0 for all v) as they were in Simon (1965a), 
and they will not be discussed further. 

in. RESULTS 

For a variety of different layers, each specified by the single parameter A, we have obtained values of the normal- 
ized growth rate Q as a function of the normalized wavenumber v. The numerical methods are discussed in Appen- 
dix A. We expect our solutions to be identical to those of Simon (1965a) in the limit of ^4 = 1, and we expect 

-O2 ä vA (33) 

in the limit of v -> 0 and -> 0 as shown in Appendix B. Solutions with different A were found to differ most in 
the value of v for a given Q. Comparison of the results for different A is made easier if we use the product vA, 
which varies much less for given Q than does v. 

It is noteworthy that the normalized quantities, Q. and v, may be the same for different astrophysical problems 
which have different values of (P, a) if the parameter A is the same in each case. In terms of these two physical 
parameters, we have from equations (7) and (9) 

A = 
%7tGo2 V'2 = / P W'2 

P + ^ttGg2/ \ •JttGo-2/ (34) 

The value of A therefore depends only on the ratio P/o2. The actual growth rate (in s“1) is given by 

and the wavelength (in cm) is 
„ = (-^GpooCl2)112 , 

, IrrH 

(35) 

(36) 

These depend on p00 in addition to ^4, so both parameters P and a (as well as c2) must eventually be specified 
in order to convert our numerical results to physical quantities. 

In what follows, we discuss only the negative values of Q2, which are the modes that grow exponentially. In 
all cases studied, Ü2 became positive for sufficiently large v or for antisymmetric perturbations (see above); but 
these results are not presented here. 

The derived values of — Q2 versus v for A = 0.01, 0.1, 0.5, and 0.8 are shown in Figure 1. The corresponding 
result for ^4 = 1 from Simon (1965a) is also shown. (Note that his normalization factor for the growth rate dif- 
fers from ours by a factor of \/2.) Clearly Q2 ^ —vA for small vA as expected, and the curves for ^4 ^ 1 appear 
similar in form to the limiting case .4 = 1. 

The value of v at the point of the maximum growth rate, denoted here by vMGR, and at the crossover point 
where Q2 turns positive, denoted by vc, is such that the products ^4vMGR or Avc increase only slightly with increas- 
ing A. This is evident from Figure 1 but is shown more explicitly in Figure 2, which is the result of numerous 
calculations with A equal to 0.01, 0.04, and all numbers from 0.1 to 0.8 in steps of 0.1. Similarly, the square of 
the maximum growth rate, — ÜMGR

2, is shown as a function of .4 by a dashed line in Figure 2. These three curves 
are nearly parabolic and may be represented to a relative accuracy of ~2°70 in the interval A = (0.01, 1) by the 
formulae 

^mgr - 0.294 - 0.0197.4 + 0.173.42 , (37) 

Avc ä 0.639 - 0.129.4 + 0.490.42 , (38) 

-^MGR2 - +0.139 - 0.0220.4 + 0.103.42 . (39) 
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1056 ELMEGREEN AND ELMEGREEN Vol. 220 

Fig. 1 .—Squares of the normalized growth rates, — Q2, are shown as functions of the product of A times the normalized wave- 
number, v. The parameter A depends on the sound velocity and column density in the layer, and on the external pressure. Large 
values of A characterize layers that are strongly self-gravitating. 

We also find a nearly linear relationship between ûMgr2 and ^4vMGR, which is accurate to within 0.3% in the 
range = (0.01, 0.8) and is 5% too small at ^4 = 1, i.e., 

-£W2 - +0.468^vMgr + 0.000476 . (40) 

IV. VALIDITY OF APPLICATION TO ASTROPHYSICAL SHOCKS 

We would like to know the conditions under which the linearized growth rates for the gravitational collapse 
of compressed gas behind an isothermal, plane-parallel shock will be the same as the growth rates derived in the 
preceding sections. The basic assumption is that, to first order in the perturbed quantities, the isothermal layer 
which accumulates behind a shock is similar to a plane-parallel layer with constant external pressure. 

