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ABSTRACT 

A model for the quiescent, inhomogeneous solar corona is developed, based upon the concept 
of loop structures as the basic structural element of the corona. The results, which are compared 
with observations obtained by the S-054 Skylab X-ray telescope, show that (a) hydrostatic 
solutions are stable only if the temperature maximum is located at the top of loop structures, 
and the deposition scale length of the coronal heating mechanism is comparable with (or larger 
than) the loop scale size; (tí) the loop temperature (^I^ax), pressurep, and size L are related by 
the expression rmax ~ 1.4 x 103Q?L)1/3, a relation which contains no free parameters; (c) 
coronal heating models based upon the coronal magnetic field (e.g., Alfvén mode dissipation and 
coronal current heating) are consistent with the loop model, while acoustic mode damping 
is not. 

In accordance with these results, we propose a new model of the corona in which the quiescent 
X-ray corona represents a metastable equilibrium state. Thus, fluctuations in the local heating 
rate are shown to lead to dynamically unstable states within loops. These may be identified with 
transient loop brightenings seen in X-rays; with relatively cool coronal loop structures seen in 
EUV emission lines, which have been reported to extend to heights larger than the imputed 
pressure scale height and may be associated with downflows of plasma; and with the formation 
of quiescent prominences within loop structures. 
Subject headings: Sun: corona — Sun: X-rays 

I. INTRODUCTION 

The conventional view regarding stellar chromospheres and coronae, particularly of late-type stars such as the 
Sun, is that they are by-products of convective flows in the stars’ outer layers; the acoustic noise generated by 
these motions is thought to couple to the tenuous extended atmosphere, raising its temperature above the effective 
temperature of the star by virtue of the gases’ relatively low radiative efficiency (see Athay 1976 and references cited 
therein). This traditional view has led to a large number of theoretical efforts to model observations of chromo- 
spheres and coronae, whose common element is a spatially homogeneous (“plane-parallel”) description of the 
atmosphere (see, for example, De Loore 1970; Moore and Fung 1972; Landini and Fossi 1973; McWhirter al. 
1975; Jordan 1976; Vanbeveren and De Loore 1976). This approach is to some extent made inevitable by the 
underlying assumption of coronal heating via the dissipation of acoustic modes, because turbulent convection and 
the associated mode generation are thought to be fairly homogeneous over the surface of the star. 

On the other hand, the early X-ray studies of the Sun carried out by rocket-borne instruments (cf. Vaiana et al. 
1968; Van Speybroeck, Krieger, and Vaiana 1970) as well as the high-resolution data obtained by the EUV and 
X-ray instruments on board Skylab (Reeves et al. 1976; Tousey et al. 1973; Vaiana et al. 1973; Underwood et al. 
1976) have shown the corona to be composed of a variety of complex looplike systems generally associated with 
underlying photospheric and chromospheric structures, in particular magnetic field structures. A comparison of 
X-ray loop structures with potential field extrapolations of the photospheric magnetic field suggests that these 
loops outline the three-dimensional configuration of the coronal magnetic field (Van Speybroeck, Krieger, and 
Vaiana 1970; Krieger, Vaiana, and Van Speybroeck 1971; Poletto et al. 1975). 

The intensity of the X-ray emission seems also to be directly related to the magnetic field configuration; thus 
strong X-ray emission is found in the neighborhood of large field complexity (Krieger, Vaiana, and Van Speybroeck 
1971 ; Poletto et al. 1975 ; McIntosh et al. 1976), while the regions of weakest coronal X-ray emission overlie photo- 
spheric regions devoid of magnetic activity, with one polarity generally dominant (Timothy, Krieger, and Vaiana 
1975). These observations support the view that coronal radiative emission derives predominantly from plasma 
confined by topologically closed magnetic field structures (Pneuman 1973). The association of extremely weak 
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644 ROSNER, TUCKER, AND VAIANA 

coronal emission with open-field topologies in solar coronal holes (Timothy, Krieger, and Vaiana 1975) suggests in 
fact that strong stellar coronae can exist only in the presence of stellar magnetic fields; the presence of convection 
is then only a necessary, but not sufficient, condition for the existence of a strong corona unless one can demonstrate 
that magnetic fields are an inevitable result of convective activity. 

We conclude that, at least in the Sun’s case, there is no one corona but rather many small-scale “coronae” of 
differing temperature and pressure which can coexist, the magnetic field providing the required “isolation.” 
This may in fact be an advantage since instead of confronting a single corona, one confronts many; and it may 
therefore be possible to take advantage of systematic trends of the variation of temperature with pressure, for 
example, to distinguish between proposed mechanisms for heating the outer layer of the Sun and other stars. 

In this paper we consider the steady-state energetics of a simple model for coronal loops. The observed mor- 
phology leads us to assume that the loop is the basic building block of all coronal features. It is assumed that 
the coronal temperature and density structuring is dominated by transport processes along the magnetic field in 
order to permit one-dimensional modeling. By emphasizing an analytical rather than a numerical approach, we 
seek to establish explicit relationships which show how the conditions in the loop depend upon the assumed energy 
deposition function and the size of the loop, and thereby to set up a useful framework for comparing observations 
with theory. 

The loops considered in this paper are quasi-static, although gradual evolutionary changes will be considered; 
dynamic effects will be discussed in more detail in later papers. Our work differs from previous efforts of modeling 
the inner corona principally in our effort to account for the coronal X-ray observations. Our analytical approach 
follows initially along the lines devised by Landini and Fossi (1975), who derived a sequence of models for the 
X-ray corona under the assumption of spatially uniform acoustic heating, but diverges from their work in our 
examination of the effects of modifying the assumed heating function, our emphasis upon the closed topology of 
coronal structures, and our study of the consequences of locating the position of the temperature maximum within 
these structures. 

In § II we discuss some general features of coronal loops which follow from the X-ray observations ; in § III we 
present a simple model for coronal loops, together with a detailed discussion of the assumption involved, and in 
§ IV we illustrate how the model may be used to gain insight into the mechanism responsible for coronal loop 
heating. 

II. GENERAL FEATURES OF CORONAL LOOP STRUCTURES 

The structure of the X-ray corona, from both morphological and quantitative points of view, has been reviewed 
several times (cf. Vaiana et al. 1976 and references cited therein); our intention here is not to repeat this material 
but rather to briefly summarize the available data which are immediately relevant to the construction of theoretical 
models. 

a) The X-ray corona is structured. We first wish to reemphasize the view long expressed by solar X-ray observers 
and others that loop structures are the significant structural element of the solar corona (cf. early references such as 
Reidy et al. 1968 and Van Speybroeck, Krieger, and Vaiana 1970, as well as Dunn 1971, who reviews early non- 
X-ray work). Figure 1 displays some of the basic structural archetypes evident in the X-ray corona: active regions 
and their associated loop arcades, and large-scale structures reminiscent of the “quiet corona”; a succinct review 
of these and other morphological classes is found in Vaiana et al. (1976). In particular, we call attention to the fact 
that regions appearing to be unstructured in a given X-ray picture can generally be made to reveal their structuring 
by examining images taken either with a different filter inserted into the optical path or with the same filter but 
different exposure time; an example is provided in Figure 2. 

