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Summary. When a rotating black hole is threaded by magnetic field lines 
supported by external currents flowing in an equatorial disc, an electric 
potential difference will be induced. If the field strength is large enough, the 
vacuum is unstable to a cascade production of electron—positron pairs and a 
surrounding force-free magnetosphere will be established. Under these cir- 
cumstances it is demonstrated that energy and angular momentum will be 
extracted electromagnetically. As a further consequence it is shown that 
charge can never contribute significantly to the geometry of a rotating hole. 
The fundamental equations describing a stationary axisymmetric magneto- 
sphere are derived and the details of the energy and angular momentum 
balance are discussed. A perturbation technique is developed which can be 
used to provide approximate solutions for slowly rotating holes. Solutions 
appropriate when the field lines threading the hole lie on conical and para- 
boloidal surfaces at large distances are described to illustrate this mechanism. 

These ideas are incorporated into a discussion of a model of active galactic 
nuclei containing a massive black hole surrounded by a magnetized accretion 
disc. In this model relativistic electrons can be accelerated at large distances 
from the hole and therefore will not incur serious losses, which is a defect 
of some existing models. In addition, if the field lines have paraboloidal 
shape, the energy will be beamed along antiparallel directions as observa- 
tions of both compact and extended radio sources seem to require. 

1 Introduction 

One of the central problems of extragalactic astronomy concerns the nature of the ‘prime 
mover’ that is powering active galactic nuclei (including quasars). In discussions of this 
question, two analogies have been drawn with the Crab Nebula, which is clearly powered by 
a central pulsar — a spinning magnetized neutron star that is steadily liberating its rotational 
energy through relativistic particle and electromagnetic energy fluxes. Firstly it has been 
proposed that such a nucleus might contain a cluster of 106"8 pulsars, the currently active 
ones forming several overlapping Crab Nebulae (e.g. Rees 1971). Alternatively, the central 
energy source might be a single magnetized star of mass 106_8Afo that acts like a giant 
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pulsar (e.g. Morrison 1969). However, both of these models pose difficulties. On the one 
hand, there is the problem of the fate of stars of mass greater than the limiting neutron star 
mass (~2A/q) and on the other it is doubtful whether a massive object can live sufficiently 
long to account for an object like 3C236 (Fomalont & Miley 1975). Thus we must take 
seriously the possibility of one or more black holes, forming in the nucleus as a result of 
gravitational collapse — the seemingly inevitable evolutionary end-point for large masses. 

It is therefore of interest to ask whether or not a spinning black hole can also liberate 
its rotational energy as a result of electromagnetic processes like those in a pulsar. 

Christodolou (1970) has shown that for a rotating hole described by the Kerr metric, 
a portion of the rest mass can be regarded as ‘reducible’ in the sense that it can be removed 
and extracted to infinity. The remaining ‘irreducible’ mass, which is proportional to the 
area of the event horizon, can be interpreted thermodynamically as the entropy of the hole 
(Bardeen, Carter & Hawking 1973; Hawking 1976). We are primarily interested in holes of 
mass ^ \Mq and in thermodynamic terms such holes are extremely cold bodies. Hawking’s 

(1974) quantum mechanical spontaneous emission is negligible and the irreducible mass of 
such holes lives up to its name and never decreases. The possibility of extracting the 
reducible mass was first realized by Penrose (1969) who showed that the existence of 
negative energy orbits within the ergosphere surrounding a Kerr black hole (e.g. Misner, 
Thorne & Wheeler 1973) permits the mechanical extraction of energy via certain types of 
particle collision. Teukolsky & Press (1974) have investigated a similar process called super- 
radiant scattering which in its electromagnetic form has ingoing spherical vacuum waves 
being amplified and spinning down the hole. Unfortunately neither process seems likely to 
operate effectively in any astrophysical situation. 

Material accreted by a black hole within a galactic nucleus will probably be magnetized 
and possess sufficient angular momentum to form a disc, as first proposed by Lynden-Bell 

(1969). The magnetic flux will be frozen into the accreting material and so the field close 

to the horizon can become quite large — much larger than the field at infinity. In this paper 

we consider the behaviour of a rotating black hole in the presence of a strong magnetic 

field supported by external currents flowing in an equatorial disc. It is usually assumed that 

the disc is Keplerian. However, this need not be the case. It is possible that a magnetic 
accretion disc could be supported by the field rather than by centrifugal forces (Bisnovatyi- 
Kogan & Ruzmaikin 1976). This could extend much closer to the event horizon than a 
centrifugally supported disc (Znajek 1976) and there is no fundamental relativistic 
objection to approaching 100 per cent efficiency in converting accreting mass into energy 
at infinity. 