The plane-parallel nature of the calculation will be appropriate for most strong shocks that propagate into one 
side of a dense molecular cloud, since the layers behind these shocks are usually very thin. In some situations, 
however, surface instabilities may develop near the shock and the curvature of the layer may become significant 
(see Elmegreen and Elmegreen 1978). The propagation of a shock into a highly nonuniform cloud may also lead 

Fig. 2.—The square of the maximum normalized growth rate, — QMgr2, is shown {dashed line) as a function of the layer param- 
eter, A. The right-hand axis applies. Also plotted are the product of A and the normalized wavenumber at the point of maximum 
growth, vmgr, and A times the critical wavenumber, vc, i.e., where Q2 turns positive. The left-hand axis refers to these products Av, 
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No. 3, 1978 STAR FORMATION IN SHOCK-COMPRESSED LAYERS 1057 

to local curvature. Obviously, the present results do not apply to such cases. Nor should these results be applied 
directly to the gravitational collapse of swept-up material behind a moving spherical shock—even if the layer 
is much thinner than the radius of the sphere. The situation will not be the same as that considered here, be- 
cause nearby points behind the shock will have a relative velocity directed parallel to the layer as a result of the 
sphere’s expansion or contraction. 

The validity of the assumptions concerning the equilibrium density distribution and the boundary conditions 
for the perturbation must also be considered. In the case of an accreting shock (where a increases with time), 
the center of mass of the postshock layer will move relative to the postshock gas. This means that the equilibrium 
density distribution presented in § lia must continuously adjust to the changes in a. It can do this on the time 
scale for postshock sonic motions, vÍpqqc)'1. This should be compared with the minimum time scale for the 
gravitational instability to occur, ( —47rGpoo^max

2)_1/2. The application of our results to postshock layers requires 
that the equilibrium density distribution in the absence of perturbations be maintained on a time scale that is 
smaller than the gravitational growth time. This is equivalent to the requirement that a < {2P[7r(j(8QMGR

2 — 1)] “ 1}1/2 

< 1.4(P/7rG)1/2 or that ^ < 0.7. 
We also know that the boundary of the layer behind a steadily accreting shock will move away from the center 

of mass at some small velocity e, which is of order c(pPS¡p00)112 for postshock density p00 and preshock density 
/>PS. This means that the boundary of the layer really occurs at z = a + 7]1 exp (iœt + ikx) + ct in the notation 
of § lie. Equation (26) then should trivially include the velocity e on each side, which does not change the rela- 
tionship between and the perturbed boundary velocity uz(a). 

The assumption that the pressure at each boundary is constant during the perturbation is valid to first order 
in r)1. In the case of a layer behind a strong moving shock, the external pressure on the leading side will be domi- 
nated by the normal component of the ram pressure of the preshock gas. While this component varies sinusoidally 
with position x, the amplitude of the variation is second order in rj1. Thus the pressure at the leading side is effec- 
tively constant. The pressure at the trailing side of the layer might be dominated by the thermal pressure in a 
relatively hot medium (e.g., an H n region or a supernova remnant). Since the sound velocity in this medium will 
be high, the trailing pressure will be able to adjust rapidly during the growth of the perturbation and it will also 
remain relatively constant at the layer’s boundary. For a strong shock moving with a constant velocity, the total 
pressure on each side of the layer will be the same. Since we have assumed this to be the case here, the results 
apply only to shocks moving with constant velocity. 

We also require that, for an evolving and collapsing layer, the masses of the perturbed elements must be much 
less than the total mass swept up by the shock. This ensures that the background force acting on any collapsing 
fragment will be the same as the force due to a uniform layer, as calculated. To check this, we must use a result 
from the following section. The maximum mass of a fragment that can collapse significantly in a time r is given 
in equation (58) for Av < 0.1. This must be compared with the total mass in the layer, which is a times the area 
of the shock, S. The result is that the maximum fragment mass will be less than the total mass in the layer, if 
(<t/0.32 g cm“2)(r/105 years)2 < (S/l pc2)1/2. This condition will be satisfied for a long time during the early 
stages in the growth of the layer. With a preshock density of 103 cm-3 and a shock velocity of 5 km s_1, we 
require that r < 3.7 x \05(S/l pc2)1/6 years. After this time, the perturbations will no longer occur in a uniform 
background potential. The largest fragments will begin to coalesce by two-body interactions, and most of the 
material swept up by the shock will have become concentrated into several large clumps. 