For certain structures, such as bright points, this process may not be possible because of limitations imposed by 
the resolution of the X-ray telescope; the significant fact remains, however, that for scales larger than that defined 
by the telescope resolution, coronal structuring into loops can invariably be demonstrated. Further, the progressive 
improvements of X-ray telescope resolution achieved since the early rocket flights have shown that diffuse regions 
at the limit of resolution again invariably reveal loop structuring when viewed with an instrument of higher resolving 
power; examples of this may be found in Vaiana, Krieger, and Timothy (1973). It is therefore our contention that 
the corona must be identified with these structures; there is no evidence in our data to support the view that 
coronal loops are merely embedded in a more diffuse, unstructured background plasma. 

b) Plasma energy densities are correlated with the size and age of emitting structures. The telescope design, which 
incorporated a filter wheel in the optical path, allows information beyond the purely morphological to be obtained 
(cf. Reidy et al. 1968; Vaiana, Krieger, and Timothy 1973). The most easily derived information concerns the 
energy density of the coronal plasma. As discussed by Landini et al. (1975), and in detail by Kahler (1976), one 
of the filter positions (filter 3) resulted in exposures for which the energy deposited on film was directly proportional 
to the integrated energy density J dlNeTe of the emitting plasma over a wide range of line-of-sight plasma tempera- 
tures; in such images, brightness is therefore directly related to the total plasma energy density in the line of sight. 
This fact yields two important results for the X-ray corona: first, that coronal plasma energy densities are inversely 
correlated with the typical size scale of the emitting regions; second, that the energy density is also inversely 
correlated with the age of the emitting structure. The qualitative correctness of these assertions is seen, for example, 
in Figure 3, which contains images taken in the filter 3 position. This figure illustrates the evolving structure of a 
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(a) (b) 

(c) (d) 
Fig. 1.—Loop structuring in the X-ray corona. Four examples of looplike structures in a range of coronal environments: 

{a) young, emerging active region complex; (Jb) well-developed active region; (c) postflare loops at limb; (d) large-scale loop 
structures in the “quiet Sun.” 
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(a) 

FILTER 3/256 SECS. 

FILTER 1/64 SECS. 
Fig. 2.—The X-ray corona is always structured. The wide dynamic range of coronal emission and the relatively narrow dynamic 

response of the recording medium (film) necessitates a careful choice of both filter and exposure time to reveal loop structuring 
in the corona. Shown are {a) an overexposed image, as well as (b) and (c) images taken within the dynamic limits of the film, all 
of the same active region. 

Fig. 3.—The long-term evolution (three rotations) of an active region. Active regions begin as compact, bright loop complexes 
{left) and subsequently evolve into large-scale, diffuse structures. 
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Fig. 4.—Photographic density statistics for two distinct evolving active regions; the monotonie relation between photographic 
density and energy deposited on film allows one to interpret these statistics in terms of the radiative evolution of the active region. 
Statistics were obtained on successive solar rotations. Region (a) was quiescent for two rotations [182], developed a bright core 
on the third rotation, and then decayed [4]. Region (b) emerged in the first rotation [1], reached its peak brightness on the second 
rotation [2], and decayed over the next two rotations [3 and 4]. Detailed analysis of these regions, combining the X-ray and EUV 
data, is in progress (G. Noci, private communication). 
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particular coronal active region, and shows the decrease in emission (and hence in energy density as well) as the 
active region ages; this is confirmed by a more quantitative analysis of the evolution of two active regions, shown 
in Figure 4. The decreasing brightness, and hence decreased average energy density,1 of evolving active regions is 
also evident in full-disk X-ray images; see, for example, the synoptic full-disk X-ray images in Vaiana et al. (1977). 

c) The range of observed plasma temperatures of quiescent coronal structures is narrow. By combining data ob- 
tained using two different filters, the above quantitative analysis can be refined to yield the line-of-sight average 
plasma temperature and total emission measure; since the data are in the form of images of the emitting regions, 
the geometry can be deduced, and it is hence possible to go one step further to obtain line-of-sight plasma electron 
densities (Vaiana ei al. 1977). Recently Maxson and Vaiana (1977) have developed a new calibration technique 
which permits the analysis of regions both in and outside the linear response region of the photographic film. 
Figure 5 shows one of the results of their work combined with other data, a scatter or correlation diagram of the 
total photographic density recorded on the film for two filter-wheel positions. The calibration procedure allows one 
to construct calibration curves corresponding to various line-of-sight average temperatures of the emitting plasma. 

1 We note that although the energy deposited on film is linearly related to the film density (and hence perceived brightness) only 
in a restricted regime, the actual functional relation is monotonie up to the saturation level of the film; “brighter,” therefore, means 
“greater energy deposition” independent of calibration. Consequently, we can draw the immediate conclusion that the integrated 
line-of-sight energy density is decreased for larger structures because their brightness is decreased. The increased size, moreover, 
implies a larger line-of-sight path length L, and therefore the average energy density (NeTy (=[J dlNeT]IL) is depressed as well, 
in fact by a substantially larger factor than the integrated energy density. 

Fig. 5.—Calibrated scatter plot of photographic density of a full-disk image for two filter positions. Note that the number of 
picture elements associated with given pairs of film densities is indicated. The calibration is due to Maxson and Vaiana (1977), 
and extends over the low-density and linear regimes of the H-D characteristic film curve; points lying outside the calibrated region 
are in the saturated density regime for these exposures. Line-of-sight emission measures have been calculated only along the 
constant-temperature contours; the dashed emission-measure contours were obtained via a spline fit to these calculations. Note 
that the vast bulk of coronal emission emanates from regions whose temperature lies between 2-3 x 106 K. 
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No. 2, 1978 DYNAMICS OF QUIESCENT SOLAR CORONA 651 