General stationary axisymmetric vacuum electromagnetic fields around a Kerr hole have 
been discussed by Petterson (1975) and King, Lasota & Kundt (1975). Wald (1974) argued 
that when a rotating hole was situated in an externally supported field in vacuo, an electric 
field is ‘induced’ and the lowest energy state has a finite charge on the hole. There is 
of course no radiation of energy from this configuration. However, the electric field gener- 
ally has a non-zero component parallel to the magnetic field. In Section 2 we show that if 
the magnetic field and angular momentum are large enough, the vacuum surrounding the 
hole is unstable because any stray charged particles will be electrostatically accelerated and 
will radiate, and this radiation will in turn produce further charged particles in the form of 
electron—positron pairs. When charges are produced so freely, the electromagnetic field in 
the vicinity of the horizon will become approximately force-free. (We emphasize that this is 
a purely electromagnetic effect and is quite distinct from Hawking’s spontaneous emission.) 

The corresponding situation with a spherical conductor rotating in flat space and 
endowed with an axisymmetric magnetic field was investigated by Goldreich & Julian (1969) 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

7M
N

RA
S.

17
9.
 .

43
3B

 

Extraction of energy from Kerr black holes 435 

who argued that just such a stationary force-free magnetosphere would be established with 
space charges supporting a poloidal electric field and currents creating additional poloidal 
and toroidal magnetic fields. Energy and angular momentum are transported outwards 
electromagnetically. In their treatment, and in many subsequent papers dealing with pulsar 
magnetospheres, the sole function of the plasma is to support the electromagnetic fields. 
The plasma has no mechanical role. The limitations of this assumption for models of pulsar 
magnetospheres are discussed in Mestel, Wright & Westfold (1976). As these force-free 
solutions contain sources all the way out to infinity they do not correspond to the familiar 
multipole solutions of the vacuum Maxwell equations and in particular do not require an 
çimcp var¿ation [n azimuth in order to transport angular momentum. In Blandford (1976), 

similar magnetospheric effects occur above and below a Keplerian disc surrounding a 
compact object are investigated. It is shown that if energy and angular momentum are 
extracted solely electromagnetically, then stationarity requires that the field strength vary 
inversely with radius. In this way it is possible to remove the gravitational energy of infalling 
material without thermal dissipation in the disc and also to collimate this energy parallel 
to the rotation axis (cf Lovelace 1976). 

In Section 3 of this paper we derive the equations governing stationary axisymmetric 
force-free electromagnetic fields in Kerr space-time. In Section 4 it is shown that energy 
and angular momentum from a rotating hole can indeed be extracted by a mechanism 
directly analogous to that of Goldreich & Julian (1969). This process is rather similar to that 
of Penrose (1969) if we think of it in terms of particles inside the event horizon interacting 
with particles a long way away from the hole through the agency of the magnetic field. 
A related mechanism for extracting rotational energy has been discussed by Ruffini & Wilson 
(1975). They describe a magnetohydrodynamic flow in which the field is too weak to 
prevent the fluid from flowing along geodesics, but in which there is an outwardly directed 
Poynting flux. However, this solution is unlikely to be of direct practical application as the 
overall efficiency of energy extraction is extremely low and in any case one would expect 
that the accretion would be able to amplify the field until it became dynamically significant. 
In Section 5 we describe a perturbation technique that can be used to calculate approximate 
solutions under certain circumstances. Two such solutions are derived in Sections 6 and 7. 
Finally in Section 8 we outline the application of these ideas to a model of active galactic 
nuclei. 

2 Pair production discharge mechanism 

Before we discuss the electromagnetic properties of force-free magnetospheres in the vicinity 
of black holes, we must first tackle an important problem: there must be some source of 

particles within the near magnetosphere. The currents that pervade the magnetosphere as 
sources of the magnetic field are presumably carried by charged particles that are flowing 
outwards at large distances. (It is in principle possible to supply inflowing particles if the 
field lines crossing the horizon also intersect the disc but if, as discussed further in 
Section 8, particle inertia eventually becomes important and an electromagnetically driven 
wind is produced, positive outflow at large radii seems unavoidable.) We also know that 
the particle flux must be directed inwards through the event horizon, and so it cannot 
be conserved. 

Fortunately, this is a situation that is familiar from studies of pulsars. The positive ion 
work function on the surface of a neutron star may be so large that only electrons can 
escape. For those open field lines on which positive charges have to stream outwards, a 
mechanism has been postulated which allows the vacuum to break down as a result of the 
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creation of sufficient electron—positron pairs. This has been analysed in some detail by 
Ruderman & Sutherland (1975). The salient features are that a spark gap will develop 
containing a parallel electric field. A single electron (or positron) accelerated by this 
potential difference will reach a high enough energy to radiate gamma-ray photons by the 
curvature process. These photons, emitted initially tangentially to the field can, after 
traversing most of the gap, encounter a significant perpendicular component of the curving 
magnetic field and create an electron—positron pair which will in turn be accelerated 
leading to a cascade. The gap width presumably adjusts so that the ‘gain’ is slightly greater 
than unity and sufficient charged particles of both signs are created to supply the currents. 