Perhaps the most obvious prerequisite for the validity of our results is that the formation and turn-on of massive 
stars in the layer must not have led to its disruption. Unfortunately, the point at which massive stars form can- 
not be determined simply from the parameters which specify the postshock layer. In view of the above constraints 
on r and a, it is possible that, in some layers, the formation of massive stars will occur after the present linearized 
calculation loses its validity. 

V. ASTROPHYSICAL IMPLICATIONS 

We consider the possibility that stars or clusters of stars may form as a result of compression and gravitational 
collapse in strong isothermal shocks. This process may be important at the interfaces between neutral clouds and 
expanding H n regions, supernova remnants, windswept bubbles, etc. ; between two colliding clouds ; or in a 
single cloud that is suddenly exposed to the high postshock pressure of a supernova blast wave or a spiral den- 
sity shock. Observational evidence for this phenomenon is rapidly becoming available, and an attempt to sum- 
marize the current literature was made in § I. 

What we can learn from the present results is the manner in which such a self-gravitating postshock layer 
begins to collapse. Elements of size A æ 27ri//vMGR dominate the collapse because their growth rate is the largest, 
while gaseous regions as small as À çz 2ttH¡vc or as large as the effective radius of curvature of the shock (i.e., 
the case v ^ 0 or A oo) grow more slowly. After an unstable region has collapsed significantly, however, the 
linearized calculations given here become inadequate. Most likely, these regions will continue to contract until 
they form small, near-spherical entities. They will be slightly deformed from perfect spheres by the background 
potential of the layer (see Callebaut 1975). At this stage, the criterion for further collapse will probably be the 
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1058 ELMEGREEN AND ELMEGREEN Vol. 220 

usual Lane-Emden criterion for the collapse of a pressure-bounded isothermal sphere; i.e., collapse will occur 
when the mass in a sphere exceeds the critical value (Spitzer 1968) 

1.18c4 /yflN 
^SPH - Q3f2p^ll2 (40 

for external pressure ^ext* 
As shown below, it is entirely possible that a sufficiently small element of mass can be unstable in the plane- 

parallel case but stable as an isothermal sphere. In this case, collapse will stop (after some oscillations) when the 
initially unstable sheet becomes a stable sphere. The formation of Bok globules, rather than stars, may be the 
only immediate result of such a low mass instability. Of course, other instabilities related to molecular reactions, 
heating and cooling changes, etc., may occur at this stage. Whether low-mass fragments actually do collapse 
even though they are stable by the criterion for an isothermal gas sphere is beyond the scope of this paper. 

The onset of rapid star formation presumably occurs when unstable elements in the plane are too massive to 
be supported as spheres. To determine criteria for the occurrence of this phase, we compare MSpH to the mass 
of an unstable element in the plane. For this latter quantity, we take the mass in a cylinder with diameter A/2: 

In terms of A and v this becomes 

(42) 

Thus 

M = 
21'27t3'2 c4 A(\ - A2)112 

8 g3I2P112 v2 

M 
■A^sph 

0.83 ^ -Z^2- 
V2 

(43) 

(44) 

The mass of the fastest growing cylindrical element, denoted here by MMC[B, may be obtained by using vMQR 
in equation (43) or (44). We find that AfMGR/MSpH varies roughly as ^3(1 — A2)112 (since vMgb & A'1), which 
has a maximum value at some A in the interval (0, 1). More precisely, we find 

MAX 
pl(l - ^2)1'2] 
|_ •'mgr2 J 

1.97 (45) 

from our calculations. Thus 

■fl^MGR < 

AfgpH 
1.64. (46) 

Similarly, the mass of the smallest unstable mass, A7MIN, is found by using vc in equation (43) or (44). We then 
obtain 

so that 

MAX 
A(l - A2)1'2] 

Vo2 J 
0.44, (47) 

< 0.36 . (48) 
Aísph 

These results suggest that a critically unstable element, i.e., the one with the smallest mass, may end up as a 
stable sphere, regardless of A (however, recall the precautionary note stated above). The dominant unstable mass, 
i.e., the one that grows most rapidly, may also collapse to a stable sphere unless A increases to a value where 
^mgr/Msph = 1. We find that this occurs first when 