The most distinctive quantitative result is the relatively narrow observed range for the average coronal plasma 
temperature of geometrically distinct quiescent coronal features over a huge range of coronal size scales (108-1010 

cm) and plasma densities (108-10_1° cm-3); see also Davis et al. (1975) and Vaiana et al. (1976). Spatially averaged 
EUY emission measure analysis yields similar results (Withbroe 1975). However, it is still possible that small 
volumes of high-temperature (T > 3 x 106 K) material are comingled in the line of sight; the telescope instrument 
characteristics do not permit us to rule out this possibility. There is nevertheless little doubt that the bulk of coronal 
material in closed looplike structures—ranging from compact active regions to “ quiet Sun” large-scale structures— 
has a temperature lying within (2-3) x 106 K. Particularly striking is the fact that this observed narrow tempera- 
ture range applies to distinct emitting features, which are thermally insulated from one another by the coronal 
magnetic field (cf. Spitzer 1962); while efficient thermal conduction parallel to the magnetic field for T > 106 K 
can be expected to smooth temperature gradients along any one magnetic feature, this cannot be the case of struc- 
tures with distinct magnetic field topologies. We will in fact show that this behavior can be understood within the 
context of the model presented in § III below. 

d) Temporal behavior of coronal radiative emission. Modeling invoking time-independent energy balance is 
relevant only if observed coronal structures are to some extent stationary. To this end, we note that the observed 
emission lifetimes of coronal X-ray structures are, generally speaking, far larger than the time scales defined by 
thermal conduction and radiative emission (cf. Reidy et al. 1968; Vaiana and Tucker 1974; Krieger et al. 1975); 
the implication drawn was that continual heating must be present in order to sustain these structures (cf. Gerassi- 
menko, Soladyna, and Nolte 1977 for further details). In fact, a continuous range of time scales exists; these relate 
both to the overall evolution of the entire active region, measured in terms of the solar rotational period, and 
to the lifetime of substructures within a given active region, which is of the order of days. 

Figures 6a and 6b exemplify this behavior on two distinct time scales. Although the total (or average) brightness 
of the complex does not appear to change significantly, the brightness of individual substructures, or loops, can 
show remarkable variability. Thus, quiescent loop structures can appear relatively unchanged over a time scale of 
hours (left column), but fluctuate over the course of a few days (right column). Although the active region as a 
whole may endure for several solar rotations, its constituent substructures have lifetimes roughly an order of 
magnitude shorter; in the example shown, the latter lifetimes are significantly larger than the time scales obtained 
for radiative and uninhibited conductive cooling of nonflaring loop structures (see, for example, Vaiana et al. 
1976). The presently available data strongly support the applicability of the modeling of §§ III and IV, which pre- 
supposes the existence of a relatively stationary state of the loop plasma for quiescent structures on a time scale 
shorter than their observed fluctuation time scale, e.g., approximately 105 s in the case shown here. These models 
have wider applicability if the observed changes in coronal emission, due to fluctuations in the local coronal 
heating rate or thermal energy transport along the magnetic field, are simulated by approximating evolving loop 
structures with a sequence of stationary loop models. 

III. THE LOOP MODEL 

The steady-state energetics of a coronal loop structure is determined by an energy balance equation of the form 

EH + f'V = div Fc - £* + div ({%pv2 + U}v + pv) , (3.1) 

where EH is the local mechanical heating function, / the net volume force exerted on the fluid by gravity and 
possibly by the heating mechanism,2 v the bulk plasma velocity, Fc the thermal conductive flux, ER the total 
radiative loss, p the plasma mass density, U the plasma thermal energy density, and p the isotropic pressure (see 
any plasma physics text, such as Rossi and Olbert 1970). 

Equation (3.1) is a local energy balance relation. By integrating it over the volume of the loop, we obtain the 
energy balance relation for the loop as a whole: 

f (Eh + f 'v)d°r = - Í ERd*r + ^iootpointa + JS?sldes, (3.2) 
Jy J y 

where <^?0otpoints and ^des are the losses (or gains) across the surfaces bounding the cylindrical model loop (Fig. 7). 
We are implicitly assuming the loops seen in X-ray emission to be spatially coincident with closed coronal magnetic 
flux tubes ; barring the presence of anomalous transport effects, we shall henceforth assume ^ides> which results 
from cross-field effects, to vanish. This is a good approximation for cross-field heat conduction, but may not be 
adequate to account for material cross-field drifts (cf. Rosner et al. 1977). The advantage of this assumption is, 
however, that it allows equation (3.1) to be reduced to one-dimensional form. 

The other boundary term, <^0otpoints> is not as easily accounted for. Energy transport across the footpoint 
boundaries may be due to either thermal conduction or material transport [e.g., the term (ipv2 + U)v]. In either 

2 For a wave energy deposition model which neglects wave reflection and refraction, we write / = pg + where g is the solar 
gravitational acceleration and the rate of momentum transfer from the incident wave flux to the fluid. En and are then 
related via Eu = where vm is the propagation velocity of the heating mode with respect to the fluid. 
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case ^?ootpoints is a boundary condition to be specified in advance, and hence must be determined from semiempirical 
or theoretical models which are known to accurately account for the boundary layer. In the following, we shall 
assume -> 0 at the boundaries. This is consistent with a vanishing net mass flux into the loop, a condition derived 
from the relatively small observed brightness fluctuations of the loops over the time scales of interest (cf. § II 
above). If one further demonstrates the conductive flux at the base (low chromosphere) to be small, then radiation 
is the only remaining loss mechanism for a closed, quiescent loop; conduction then serves only as an energy 
redistribution mechanism. 

The present aim is to demonstrate that many of the essential elements of coronal loop physics can be discussed 
within a conceptually simple framework, one in which the principal results are analytically rather than numerically 
derived. In order to do so, we require two additional assumptions: (1) ~ 0, (2) p is constant along the field. 
Our calculations will show the first assumption to be consistent with the X-ray observations of quiescent coronal 
structures. The second assumption is reasonable as long as the height of the loop above the solar surface is small 
when compared with the pressure scale height H, 

ftioop « # = 5 x 103T cm , (3.3) 

where T is the temperature; since our discussion focuses upon active-region loops, this useful simplification is a 
rather good approximation.3 

The temperature and density distribution in the loop is then determined by the simpler energy balance relation 

- divFc = 0 (3.4) 

and the boundary conditions, which we shall assume to be 

T(s = 0) = To = 2 x 104 K, (3.5) 

Fc(s = smax) = 0, (3.6) 

where Fc is the conductive heat flux parallel to the magnetic field, 

fc(5) =-io-er5'2^, (3.7) 
as as 

and Smax the coordinate of the top of the loop as measured along the magnetic field; without loss of generality, 
we have assumed the loop to be symmetric about s = ^ax. The radiative loss function can be written as 

Er = - (p2l4k2T2)P(T) ergs cm“3 s"1, (3.8) 

where P(T) is a function which may be analytically approximated by a sequence of power laws joined continuously, 
each having the form (see Appendix A) 

P(T) = , Ti< T < Tj. (3.9) 

The functional form of these relations suggests that equation (3.4) be written with T as the independent variable 
(Landini and Fossi 1975); we obtain 

- div Fc = js (KT5l2dT/ds) = (Fc/KT5l2)(dFcldT) , 

and, with the aid of equations (3.8) and (3.10), equation (3.4) reads instead 

(FJKT5l2)(dFJdT) = (p2/4k2T2)P(T) - EH . 