In the case of a pulsar, the natural location of such a gap is on the neutron star surface. 
However, for a black hole we only require that it be located outside the event horizon. 
In fact there is no reason to believe that its position is stationary. Provided that the potential 
difference necessary to produce breakdown is much less than the total across the open field 
lines, an electromagnetic force-free solution should provide a reasonable approximation to 
the time-averaged structure of such a magnetosphere. Pair creation is of course consistent 
with charge conservation. The macroscopic Maxwell equations do not involve details of the 
charge transport which are presumably determined by the equations of motion involving 
inertial terms and the small residual electric field components parallel to the magnetic field. 
In fact any electromagnetically required values of current,), and charge, p, can be created 
without restriction on the direction of motion of either of the charge carriers. Hence j/p can 
be outwardly directed at the event horizon with both electrons and positrons falling inwards. 

We now estimate the field strengths necessary for this mechanism to operate effectively 
near the event horizon of a rotating Kerr hole. As usual, the mass, M, and specific angular 
momentum, a, of the hole are measured in units of c2/C and c respectively so that they both 
have dimensions of length. Then M and ac/M2 respectively provide a length scale and a 
characteristic angular frequency for the hole. For a field of strength B, the charge density 
necessary to ensure that E .B = 0 is 

a 
p ' e° 77acB- M 

(2.1) 

In the absence of this charge, the potential difference across a gap of height h is 

AV-^-cBh 
M2 

2 (2.2) 

giving electron or positron energies ymec2, where 

with ccG the electron gyro frequency. We expect that the field lines will have curvature 
-M~l and so the peak energy of the radiated photons will be 

(2.4) 

The photon mean free path to pair creation in a direction making an angle £ to the magnetic 
field is 

c 
1-600 coq sin § 

exp e > 2mec
2 (2.5) 
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(Erber 1966). The number of photons with energy ~ e radiated per electron per unit length is 

dm 

dx 47re0 c 
7 
(iiö 

7 

137Af 
(2.6) 

An approximate criterion for breakdown is that each electron produces one pair within 

the gap. Combining equations (2.3)-(2.6) we obtain 

•1/7 

(2.7) 

using sin £ h/M. The logarithm has a value ~ 10—100 for parameters of interest and for 

present purposes it is sufficient to set it as 30. Breakdown will occur as long as/z <M, i.e. for 

Ä>20 (2.8) 

where the second inequality follows from the requirements e > 2mec
2, ny>\. If this 

inequality is satisfied by a large factor, the conductivity along the field lines is effectively 

infinite. 
In deriving inequality (2.8) it has been assumed that gamma rays are only produced by 

the curvature process. In fact the radiation of transverse gyrational energy, Doppler-shifted 
by the longitudinal motion, inverse Compton scattering, and for very small holes free—free 

emission could be alternative sources of hard photons. The efficiency of these processes 
cannot be estimated so easily, but if they are important, field strengths significantly lower 
than that given by equation (2.8) may be adequate to ensure breakdown of the vacuum. 

In fact in the principal application of this mechanism to a massive black hole in a galactic 
nucleus (Section 8) inverse Compton scattering of the ambient radiation field may prevent 
the electrons from achieving sufficiently high energies, wec

2/hcoG5 f°r subsequent pair 
creation in the magnetic field. However, within this environment there is a much more 
efficient breakdown mechanism. A relativistic electron can inverse Compton scatter a 
photon from the ambient radiation field as a 7-ray which can then pair create with the 
assistance of a second background photon. If the ambient radiation energy density is e with 
characteristic frequency, co, then the vacuum will break down provided that 

(e/hco) aTAf> 1, oj>g < raec
2/h 

and 

7 ^ (mec2/hco). 

This requires that the component of electric field parallel to the magnetic field be suffici- 
ently strong to maintain an electron at this energy against radiative losses. Hence necessary 

conditions for breakdown by this method are 

(2.9) 

where we have ignored contributions to the radiation energy density from frequencies below 
the maximum for which these inequalities are satisfied. 
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In a general Kerr—Newman black hole (e.g. Misner et al. 1973) both spin and charge 

contribute significantly to the geometry. As a corollary to the above discussion, we now 
show that such objects are unlikely to exist. For a charge, Q, in units of length, (dTreo/C)17^2, 
the magnetic and electric fields near the horizon are given by 

(-)E 

\MJ c 
5x1014(-)(-) (-) 

\m! \m! Xm^j 
T. 

From an analogous calculation we find that breakdown will occur in a Kerr—Newman 
black hole if 

If this inequality is satisfied, the hole will rapidly discharge. Condition (2.10) effectively 
rules out the possibility of a hole with gravitationally significant spin and charge. 