A = 0.54 (Mmgr = MSph), (49) 
or, from equation (35), 

a = 0.91(P/7rG)1/2 . (50) 

Thus, when a layer has grown so large as a result of accumulation behind a shock that cx2/P is large and A exceeds 
0.54, the most rapidly growing perturbation will be unstable even after it becomes nearly spherical. This may mark 
the onset of rapid star formation in shock-compressed layers. Equation (50) seems to be a better criterion than 
that given in Elmegreen and Lada (1977). 
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Even if A < 0.54, sufficiently large unstable regions (v æ 0) will be too massive to form stable spheres after 
they collapse. These instabilities grow very slowly, however (see Fig. 1), and they may not be significant at all if 
the shock is short-lived. An upper limit to the unstable mass may be obtained by requiring that the growth rate 
of this mass be faster than the rate of significant change for the shock. We denote this upper limit by Mmax and 
determine it as a function of the time scale r for the duration or age of the shock. The criterion then takes the 
form 

co2 = —47TGp00Cl2 > ^2 • (51) 

Using p00 from equations (7) and (9), and setting 

Q2 = -ß(A)vA , 

we may write this criterion in the form 

(52) 

7 < ' <53) 

All elements with such large values of v (i.e., small wavelengths) will grow in a time r or less. 
The mass of such a perturbation may be obtained from equation (43). Since this mass scales with c4/v2, we may 

substitute equation (53) directly into equation (43) to obtain 

M < 2(2)1/277'7/2G1/2P3/2r4j82^43(l - ^2)-3/2 . (54) 

The right-hand side of equation (54) is taken to be Mmax* Since P/Q ~ ^2) equals p0oC2 and Az equals 
(1 — P/pooC2)312, we see thatP3/2^43(l — A2)~312 equals (po0c

2 — P)312 = (-|7rGa2)3/2. Thus simplified, we have 

MMAX = TT5G2T4:ß2(J3 . (55) 

Only elements with mass less than Mmax will grow in a time less than r. On the other hand, these elements will 
be unstable after collapse to a sphere, only if their mass exceeds MSpH. Thus, when r is sufficiently large that 
Mmax > MSPh, then all masses M in the range 

Msph < M < Mmax (56) 

will be significantly advanced to the point of complete collapse in the time r. 
We note that, when Av for use in equation (53) is small—as it would be for typical values of r ^ 105 years, 

P ä 10"10 ergs cm-3, c ^ 5 x 104 cm s-1, and A x 1—then we may use ß £ 1 from equation (33). A better 
approximation from Figure 1 is 

0 ^ 0.8 , Av^ 0.1 . (57) 

In this limit, Mmax depends only on the column density in the layer and on the duration of the shock. It does not 
depend on the sound velocity in the layer or on the external pressure! Numerically, we have 

Mmax = 1 M©(i05 years) (2.8 x 10-2gcm-2) ’ (58) 

where a = 2.8 x 10"2gcm“2ifa shock accumulates material with a preshock H2 density of 103 cm"3 over a 
distance of 2.3 pc. 

Evidently, Mmax increases rapidly with the age of the shock—as r4 for constant <t, or as r7 in the case of a 
propagating shock where a would be expected to increase linearly with time. The result is a time-dependent hier- 
archy of clustering, where the maximum collapsing mass continuously increases because of the inclusion (or 
perhaps coalescence) of more and more small fragments. Any subcondensations may have already collapsed to 
form pre-main-sequence stars or small globules like Bok globules. 