Equation (3.11) can be integrated to obtain the thermal conductive flux as a function of temperature: 

F 2(T) - FC
2(T0) = (KP

2l2k2) Í dT'T'll2P(r) - 2k ( drr5l2EH(r). 
Jt0 

(3.10) 

(3.11) 

(3.12) 

3 We note that although this argument applies only to the coronal, X-ray emitting portion of a loop, p ~ constant obtains at 
lower temperatures as well because of the large temperature gradient in the transition zone. That is, the transition region temperature 
scale height is small when compared with the pressure scale height at corresponding temperatures ; thus p ~ constant applies near 
the relatively cool loop footpoints as well (cf. Athay 1976, p. 278). 
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30 AUG. 0243 UT 29 AUG. 0641 UT 

30 AUG. 0558 UT 

30 AUG. 1333 UT 

30 AUG. 1931 UT 

31 AUG. 2102 UT 
Fig. 6.—Moderate time resolution quiescent active region evolution. On a time scale of hours {left column), only individual 

loop structures show some variation, while substantial rearrangements of loop complexes appear to require a few days {right column). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
78

A
pJ

. 
. .

22
0 

. .
64

3R
 

© American Astronomical Society Provided by the NASA Astrophysics Data System 



19
78

A
pJ

. 
. .

22
0 

. .
64

3R
 

DYNAMICS OF QUIESCENT SOLAR CORONA 655 

In order to simplify the appearance of the equation, we define the auxiliary functions 

MT) = (KP
2/2k2) C drrll2P(T') , (3.13) 

JTo 

fu{T) = 2k [T drr5l2EH(T') , (3.14) 
J To 

where fB and fH represent the radiation loss and energy deposition contributions to the thermal conductive flux; 
fR{T) can be approximated by (see Appendix A): 

( 10-29.OT’3 rp < 1A5.1 
fR{T) ~ (kpW).|^_184; ^ ^ (3.13') 

In general we expect FC
2{T¿) < 104, whereas fR(T) and /H(T) > 1010; the coronal temperature and density 

structure is, therefore, quite insensitive to the base conductive flux, and hence Fc
2(70) will be neglected in the 

following (cf. McWhirter, Thonemann, and Wilson 1975 and Athay 1976, p. 278). Equation (3.12) then becomes 

FC\T) ~ fR{T) - ÍÁT) - (3.15) 

Finally, we obtain the variation of temperature with distance along the flux tube by using equations (3.7) and 
(3.15): 

s(T) - s(tq) = ÍT ¿rr5/2[/Ä(r) - /„(rr1'2. (3.16) 
JT0 

Both fR(T) and fH(T) are monotonically increasing functions of T, as can be seen from equations (3.13) and 
(3.14). Inspection of equation (3.15) shows further that for any physically meaningful solution,/ß > fH everywhere. 
Equality is obtained when the total energy deposition within the loop balances the total radiative losses, so that the 
conductive flux vanishes and the temperature maximum is obtained ; this condition also maximizes s(T) — s(T¿)- 
The conductive flux thus approximately vanishes at s(T¿) and exactly vanishes at ,s(rmax). The extremum of Fc 
(in fact, the maximum) occurs when the local radiative loss equals the local energy deposition rate : 

(3.17) 

(cf. eq. [3.11]), where T = Ti is the temperature at which equality obtains. Thus, for T0 < T < Tu we have 
Er > Eh, while for Tx < T < rmax, ER < EH. 

In the following, we use the above formalism, in conjunction with observed restrictions upon the geometries of 
the loops, to test various simple models for nonradiative energy deposition in the corona. 

IV. MODEL RESULTS 

a) Loop Geometry and Thermal Stability 

Up to this point, the length of the loops, and hence their geometry, have not entered into our analysis; therefore, 
the temperature profiles as a function of height obtained from equation (3.16) will in general yield an essentially 
arbitrary position of the temperature maximum, s = That is, a coincidence of s(Tmax) with the position 
of the apex of the loop (s = ¿Wx; cf. Fig. 7a) for arbitrary values of the base pressure must be accidental in the 
absence of additional constraints. Rather simple physical considerations show, however, that when the geometry of 
hydrostatic loops is considered, the only physical solutions are those for which s(Tmax) = smax. 

Consider first the case s(Tmax) < smax, so that the temperature maximum lies below the top of the loop; the total 
radiative losses balance the total mechanical energy deposited in the interval s(T0) < s < sCT^x) (Fig. 7b). Since 
the temperature maximum coincides with the position of zero conductive flux, the plasma lying between s(Tmax) 
and the loop apex (s = smax) can rid itself of the deposited mechanical energy only via radiation; thermal conduc- 
tion to plasma lying below s(Tmax) is excluded by definition, and therefore the portion of the loop lying between 
>s(Tmax) and the top is energetically isolated from the remainder. Thus the total mechanical energy deposited above 
^ = HFmax) must balance exactly the total radiative losses above the temperature maximum to maintain equi- 
librium. This condition is thermally unstable. 

Fluctuations in the heating rate leading to an increase in the average temperature for s > s(Tmax) will decrease 
the total radiative loss rate ER in this region because dERldT < 0 for temperatures greater than 3 x 105 K for 
constant-density perturbations, and greater than 105 K for isobaric perturbations (cf. Appendix A). This runaway 
process is not stabilized by thermal conduction until the temperature within ^(r^x) < s < ^max has exceeded 
T^max ? the temperature maximum will thus move to the top of the loop. Similarly, we can show that fluctuations 
yielding a decrease in the average temperature within ^(rmax) < ^ < are unstable as well ; here the position of 
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s smQX s smax s smax 

(a) (b) (c) 
Fig. 7.—Possible loop configurations, (a) The equilibrium configuration whose temperature maximum is located at the top of 

the loop, corresponding to quiescent coronal X-ray loops, (b) A thermally unstable loop configuration, (c) A loop geometry which 
allows the temperature maximum to lie below the top of the loop and yet maintain equilibrium; this configuration may correspond 
io the formation of stable condensations of plasma in the corona. 

the temperature maximum is forced downward, and the entire loop cools and collapses back down to the lower 
chromosphere.4 

For the case s(rmax) > ^x, the temperature is still increasing at the top of the loop; that is, dTjds / 0 at 
s = smax. The physical meaning of this condition is that insufficient mechanical energy deposition has occurred to 
balance the total loop losses. Therefore, the entire loop will cool ; this again aggravates the problem since radiative 
cooling increases with decreasing temperature (see above). The matter in the loop cools, and again falls back down 
to the chromosphere. 