This breakdown mechanism may also operate for a non-rotating, charged Reissner— 
Nordstrom hole. However, a necessary condition for a cascade to develop is that each 
charged particle produces at least one sufficiently hard photon. As the acceleration in a 
radial electric field is purely linear, a more careful calculation must be performed to deter- 
mine when this requirement is satisfied. An approximate calculation leaves the question 
unresolved. 

Gibbons (1974) has analysed pair creation occurring near the horizon of a Reissner— 
Nordstrom hole and its spontaneous loss of charge. He assumes that the ‘Schwinger process’ 
operates, which is efficient whenever the electric potential difference across a Compton 
wavelength exceeds the rest mass of an electron (in eV). The present process in which the 
Compton wavelength is effectively replaced by M/y will generally set in at much lower 
electromagnetic field strengths, at least when the hole is rotating. It is for this reason that 
the upper limit (2.10) is much lower than that implied by Gibbons’ analysis. However, both 
these conditions allow the charge on the hole to exceed that value for which the electric 
force on individual charged particles is much greater than the gravitational force and so in 
the absence of any other electromagnetic effects selective accretion of charges of opposite 
sign to the hole will occur, further reducing Q. 

3 Force-free magnetosphere in Kerr spacetime 

We now derive the fundamental equations governing a force-free magnetosphere, generalizing 
the flat space treatment of, for example, Okamoto (1974). The electromagnetic field tensor 
FßV in a force-free magnetosphere satisfies 

RßvJv=0 (3.1) 

where Jv is the current 4-veetor.* This condition is expected to hold everywhere except in 
the 6 = tt/2 plane occupied by the disc. The homogeneous Maxwell equations are automatic- 
ally satisfied if we describe the field by a vector potential zlM so that 

Fu» ~ jj — Ay,, v. 

* This expression is more appropriate in the present context than the usual MHD condition (FßUUu = 0), 
because the plasma will not necessarily possess a well-defined Huid velocity, Uv. It follows directly from 
the requirement that inertial and collisional terms be insignificant for each individual particle species, 
formally similar results can be derived using MHD (e.g. Damour 1975). It can be shown that a necessary 
and sufficient condition for the individual particle speeds to be less than c is that FyVF

ßv >0.Thh is true 
tor the examples presented below in Sections 6 and 7, as a direct calculation confirms. 
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In Boyer—Lindquist coordinates the metric around a Kerr black hole is (with c = G = 1) 

A sin2 0 _ 
ds 

=(■ 

2Mr\ o 4Mzrsin20 2 ^ 
 I dt2 +— dt d(¡) - - dr2 - 2 dO2 

2 / 2 A 
d(p4 (3-2) 

where 2 = r2 + ¿z2cos20, A = r2 —2Mr + û2= (r — r+)(r —r_) and ,4 = (r2 + ¿72)2 —Atf2sin20. 

r+(= M + \JM2 — a2) is the radius of the event horizon. We assume the field and vector 
potential are stationary (d/dt = 0) and axisymmetric with the same symmetry axis as the 
hole (3/d0 = 0) and also symmetric about 0 = 7r/2. These conditions reduce the gauge 
freedom of A0 and A^ to an additive constant. 

In Boyer—Lindquist coordinates (3.1) becomes 

AOJJ
r +A0'9J9 = 0 

A0 r J° + A,P' + BqJ 

^o,0/O+^,0/
0 

Q _ 

Afh yjr + Afh a — 0 L0, r 0,0 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

where 8^ = FrQ= A0 r—Ar o is gauge invariant. From equations (3.3a) and (3.3d) we can 
define a function co (r,0) such that 

^o, , ^ 
co 

^4o, 0 
l0, r A 0,0 

Differentiating equations (3.4), 

co,0 Aÿ^Q ^lo,ö 

(3.4) 

(3.5) 

.1/2 ^ -40,0 
J~ fji 
— = - A 

g 
1/2 0, r • (3.6) 

The poloidal field surfaces can be defined by A^ = constant: A^ is a suitable stream function 
for the magnetic field (cf Scharlemann & Wagoner 1973). Equation (3.5) is the relativistic 

generalization of Ferraro’s (1937) Law of Isorotation: co and the ‘electrostatic’ potential 
A0 are constant along field lines. 