After stars begin to form in the postshock layer, the isothermal equation of state used for the present calcula- 
tion becomes inadequate. Stars may significantly heat or disrupt the gas, and the nature of any subsequent gravita- 
tional collapse should be quite complex. For this reason, the application of equation (51) to old, postshock 
regions which have already undergone significant gravitational collapse and star formation is probably not justi- 
fied. Furthermore, the concept of a time-dependent maximum mass requires the use of plane-parallel geometry, 
for which the collapse rate goes to zero for very large perturbation lengths. Deviations from this idealized situa- 
tion will be increasingly severe as the layer ages and massive self-gravitating fragments begin to appear. 
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VI. THE INFLUENCE OF MAGNETIC FIELDS 

Magnetic fields may influence the results of this work by increasing the rms velocity in the layer. However, if 
the effective equation of state in the layer is determined primarily by magnetic fields, i.e., P = pv^ for a con- 
stant Alfvén velocity vA, these results will not change significantly: The dimensionless growth rates and wave- 
numbers are independent of the constant value of P¡p, as are the unstable masses relative to AfSpH. Thus the 
criteria given in equations (49) and (50) are independent of the source of the rms motion in the layer. Even MmAX 
is independent of a constant Pjp, although, in general, the mass from equation (43) does depend on this velocity. 

Of course, it is important to consider whether pressure from a magnetic field could ultimately prevent star 
formation. If a large cloud is initially supported by a magnetic field, then highly compressed gas in the part of 
an isothermal shock that propagates along the field will be greatly enhanced in gravitational energy density com- 
pared with magnetic energy density (see Elmegreen and Lada 1977). The initial stages in the collapse can then 
occur without field restraint. Once the collapse begins, the postshock density will increase even more; as a result, 
the ionization fraction will decrease and the rate of field diffusion out of the layer will increase. The field can then 
leak out of the gas, and star formation can proceed. Shocks that propagate in a direction perpendicular to the 
field will result in less postshock compression than do those shocks which move along the field. Infinitesimal 
gravitational instabilities of the type discussed in this paper will not be changed at all for collapse along the field 
(which now lies in the plane of the layer). However, the lower postshock density in this configuration will lead 
to a longer magnetic diffusion time behind the shock, and the final configuration of a collapsing layer may in- 
clude substantial magnetic support. It remains unclear whether stars can eventually form behind shocks that 
propagate in a direction perpendicular to the field. Observational consequences of this difference between the 
two shock-field configurations were discussed in detail by Elmegreen and Lada (1977). It was suggested that 
this difference may lead to the observed directionality or sequence for star-forming events in large molecular 
clouds. 

VII. CONCLUSIONS 

The growth rate for gravitational instabilities in compressed layers has been calculated as a function of the 
wavelength of the instability. In dimensionless units, the layers are completely specified by a single parameter A 
equal to tanh (zjH) for scale height H and half-thickness z of the layer. The actual growth rates and sizes depend 
on the column density and sonic velocity of the layer, and on the external pressure. Simple formulae were given 
for the maximum growth rate, for the wavelength at this maximum, and for the critically unstable wavelength, 
as functions of 

Some implications of these results for astrophysical situations were discussed, especially in relation to the 
possibility of star formation behind isothermal shocks. The critically unstable mass was found to be stable, if it 
collapses to a pressure-bounded isothermal sphere, regardless of the value of A. The mass of the most rapidly 
growing element will also be stable as a sphere, unless A exceeds 0.54. This threshold may mark the onset of 
rapid gravitational collapse and star formation behind the shock. 

A maximum mass was derived for a plane-parallel fragment which undergoes significant collapse during the 
time T, a characteristic time scale for the duration of the shock. Smaller masses will collapse in a time less than r. 
Larger masses will not have enough time to collapse. The resultant value of MMax was found to be independent 
of the sonic velocity in the shocked layer and of the pressure that drives the shock. However, it depends strongly 
on r and on the column density in the layer a. This suggests that persistent shocks (r large) or those which propa- 
gate into large dense clouds (a large) may lead to massive star clusters. Short-lived shocks (r small) or those which 
sweep up little material (a small) may result only in the formation of Bok globules or small star clusters. 

To the extent that the results in § IV were independent of the rms velocity in the layer, magnetic fields will not 
significantly alter our conclusions. We reemphasized the possibility originally suggested by Elmegreen and Lada 
(1977) that a sequence of star-forming events could exist in a molecular cloud owing to alignment and diffusion 
properties of a magnetic field. 

B. G. E. gratefully acknowledges support by the Society of Fellows at Harvard University. D. M. E. thanks 
Zonta International for graduate support through an Amelia Earhart Fellowship. 