These arguments apply to loops seen in X-rays, for which the average coronal temperature exceeds 106 K. 
Coronal loops at sufficiently low average temperature that the above arguments fail (Taveratge < 3 x 105 K) will 
nevertheless not be in hydrostatic equilibrium for geometric configurations shown in Figures la and lb because 
the pressure scale height corresponding to these low average temperatures is too small to account for the hydro- 
static support of the cool plasma (Foukal 1976). 

However, static equilibrium can be maintained for s(Tm^ < smSiX at low average coronal temperatures if the 
cooler plasma lying above the temperature maximum is supported by forces other than the gas pressure; one 
possibility is shown in Figure 7c, which may correspond to the formation of quiescent prominences supported by 
magnetic fields within loop structures. We conjecture that such configurations may arise when the condensation 
process resulting from the above instability is sufficiently rapid that the local magnetic field deforms to provide a 
local gravitational potential well (Fig. 7c) before the matter can flow down along the loop toward the chromosphere.5 

We thus conclude that hydrostatic quasi-stationary loop structures must correspond to solutions of equation 
(3.16) with the additional constraint 

s(Tm&x) = Vax , (4.1) 

so that the temperature maximum is located at the top of the loop; these loop structures we identify with the 
quiescent loops seen in the X-ray corona. Furthermore, we find that departures from this equilibrium state (e.g., 
eq. [4.1 ]) lead to loop plasma configurations which may account for much of the dynamics of the nonflaring corona. 
Thus, transient loop brightenings seen in X-rays (Fig. 6 and Vaiana et al. 1973) can be explained by noting that 
heating fluctuations above the quiescent level—with the loop size fixed—lead to an increased loop pressure if 
equilibrium is to be maintained (cf. eq. [4.4] below); consequently, the loop emission measure rises, and the loop 
appears brighter. 

Cool coronal structures in this picture are the result of local loop heating which is insufficient—in a time- 
averaged sense—to maintain the loop atmosphere in a dynamically stable state at high coronal temperatures; 
we conjecture that these loops are dominated by heating fluctuations which yield successive cycles of plasma rapidly 
filling loops (the relevant time scale here determined by the rate of onset of heating) and consequently cooling 
and collapsing back down to the footpoints. This suggestion may explain the presence of cool coronal loops seen 
in EUV emission lines (Foukal 1976) and the recently reported persistent downflows observed at levels correspond- 
ing to loop footpoints (cf. Bruner et al. 1976). Furthermore, as noted above, such heating supply fluctuations may 
lead to prominence formation if the time scale for condensation falls below that defined by the downflow. 

4 These instabilities are related to those discussed, for example, by Field (1965), with the crucial additional constraint of a 
perfectly insulating boundary [e.g., conductive flux vanishes at 5 = s(TmSiX)]. 

5 This geometric configuration, but not the formation mechanism, is similar to that proposed by PikehTer (1971). 
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b) Energy Deposition Scale Length and Loop Stability 

The previous argument can be extended to the spatial dependence of the coronal heating function. We restrict 
our discussion to inferences which can be drawn directly from the present model; further comparisons with specific 
heating models (as discussed in Appendix B) are drawn in § lYd below. 

Consider the extreme case pictured in Figure 8a: all heating occurs in a thin layer located at s = su close to 
the base of the loop; thermal conduction therefore must provide the means by which energy is redistributed within 
the loop interior. Outside the heated region the energy equation has the simple form 

div Fc = Eb = 4^2 P(T) . (4.2) 

Consider the solution T = T(s) for s > ¿i; from equation (4.2) we obtain dT/ds < 0, and hence T(s) < Tis^) for 
s > s±. This contradicts our previous conclusion that the temperature maximum is located at the top of the loop, a 
result based upon thermal stability considerations. The proposed heating function can be excluded on the basis of a 
mechanical stability analysis as well. As p is assumed to be constant, the density n = n{s) must be an increasing 
function of height for s > This configuration is well known to be subject to the Rayleigh-Taylor instability 
(Landau and Lifshitz 1959), and hence cannot be stable. A less extreme heating function as shown in Figure 8è 
can be dealt with in precisely the same manner. 

The above mechanical stability argument is somewhat relaxed if one allows the pressure to vary within the loop 
[e.g., = pC?)]. In hydrostatic equilibrium both the pressure scale height Xp [=p¡{dplds)\ and the density scale height 
An [=nl{dn¡ds)] must be negative; the latter requirement ensures suppression of the Rayleigh-Taylor instability. 
As An = ApAr/(Ar — Ap) with Ar [=TI{dT¡ds)] the temperature scale height, stability imposes the condition that 
either Ar > 0 (obtained if rmax is located at the top of the loop), or that |Ar| > | Ap| in the case at hand. The latter 
condition is satisfied if the upward conductive flux does not exceed ~2 x 105jT6

5/2 ergs s-1 cm-2; this modest 
requirement can be satisfied under typical coronal conditions (TQ ~ 2-3). However, the radiative stability argument 
remains in force, as it does not depend upon the assumption of constant pressure; the heating functions depicted 
in Figures 8a and 8è are therefore still excluded, even for loops comparable in size with the pressure scale height. 

The remaining possibilities which are allowed are shown in Figures 8c and %d. We caution that these sketches 
are meant only to suggest the general—not the detailed—spatial dependence of the heating function; thus, an 
exponentially varying heating function Eh ~ E0 exp ( — s/sm) will be acceptable if the damping scale length sM is 
not small when compared with the loop length (^ax — ^0)- The crucial point is that significant heating must extend 
to the top of the loop and therefore that coronal heating models with short (in the sense above) deposition scale 
heights can be excluded; observational evidence supporting this conclusion has been discussed previously by 
Neupert, Nakagawa, and Rust (1975). 

c) The Maximum Loop Temperature as a Function of the Loop Pressure and Loop Size 

The simplest model one can construct using the formalism developed in § III is based upon the assumption that 
the heating function is a constant (in space), independent of the local values of p and T. Using equations (3.8), 
(3.13'), (3.16), and (4.1) together, we can eliminate to obtain 

Tmax(s = ¿max) x 1.4 x 103(/?L)1/3 . (4.3) 

( c ) (d) 

.y///////////////////./////.¿) ». 
sO smax 

! \w///nnnnm\ » 

$0 sl ^max 
Fig. 8.—Four idealized functional forms for the spatial dependence of the coronal loop heating function, (a) Energy deposition 

in a thin layer As at s = Si, s0 < si < .?max with Ajmax « ^ax — s0. (b) Deposition only near the loop footpoint. (c) Uniform 
deposition along the entire length of the loop, (d) Uniform deposition, starting above s = sl9 s0 < Sx < sm&x. 
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Fig. 9.—(a) Plasma temperature and pressure for a variety of coronal structures, ranging from large-scale loop structures 
[crosses'. Maxson and Vaiana 1977) to bright points (open square'. L. Golub, private communication), active region loops (filled 
circles: Landini et al. 1975; Pye et al. 1977; R. Chase, private communication), and large, prominence-related flare loops (open 
triangles: Pallavicini ei al. 1977). Also indicated is the theoretically predicted variation of the plasma temperature with loop 
pressure, with loop sizeL as a parameter (eq. [4.3]). (b) Comparison of predicted loop size (via eq. [4.3] and the temperatures and 
pressures from Fig. 9a) with observed loop size. Note that virtually all points fall within a factor of 2 of their predicted loop size. 
Not shown are the results for compact flaring structures; for these, ¿calculated >:> ¿observed* This is to be expected, since such structures 
have unusually large emission measures for their size. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
78

A
pJ

. 
. .