Equations (3.3a) and (3.3d) imply the equivalence of (3.3b) and (3.3c). From equation 
(3.3d) we can deduce the existence of a function q(r,0) satisfying 

r t0 

eo g' 

where 

g=~del(gaß) 

= Z2 sin2 6 

in Boyer—Lindquist coordinates. (In fact most of this section can be generalized to any 
alternative stationary, axisymmetric metric.) Equation (3.3b) becomes 

+ (3.7) 
g 

co can be interpreted as an electromagnetic angular velocity. It is not necessarily equal to 

any material angular velocity. The current conservation equation <g-~1/2(^1/2/M) M = 0 reduces 
to 

(M-4q,öXr — (m-40 r) ^ (2-8) 

which shows that q is also constant on field surfaces^ = const. 
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The inhomogeneous Maxwell equations 

-gln(glnrgvß(Aß^ - A^))^ 

can be written explicitly as 

- eogll2J° = Gr1'W7V +^1/+ (gl,WWe W%,9),9 (3.9a) 

€o gl/2Jr- BT,e (3.9b) 

e0
lgV2Je = -BT^ (3.9c) 

-6öV/V^(^/yV^,,^1VV%,A^(^1/VV%,ö +^1/W%,0),ö (3.9d) 

where = (A/S)sinÖ50 and the ga^ can be obtained from equation (3.2). Substituting 
equations (3.6) into (3.9b) and (3.9c), 

M0,0=^r,0 and BTir. 

This shows that BT is a fourth quantity that is a function of only, and that 

¡J. = dBr/dAfp. (3.10) 

Equation (3.6) shows that current does not cross the poloidal field surfaces. The outward 
current between surfaces and A^ +dA(¡) (counting both hemispheres), as measured by an 
observer at infinity, is 

dl = AneoiiiA^) dA^. (3.11) 

We do not expect a line-current to be present on the 0 = 0 axis, and so BT(Ap) = 0 where 
^40 =^4p on 0 = 0. Integrating equation (3.11) using (3.10) we find that the net current from 
the hole to the magnetosphere is 

1= AneoBjiAe) (3.12) 

where the subscript e labels the field line touching the event horizon at 0 = 7t/2. This must 
be balanced by an equal current flowing radially inwards in the disc which supports the 

discontinuity in the toroidal magnetic field across the disc. 

Suppose we know B^A^) and 00(^0) and require a function ^(r,#) that will give us a 
self-consistent solution of the force-free and Maxwell equations. Equations (3.6) and (3.10) 
ensure that (3.9b) and (3.9c) are satisfied. Equation (3.4) enables us to determínenlo using 

^o = -co(^0)^. (3.13) 

Equations (3.6), (3.7) and (3.13) imply that the force-free equations are satisfied. J° and 
are given in terms of nl0 by equations (3.9a), (3.9d) and (3.13); the only constraint they 

must satisfy is equation (3.7). Thus by substituting (3.9a), (3.9d) and (3.13) into (3.7) we 
obtain the fundamental differential equation for the potential^ 

dBjIdA^ 

gvWe 
= -CotnVVXM, - [gVW%Ar 

+Agi/Yrgo0AAr+tei/yy,%>M, 

- w[g1/2geegooA0,du\'e - [yyy^Hÿ.el.e 

+^[g'WAtAe + [yyv%,^],9 
(3.14) 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

7M
N

RA
S.

17
9.
 .

43
3B

 

Extraction of energy from Kerr black holes 441 

which for a Kerr metric can be put into the form 

!LBrrBrr sin 6 o » 
  = co2Q! +2co0 + 7 + —- (Aco - 2Mzr)(A(4f) r)

2 + q)2) co 
A sin (9 2 A 

where the prime denotes differentiation with respect to ^ and 

y = - 
Z-2Mr 

2sin0 

S -2M* 

ZAsin 6 A 

Equation (3.14) is the relativistic generalization of the flat space equation derived by 
Scharlemann & Wagoner (1973). Given oo and BT as functions of A^, any A^ satisfying 
equation (3.14) and appropriate boundary conditions can be used to construct a self- 
consistent model of a force-free black hole magnetosphere. 

At 0 = it¡2, A^ß will be discontinuous and determined by the toroidal surface current in 
the disc. As the disc is assumed to be a very good conductor there is no electric field in the 
comoving frame, and so continuity of the tangential electric field identifies coiA^) with the 
angular velocity of the disc at the point where the field line ^ crosses it. 

On the surface of the hole the relevant boundary conditions (Znajek 1977) are that ^ 
is finite and 

BT[Mr+,d)] = 
sin 0[co(r+ +tf2) - a] 

rl + a2 cos2 d 
At>,d(r+, 0)- (3.15) 

The choice of appropriate boundary conditions at infinity is somewhat more problematical. 
In the two examples presented in Sections 6 and 7 we match the fields to known flat space 
solutions at infinity. In so doing we avoid the important question of uniqueness that is as yet 
unresolved for the purely Newtonian problem. In the next section we demonstrate how 
these boundary conditions determine the electromagnetic angular velocity co on field lines 
crossing the horizon. 

4 Energy and angular momentum transport 

For any stationary axisymmetric system we can define conserved flux vectors for energy and 

angular momentum about the axis of symmetry (cf Damour 1975). Let T^v be the total 
energy-momentum tensor, and a Killing vector. Then from 

= 0 

and the Killing equation 

it follows that 

^v).=o. 