APPENDIX A 

METHOD OF CALCULATION 

Equation (21)—along with the boundary equations (25), (27), and (31), and the constraint given by equation 
(32)—constitute an eigenvalue problem with eigenvalue Ü2 and eigenvector 4* = (0, 0', where primes 
denote derivatives with respect to /x. The solutions presented here were obtained by iteration on a computer using 
the following algorithm. 
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First, a value of i/j/r)1 at one boundary was initialized arbitrarily, as was Q2, and the higher derivatives of 
were determined at this boundary from equations (25), (27), and (31). The solution for was then obtained 
by integration from /x = ^4 to /x = 0 in equal intervals of ju. A predictor-corrector scheme was employed in which 
values of 4>i at one point ^ were used to obtain values of 4>2 at another, nearby point /x2 = ah + A/x by iterat- 
ing until convergence over the equations 

^ ^ ^ ^-2 + W ^ , 

^ = •A/ + + W" + ^1"') if ’ 

•Al'= «Ai" + + (2^r + «A2/"')^-2 > 

-A2" = -AE + OAi"" + 

and 
^ = (Ai) 

from equation (21). With these equations, the fifth-order derivative of 0, i.e., (02"" — «Ai^O/A^, is continuously 
replaced by its average value in each interval A/x. The number of steps in the entire interval from /x = 0 to /x = ^4 
was chosen to be sufficiently high that doubling the number of steps did not change the results (i.e., the final 
value of Q2) by more than 0.01%. It can be shown that this number of steps must be larger than (1 — ^42)"1 for 
the Taylor-series expansions in equations (Al) to be valid. Generally, A/x was taken to equal —^4/400, and values 
of A less than 0.8 were used. 

After the integration of 0(/x) from /x = ^4 to /x = 0 was completed, the resulting value of ÿ'(0) was compared 
with zero. A second integration, using an initial value of ^{Ä) equal to 0.95 times the previous value (but using 
the same D2), similarly gave a second value of The degree to which the second value of */f'(0) was closer to, 
or more deviant from, zero than was the first value of ^'(0) gave a correction factor to the input value of ÿ(A). 
Thus corrected, new values of ^{A) and 0.95^) gave more pairs of 0'(O) and thus further corrections to 004), 
until 0'(O) became arbitrarily close to zero, as required by condition (32). Typically, A/x) was driven 
to the limit of computer accuracy, ~10-14. The second condition, ^"'(O) = 0, was enforced in the same way; 
but in this case the two values of 0"'(O) that were obtained after integrations with D2 and 0.95Q2 were used to 
correct Q2. Consecutive corrections to Q2 thus drove i¡sm to zero, while the first condition, 0'(O) = 0, was enforced 
continuously by correcting 004). 

The solution set [0G4)/?h, ^2] was obtained for various values in the parameter space (v, A). Typically, five 
iterations over Q2, each containing five iterations over 004), were required to drive 0'(O) and 0W(O) to zero, when 
completely arbitrary initial conditions on 004) and Q2 were used. Three and five iterations, respectively, were 
required for initial values that were obtained from previous solutions with similar (v, Ä). 

APPENDIX B 

THE LIMITING GROWTH RATE FOR SMALL vA 

We seek the limit of D2 as v -> 0 and ^4 0. Let 0 be of the form 

-a = 2>2‘ i 
(Bl) 

for the symmetric perturbations considered here. Equation (27) then gives to order A 

— 4Q2 = A(24a2 - 8^ - 2a1v2 - 20o*'2) • (B2) 

Thus Q 0 as y4 0 for finite 
our purposes, we need only the 
Thus 

v. The equation of motion may be used to give a recursion relation for For 
coefficient of the /x° term, which must be set equal to zero from equation (21). 

24æ2 — 8^! — + (Xqv* — Aüqv2 = 0. (B3) 
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We now need aQ and ax to order unity for use in equation (B2). Substituting equation (Bl) into equation (31) 
gives 

a0 = ~ + order (A)... , (B4) 

while equation (25) gives 

0i = -y5 + order (A) ... = v + order (A) . (B5) 

Then equation (B3) gives 24<z2 ^ 16v + 2v3 + higher-order terms. Equation (B2) finally reduces to 

£22 ~ — Av (v 0, A —> 0) . (B6) 
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