22
0 

. .
64

3R
 

DYNAMICS OF QUIESCENT SOLAR CORONA 659 

where L is the loop length Omax — ¿o)- We have plotted rmax(^), with L as a parameter, in Figure 9a, as well as 
typical values of (p, T) for a variety of coronal X-ray structures, ranging from flaring loops (Pallavicini, Serio, and 
Yaiana 1977) to large-scale structure loops (Maxson and Vaiana 1977). The observations are directly compared 
with theory in Figure 9b, in which we plot the observed loop length versus the calculated loop length obtained 
by using the values of (p, T) shown in Figure 9a in equation (4.3). The observed sizes all fall within a factor of 2 
of the predicted scale lengths. We note that our model contains no free parameters, and hence is not adjusted to 
fit the data. The significance of our result is therefore that, to the accuracy quoted above, both the absolute values 
and the trend of loop sizes can be predicted on the basis of a hydrostatic, closed-loop atmosphere without the 
necessity of model parameter fitting. The next step, for a more sophisticated modeling ot the corona, will require 
additional constraints, as for example provided by EUY data used in conjunction with X-ray observations; see 
Appendix C. 

In the case of the extremes of coronal structuring (e.g., flare loops and large-scale structures), the agreement is 
somewhat surprising, since the assumptions upon which the model is based (e.g., p = constant, t? = 0) are generally 
thought to be invalid in these cases. Indeed, compact flare loops are not accounted for by our model; only the 
large loop flares associated with prominence activation appear to be sufficiently close to hydrostatic equilibrium. 
Furthermore, in the case of large-scale structure loops, the observed loop length is that of the largest, unambiguously 
closed loop structures; these are still sufficiently compact to expect our model to be applicable. Larger loop 
structures, such as those for which only footpoints can be observed in X-ray images, or ones associated with helmet 
structures seen in white light coronagrams, are not fitted by this model. 

Nevertheless, coronal loop structures appear to obey a simple rule over virtually their entire range: that the 
structure size determines the locus of allowed temperatures and pressures, while the heating function fixes the 
loop’s position along that locus. Furthermore, the correlation between the observed and calculated loop lengths 
(Fig. 9b) is consistent with our initial hypothesis that coronal loops seen in X-rays are not far from hydrostatic 
equilibrium. 

d) Dependence of Heating Function upon Loop Parameters 

For the moment we consider the simple heating model just discussed. By using equations (3.15), (4.3), and the 
fact that the conductive flux vanishes at the temperature maximum, we can eliminate rmax in order to obtain EH 
as a function of the parameters defining the loop; thus 

Eh X 9.8 x 10V7/6L-5/6 . (4.4) 

In very general terms the dependence is as expected: the pressure, which controls the radiative loss rate, is 
positively correlated with the heating rate; furthermore, this simple model shows the desired trend of decreased 
energy deposition with increased loop size (see discussions in § II). On a somewhat more detailed level, we may 
compare equation (4.4) with the results of Appendix B, in which we have calculated the expected parametric 
dependence of the heating functions for a variety of heating models. 

We first note that coronal heating theories which predict a dependence of EH upon the local temperature cannot 
be directly considered because our loop models assume EH to be spatially uniform. Thus only Alfvén mode 
dissipation and current heating, as formulated in Appendix B, can be directly tested against the predictions of 
equation (4.4). In both of these cases the agreement between equation (4.4) and the expressions derived in Appendix 
B is good, with Alfvén wave damping at some advantage because the heating function’s inverse dependence upon 
loop size is built into the model at the onset. 

However, the arguments adduced in § IY6 above concerning the spatial dependence of the energy deposition 
remain in force and can be applied to the remaining heating functions. In particular, we have argued that heating 
functions whose deposition scale height was small when compared with the loop scale size are not consistent with 
high coronal temperatures at the top of loops. In this connection we note that both acoustic mode shock heating 
and anomalously damped Alfvén mode heating have a strong inverse temperature dependence (cf. Appendix B), 
which leads to a rapid decrease of the rate of local energy deposition with height in the transition zone. These 
heating modes therefore cannot be reconciled with the observed coronal loop structures. 

Yiscous damping of acoustic modes has as yet not been considered. As a direct heating mechanism, this model 
can be ruled out both because acoustic modes are thought to shock before entering the corona (cf. Stein and 
Leibacher 1974) and because the associated damping scale length is much smaller than typical loop sizes (see below). 
However, the Alfvén dissipation mechanism discussed by Wentzel (1974), which appears to meet the criteria set 
by our simple model, involves the conversion within loops of Alfvén modes to acoustic modes; the latter modes 
must damp rapidly in order for the heat to be deposited within the loops. Thus viscous acoustic mode damping 
is viable if it is viewed as a secondary heating effect, and if the dissipation length is sufficiently small. From equation 
(B.2a) we find that 

A(viscous damping) ä 1.2 x 108 cm (4.5) 
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for £ 0.1 dyn cm-2 and T x 2.5 x 106 K; this distance is small when compared with typical active region loop 
dimensions and therefore argues for this mechanism.6 

V. SUMMARY AND DISCUSSION 

We have developed an analytic model for coronae based upon the hypothesis that looplike structures are the 
basic coronal building block, a point of view strongly supported by the available data for the solar corona. 
Starting with the assumption that quiescent loop structures seen in X-rays are in hydrostatic equilibrium, we 
demonstrate that such loops must have their temperature maximum located near their apex, and that significant 
nonradiative energy deposition must occur along most of their length. The calculations yield a unique relation 
between the loop temperature, pressure, and size (eq. [4.3]) which fits the X-ray observations of quiescent structures 
well, and is consistent with the initial assumption of hydrostatic equilibrium for such structures. 