(4.1) 

(4.2) 
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For a force-free field equations (4.1) and (4.2) are satisfied by the electromagnetic part of 
the energy momentum tensor. Thus we define the conserved electromagnetic energy flux 

and angular momentum flux 

where xv a^d rf are the timelike and axial Killing vectors with Boyer-Lindquist com- 
ponents (1,0, 0,0) and (0,0,0, 1) respectively. The poloidal components of and 
are given by 

<£r = — coCqA^ ßBj'/Z sin 6, S'® = coeoA^ sin Ö (4-3) 

and 

Sr = oj&r, Sd=oj&d. (4.4) 

Equations (4.4) support the interpretation of co as the electromagnetic angular velocity, 
and with (4.3) show that energy and angular momentum flow along the poloidal field 
surfaces. The direction of energy flow cannot reverse on any given field line unless the force- 
free condition breaks down. Therefore the natural ‘radiation condition’ at infinity requires 
energy to flow outwards on all field lines, including lines that cross the event horizon. 
A physical observer rotating at constant radius close to the horizon will in general see a 
Poynting flux of energy entering the hole, but he will also see a sufficiently strong flux 
of angular momentum leaving the hole to ensure that Sr> 0. Equations (3.15) and (4.3) 
show that at the event horizon 

Sr — co(f2 j-j — gj) 
( 

4m 

r+ + a1 cos2 6 
+ *2)eo (4.5) 

where Î2H = âf/(r2 + âf2) is the angular velocity of the hole (e.g. Misner et al. 1973). Hence 
Sr>0 implies 

0<co<£2h, (4.6) 

which with equation (4.4) gives 

sr<nH¿r. (4.7) 

Inequality (4.7) could have been derived using the classical limit of the Second Law of 
Black Hole Thermodynamics: the irreducible mass of the hole cannot decrease (e.g. Misner 
et al 1973). Here it remains constant only when go = Í7H. We can define the efficiency of 
the energy extraction process to be 

e = Actual energy extracted/Maximum extractable energy (4.8) 

when unit angular momentum is removed. The numerator is go, by equation (4.4). (If go 

varies from field line to field line we can either consider e to be the efficiency of a given 

field line or integrate to obtain a mean e, as is done in Section 7.) Let J = aM be the angular 

momentum of the hole. The irreducible mass of the hole Mu is given by 

so that 

M2 = AT? + J2/4M^. (4.9) 
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Extraction of energy from Kerr black holes 443 

If the hole gains an amount dJ of angular momentum in a reversible, maximally efficient 
process, then Mu is constant and (4.9) gives 

dM = 
JdJ 

4MM?t 

dJ. 

Thus the denominator in equation (4.8) is and 

e = co/í2h* (4.10) 

e = 1 can be approached by making co increase towards Í2H, but perfect efficiency is never 
achieved because when 

co = £2h, £r = y,r = BT = Q*. 

Integrating equations (4.3) and (4.4), we find that the total rate of energy extraction 
from the hole (measured at infinity) is 

f27r /*7r [Aq 

d<¡> dd sin 0 = - 47re0 dA^BriAcp) co(^0). (4.11) 
Jo Jo j Ap 

Similarly the total rate of angular momentum extraction is 

-47re0 BT{A(¡>) dA(j). (4.12) 

Some physical insight into this process can be obtained by means of the following 
mechanical analogy. Consider a solid disc of thermally conducting material rotating with 
angular velocity > 0 and surrounded by a large annular ring of thermally insulating 
material with angular velocity co. Let there be a frictional couple exerted by the disc on the 
ring proportional to their relative velocity, C = Kifl^ — co). Then unless cu = Í2H, heat will 
be generated which will raise the internal energy of the disc. Furthermore, the frictional 
couple will increase the rotational energy of the ring at a rate Axo(F2H — ou) and decrease the 
rotational energy of the disc at a rate AT2H(£2H — ou). The surplus energy (which is of course 
positive) is the rate of heat production /f(i2H — ou)2. The efficiency of mechanical energy 
transfer to the ring — consistent with the definition (4.8) — is clearly co/f2H as long as 
0 < ou < £2h. When ou > Í2H, the disc gains energy and angular momentum at the expense 
of the ring just as the hole’s mass and angular momentum would be increased by the 
magnetic stresses if we did not impose a radiation condition at infinity. When ou < 0, both 
the ring and the disc lose rotational energy, but there is a transfer of angular momentum 
from the disc to the ring and correspondingly for the case of the hole. 

What then acts as an effective frictional force between the hole and the magnetic field? 

* It is interesting that a black hole magnetosphere possesses two light surfaces (defined to be the loci 
where the speed of a particle moving purely toroidally with angular velocity dÿ/dt = co, satisfying (4.6), 
equals c). The outer light surface corresponds to the conventional pulsar light cylinder and physical 
particles must travel radially outwards beyond it. Within the inner light surface, whose existence can be 
attributed to the dragging of inertial frames and gravitational redshift, particles must travel radially 
inwards. (The inner surface is by definition the boundary of the ergosphere when co = 0.) Both 
surfaces are given by 

A(1 -aco sin2 d)2 = MF+ß2) - a]2 sin2 0 

(Znajek 1977). The spark gaps discussed in Section 2 must therefore lie between these two surfaces. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

7M
N

RA
S.

17
9.
 .

43
3B

 

444 R. D. Bland ford and R. L. Znajek 

As we have assumed force-free conditions for r> r+ this friction must act within the event 
horizon, and so by the ‘no hair’ theorems the detailed nature of this interaction cannot 

influence any exterior observable (e.g. Hawking & Ellis 1973). Nevertheless we can demon- 
strate that if (as seems likely) the electrical circuit is complete inside the hole, then precisely 
the correct amount of energy and angular momentum transfer takes place between matter 

and the electromagnetic field inside the horizon. The actual position of the region (X) 

where the magnetospheric current meets the disc current is irrelevant. 
First there is a slight technical difficulty in that Boyer—Lindquist coordinates become 

singular at the horizon. This problem is caused by the i and 0 coordinates, and if these are 
replaced by two new coordinates, as in the Kerr metric (e.g. Misner et al 1973), we can 
continue through the horizon using the same coordinates r and 0. The previously defined 
Killing vectors xM and ?7M can also be continued through the horizon, and so we can give 
covariant definitions of, for example, 

A0(r, 6) = AßxM 

and 

A<p(r, 0) 

These scalars are identical to their Boyer—Lindquist namesakes outside the horizon and are 
well behaved inside. 

A particle of rest-mass m and charge e has a generalized 4-momentum pß = muß — eAß. 
The energy p0 and angular momentum —p^ are constants of the particle’s motion. (See 
e.g. Carter 1973.) These constants can be trivially split into mechanical and electromagnetic 
components proportional to m and e respectively. 

When the field is force-free, the particles travel on surfaces of constant^ and^. Inside 

the event horizon these surfaces must cross the equatorial plane at finite r (see Fig. 1). This 
implies that they must become spacelike and so the particles have to leave them, thus 
violating the force-free assumption and altering the electromagnetic contributions to the 
constants of motion. The mechanical contributions to those constants must undergo 
opposite changes. What is likely to happen is that the particles will be rapidly accelerated 
just before the field lines become null, with the emission of a large number of photons, but 
whatever the details, the energy and angular momentum must end up in ‘mechanical’ form 
travelling towards the singularity. We assume that at X, A0 and^0 take their axial values 
outside the event horizon, (This is done for simplicity and because it is actually true in the 
limiting case of a Schwarzschild hole when X is the singularity.) Whatever ^40 and ,40 really 
are at X, it can be shown, by inserting an extra closed circuit, that the result obtained below 
is unaltered. As the total current to X is zero, the total electromagnetic component of the 
energy and angular momentum flow is also zero. We calculate the rate of transfer of 
electromagnetic into mechanical energy within the event horizon, using as our time deriva- 
tive xM(d/dxM), which corresponds to time as measured at infinity. As the 0 = 0 axis is a line 
of constant A0, the potential difference between a surface of constant A^ in the force-free 
magnetosphere and X is - using equation (3.13) 

A,40 = T
0 ¿4¿co(,4¿). 

Ja- 

Using equations (3,10), (3.11) and (3.12) the rate of increase of mechanical energy inside 
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Extraction of energy from Kerr black holes 445 

Figure 1. Schematic cross-section of black hole and magnetosphere, using r and Q coordinates in 
normal way. (Due to axial and time symmetry the diagram is independent of the azimuthal and time 
coordinates that are being held constant; these can be the Kerr coordinates v and 0, or for/'>/'+ the 
Boyer-Lindquist coordinates t and 0.) The poloidal field has been chosen so that Í2H-B>0. H is the 
event horizon r = r+. The poloidal field surfaces (i.e. surfaces of constant^) are shown as solid lines, with 
the polar and equatorial surfaces Aq = and Aq = AQ specifically labelled. A current / is flowing from 
the magnetosphere into the hole, and back out of the hole into the disc D lying in the Q = n/2 plane 
(denoted by heavy stippling). Particles can only cross the event horizon one way, into the hole. In the 
magnetosphere there are spark gaps like SG creating pairs of positrons e+ and electrons e~. Positrons are 
flowing into the hole along surfaces ^ = const, at a faster rate than electrons, and there is a higher 
density of electrons (as the space charge has to be negative). Projections of typical particle velocities are 
shown by arrows. Particles can remain on the hypersurfaces of constant^ only as long as the normals to 
these surfaces are space-like. The locus where these surfaces become null is L. Between the disc and the 
hole there is a transition region T in which the matter is falling from the disc to the hole. This is shown by 
lighter stippling. 

the hole due to the current from the magnetosphere is 

J*Ae ÇAÿ 
dA^eoßiA^) dÀÿüûiÂÿ) 

Av \ 

rAe Me 
¿L40co(,40) + 47re0 dA^iA^) co(^0). 