Our results therefore suggest that the coronal loops visible in X-rays represent a relatively stationary equilibrium 
of the confined plasma, and that fluctuations in, for example, the local heating rate can lead to dynamically 
unstable states in which the loop plasma does not attain temperatures sufficient for significant X-ray emission. 
These unstable states may correspond to the relatively cool coronal loops seen in EUV emission lines (Foukal 
1976); the decay of unstable hot, X-ray emitting loops to a cool, EUV emitting state then may explain the presence 
of reported downflows at atmospheric levels corresponding to loop footpoints (cf. Bruner et al. 1976). From this 
perspective, the formation of quiescent prominences within loop structures obtains if the time scale for local con- 
densation dominates that defined by the downflow of plasma (§ YVb). Correspondingly, transient X-ray loop 
brightenings may result from the response of the equilibrium loop atmosphere to a transient excess of coronal 
heating. Furthermore, a parametrization of various proposed coronal heating theories is developed within the con- 
text of the model; it shows that only magnetic-field-related heating theories, such as Alfvén-mode dissipation and 
localized coronal current heating, are consistent with the observations. 

The ability of as simple a theory as developed here to account for the gross features of the inhomogeneous solar 
corona calls into question theories of stellar coronae based upon homogeneous (plane-parallel or spherically 
symmetric) modeling. The solar X-ray corona exhibits structures associated with a wide dynamic range of plasma 
densities and length scales. If one makes the reasonable presumption that stellar coronae other than the Sun’s are 
similarly structured, then spatially unresolved observations of such coronae represent a statistical smoothing of 
widely disparate plasma structures, and direct modeling of such averaged data is not likely to be representative 
of the actual physical conditions. 

As an alternative, we suggest that models for discrete coronal structures, such as presented here, can be used to 
generate a statistical description of a stellar corona. Our model relates the size of a coronal structure to its tempera- 
ture and density; it may therefore be possible to construct a model corona which consists of a variety of various- 
sized structures, the precise mix to be determined by the radiative properties of the corona viewed in its entirety. 
The Sun can be used as a calibration standard because spatially resolved observations are available both to test 
the model chosen for individual loop structures, and to assemble the proper choice of variously sized loop struc- 
tures with the total radiative properties characteristic of the solar corona. The later modeling can be done during 
the course of the solar cycle, thus providing a measure for the appropriate statistical mix of structures over the 
entire dynamic range of solar coronal emission. The results of such a theory, when applied to other stars, may 
assist in revealing the physical condition in stellar coronae other than the Sun’s; the present effort represents a 
first step in this direction. 

We wish to extend our thanks to C. Maxson for substantial help with the data analysis; to R. Chase for pro- 
viding unpublished data; to J. Raymond for advice regarding coronal radiative losses; to P. Foukal for comments 
regarding coronal structure, particularly as seen in the EUV ; and to L. Golub and an anonymous referee for aid 
in clarifying our discussions. 

This work was supported by NASA contract NAS8-31374 at the Harvard College Observatory and by the 
Langley-Abbot Program of the Smithsonian Institution. 

APPENDIX A 

CORONAL RADIATIVE LOSSES 

The time-independent radiative loss function7 P(T) for an optically thin plasma has been calculated by a number 
of independent workers (Pottasch 1965; Cox and Tucker 1969; Tucker and Koren 1971 ; McWhirter et al. 1975; 
Raymond 1978). Comparison of these calculations shows that there are a number of significant discrepancies, 
particularly at chromospheric (~2 x 104 K) and transition zone temperatures (see Fig. 10). The differences arise 

6 We must caution, however, that this size scale is not small when compared with compact coronal features such as bright 
points. The heating of compact coronal structures by Alfvén modes is, therefore, open to some doubt. 

7 The quantity nen(H)P(T) is the power radiated per unit volume. 
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Fig. 10.—Comparison of various radiative loss functions. Shown are the results of Pottasch (1965) [ ], McWhirter et al. (1975) 
[ ], Raymond (1978) [ ], and our analytic fit to Raymond’s curve [• , eq. (A.l)]. 

from three independent concerns: (1) the nature (accuracy) of the atomic physics calculations; (2) the accuracy of 
the atomic physics parameters (e.g., cross sections) ; (3) the values of the relative elemental abundances used in 
the calculations. Whereas there have been substantial advances in the first two areas, the problem of accurately 
determining relative abundances in the solar corona is still controversial; we refer the reader to Davis et al. (1975) 
and the recent review by Withbroe (1976) for details. 

As a consequence of the uncertainties attendant upon the detailed calculation of P(J), it is reasonable to 
approximate the radiative loss function by an analytic expression as long as (a) the approximation lies within the 
estimated error bounds of the best detailed calculations, and (b) no crucial results depend upon the detailed 
functional form of the approximation. The latter injunction is particularly important because the goodness of fit 
on a log-log plot, as in Figure 10, is quite deceptive; thus, quantities such as dP(T)/dT, which are of importance 
in thermal instability analysis, are very sensitive to the detailed fit. With these cautions in mind we have generated 
an analytical fit to P(T), using a detailed calculation provided by Raymond (1978) for solar abundances; the 
approximation is shown in Figure 10 and is given by the expression 

P(T) IQ-21.85 

IQ-31 J2 

lO“21-2 

lQ-10.4y-2 

IQ —21.94 

(104-3 <T< 104-6 K) 

(104-6 <T< 104-9 K) 

(104-9 < T < 105-4 K) 

(105-4 < T < 105-75 K) 

(103.75 <T K 1Q6.3 K) 

10-17.73^-2/3 (1Q6.3 < T < 1Q7 K) . (Al) 

In addition we require the auxiliary function/B(r) (cf. eqs. [3.12] and [3.13]); using equation (Al), we obtain 

* Tq 
drrll2P(r) JQ-21.97J’1.5 _ JQ — 15.52 

1Q-31.54JÏ3.5 _ JQ —15.74 

20 — 21.38^1.5 _ JQ-14.28 

20-12.68 _ 20-10.ly^-O.S 

20-22.12J7!.5 20-13 17 

20 — 17.65^5/6 __ 20“ 12.94 

(104-3 < T< 104 6 K) 

(104-6 <T< 104-9 K) 

(104-9 <T< 105-4 K) 

(105-4 <T< 105-75 K) 

(105-75 < T< 106-3 K) 

(106-3 < T < 107 K) (A2) 
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where 

UT) = ÿ Jj drr^p(T'). 

The latter integral is well fitted over the interval 2 x 104 K < T < 107 K by 

Ç dTTll2P(T) ä 10“29 O4T3 (T < 10511) 
Jtq 

^ 10-18.81T (^>105.H). (A3) 

APPENDIX B 

CORONAL HEATING MODELS 

We consider three different models for the deposition of mechanical energy in the corona; these are heating via 
(1) dissipation of acoustic modes; (2) Alfvén wave damping; (3) direct dissipation of coronal currents. These three 
models are distinguished by the consequent functional dependence of the heating rate EH upon the loop pressure p9 
the loop temperature T, and possibly the loop geometry; our discussion is meant only to elicit these general para- 
metric functional relations, and is therefore not intended as a study of the detailed physics of the deposition 
mechanisms. Previous, more detailed treatments can be found in Stein and Leibacher (1974) and Wentzel (1974), 
and related discussions by Jordan (1976) and McWhirter and Wilson (1976). 

a) Wave Dissipation 

The rate of energy deposition by a wave mode depends upon the magnitude of the energy flux F and the damping 
scale length À; thus EH is given by 

Eh = — div F ^ A_1jpergs s“1 cm“ (Bl) 

The relevant damping scale length depends critically upon the dominant dissipation mechanism; thus we have 
A. Acoustic modes8 : 

1. Viscous damping (Lamb 1909; Zel’dovich and Raizer 1968): 

2. Shock-wave dissipation: 

A ä 7.53 x \021pT~2 cm . 

A ä 1.43 x 106r1/2 cm. 

(B2a) 

(B2b) 

B. Alfvén modes: 
1. Conduction damping (Jackson 1962; Braginskii 1965): 

20 
A (classical resistivity) æ 1.16 x 10“4/?3/2r3^3r2cm . (B3a) 

For demonstrative purposes only we calculate the dissipation length for Alfvén modes entering a region 
subject to strong Langmuir turbulence: 

A (anomalous resistivity) ä 3.23 x lO3/?“1^3^ cm . (B3b) 

2. Viscous damping (Braginskii 1965): 

20 
A ä 2.1 x 10-6z7-5/2r355r cm . (B3c) 

^ In A 

In the weak-field limit (e.g., a>giTci < 1, (Dgi the ion gyrofrequency and rci the ion self-collision time), this 
result is modified to read 

A £ 3.3 x 1015p~1I2T~2B3t2 . (B3d) 

8 We have set the wave period r = 300 s. 
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3. Mode conversion via field curvature (Wentzel 1974): 

\ x R cm , (B3e) 

where R is the loop radius of curvature. 
Direct computation immediately shows that the Alfvén mode damping lengths for classical conduction and 

viscous damping are much larger than typical scale lengths of inner coronal structures, and therefore these processes 
can be eliminated from further consideration. 

In the present simplified parametrization we assume that the incident flux Fis proportional to the base pressure, 
and hence that the total energy input at the base of the loops is the same for all models; this can be justified by 
arguing that the total thermal energy content of a loop (which is proportional to the base pressure) is itself pro- 
portional to the total energy input at the base. In order to eliminate the magnetic field from the above equations, 
we introduce the further assumptions that 

B2 oc p; B oc R~3 , (B4) 

where F is a loop scale length (possibly the loop radius of curvature). Using equation (Bl) together with the 
dissipation lengths quoted above, we find the functional dependence of the heating rate upon the loop parameters 
for the various heating models : 

a) Acoustic mode/viscous damping: 

EhocT2. (B5) 

b) Acoustic mode/shock wave damping: 

Eh oc pT~112 . (B6) 

c) Alfvén mode/anomalous conduction damping: 

Eh oc p112!'1 . (B7) 

d) Alfvén mode/mode conversion: 

Eh oc p716 oc pR'1. (B8) 

b) Coronal Current Dissipation 

An alternative method of heating the quiescent corona is by means of the anomalous dissipation of almost 
force-free currents induced in the corona; this possibility has been suggested by Tucker (1973) and investigated in 
detail by Rosner et al. (1978). In the present context, current dissipation is distinguished from the previous wave 
mode heating models primarily by the fact that the heating rate is relatively independent of the local plasma 
parameters once onset of anomalous dissipation is attained. Thus, there is no local heating parameter analogous to 
the wave damping scale length A; instead, local heating is totally determined by the current generation rate, the 
latter dependent upon the rate at which turbulent fluid stresses are communicated to the magnetic field at the 
photospheric level. If we assume with Tucker (1973) that the rate at which the fields are stressed is proportional 
to the level of fluid turbulence and further assume that the base pressure is proportional to the level of fluid 
turbulence as well, we find that the local coronal heating rate is also simply proportional to the base pressure: 

EHccp. (B9) 

We refer the reader to the previously cited two references for the details of the current heating mechanism. 

APPENDIX C 

VARIATION OF TEMPERATURE ALONG A LOOP 

The formalism developed in § III can also be used to generate very detailed loop models including temperature 
and density profiles which can be compared with observations. Our present objective is to obtain these theoretical 
results; detailed modeling is not attempted here. As an example, we compute the structure of a coronal loop; using 
equations (3.13), (3.14), and (3.16), and assuming both the pressure and heating rate to be uniform along the loop, 
we obtain the analytic solution 

s(T) = s(T0) + 2.5 x lO^-^.ó x 10-16Fm
3[arcsin(F/Fm) - (T/Tm)(l - (F/rm)2)1/2] + 1}, (Cl) 
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c/> ~a 

Fig. 11.—Loop atmospheres generated from the analytic model, (a) Temperature versus distance along loop for a variety of 
loop pressures (p) and loop sizes; (b) differential emission measure for loop atmospheres of Fig. 12a; these can be used directly to 
predict the expected EUV and X-ray intensities from these loops (cf. Rosner and Vaiana 1977). 

where Tm is the maximum loop temperature given by equation (4.3). The inversion T = T(s) cannot be obtained 
analytically but is easily calculated numerically; the advantage of using equation (Cl) rather than direct numerical 
integration of the energy equation (3.4) is that it avoids problems related to large temperature gradients (e.g., the 
transition zone). Several loop temperature profiles for a variety of base pressure and loop sizes are shown in 
Figure 11a. 

Analogously, one can analytically solve for the local conductive flux FC(T) and calculate the differential emission 
measure 

DEM(T) s Ne
2{dTjds)~1 = • (C2) 

Thus, using equations (3.13'), (3.14), and (3.15), we obtain 

f F 10-10*23T2 T < 105JL11 V/2 

FC(T) * -2 X 106/<7?r1/2||^ x ’ T> 105>11J - (r/rm)5/2(l - (r0/7r2)j ; (C3) 

and, combining equations (C.2) and (C.3), 

fTlO“10*23T2 T < 105111 V1'2 

dem(t) = 6.3 X I02v|[ J ^ ¡^.uj - (77rm)5'2(i - (r0/r)
7/2| . (C4) 

The differential emission measure is quite useful for comparison between the models and observations because 
it can be used to directly compute the expected EUV line and X-ray broad-band and line emission from a given 
loop; a suitable procedure for choosing model parameters developed in the context of coronal hole modeling is 
discussed by Rosner and Vaiana (1977). The differential emission measures corresponding to the model loops 
shown in Figure 11a are displayed in Figure Mb. 
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