Jà- 
= -/ 

The first term is exactly cancelled by the work done on matter in the hole by the disc 
current. Thus the hole is losing energy electromagnetically at the rate 

Me 
— 47re0 J dA^BriAfp) co(40) 
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446 R. D. Blandford and R. L. Znajek 

which is identical to the expression obtained by integrating over the horizon. A similar 
result can be obtained for angular momentum. 

Note that we have only considered the electromagnetic contributions to the hole’s energy 
and angular momentum budgets. In practice, we also expect significant contributions from 
the material accreted from the disc. 

5 Perturbation method 

The only exact solution of equation (3.14) that we have been able to find is a trivial 
relativistic generalization of Michel’s (1973) monopole solution in a Schwarzschild metric. 
However, it does not satisfy boundary condition (3.15) at the event horizon which is consis- 
tent with the notion that it is impossible to extract energy from a non-rotating black hole. 
(It could, however, be appropriate for a neutron star.) We therefore resort to a perturbative 
technique in which we expand in powers of the ratio a/M. Such a technique can only be of 
use when the change in the poloidal field caused by ‘spinning up’ a non-rotating field 
configuration (supported by currents in an equatorial disc) can be regarded as small. This 
cannot be used for a pulsar magnetosphere where there are closed field lines which have to 
be opened by the rotation. No such problem appears to arise for a slowly rotating hole 

surrounded by open field lines. 
We require an exact axisymmetric vacuum solution for the magnetic field in a 

Schwarzschild metric given by A^ir^Q) = X(r,B) and, in order that we can impose boundary 
conditions at infinity, an exact rotating force-free Newtonian solution. We anticipate that 
the electromagnetic angular frequency will be comparable to the angular frequency of the 

hole, and so write 

^(M)=^ WM). (5.1) 
M 

From equation (3.15) 

firM>-¿1'(r’<’>+0(5)S' (5.2) 

Changing the sign of a does not alter the shape of the field lines and so we put 

✓ a2 I a\* 
^>(r,d) = X(r,0) + — x(r,Ö)+0 — . (5.3) 

M \MJ 

To the order we require co, /i and can be regarded as functions of X only. Substituting 
equations (5.1)-(5.3) into the fundamental differential equation (3.14) and expanding in 
powers of a, the terms 0{\) give the equation for the unperturbed potential X(r, 6) in the 
Schwarzschild metric 

£*=0, (5.4) 

where L is the self-adjoint partial differential operator 

18/ 2Af\ 8 1818 
1 = (1 )- + - . 

sin 0 8r \ r / dr r2 80 sin 0 80 
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Extraction of energy from Kerr black holes 447 

There are no terms 0(a/M) and the terms 0(a/M)2 give the equation 

Lx = S(r,9) (5.5) 

where the source function is given in terms of the known potential X(r, 0) and the functions 

W(yd), Y(r,0) by 

2M: 

sin 6S(r, 0) = - — X,,, + — (3 cos2 0 - 1) X, 
AM' sin0 

rs (1 — 2M/r) 
{M sin dXr — cos OXfi) 

W2 sin 0 

f /Xr\ (sin OXe) g 1 
AMW sin 0 sin 0 — + 

L \ r ) s r-3(l — 2M/f)\ 

w 0 
+ — sin2 6 

M2 

YY’ 
(5.6) 

(1 - 2M/r)l [M2(l - 2M/r)] 

The prime denotes differentiation with respect to X. In deriving equation (5.6) use was made 

of (5.4). For 6 <1, A(f) = const. + 0(Q2) and Y = 0(d2). Hence S = 0(9). If the toroidal disc 
current in the perturbed situation is different from the unperturbed current that generates 
X, an appropriate term «ô(Cos 6) should be added tO S. 

Discussion of the solution of equation (5.5) is deferred to the Appendix. Here it is 
sufficient to note that the solution exists if, and only if, the integral 

\S(r, 9)\ 

n 
dr d9 

'o Jim r 

converges. This requires that S be o[l/(l - 2M/r)\ at the horizon r= 2M. This in turn im- 

poses the condition 

Y(2M, 9) = (W — %) sin QXj (5.7) 

which can be seen to be identical to the boundary condition (3.15) expanded to 0(a/M2). 

Equation (5.7) effectively fixes If as a function of Y, but Y itself must be determined as a 
function of X before the source function can be completely specified. We cannot guarantee 
that the solution of equation (5.6) with any particular choice of Y will correspond to a solu- 
tion of the full non-linear equations. In the two examples that we present below, we are in 

possession of exact analytic solutions of the non-linear flat space equations. We believe it to 
be likely (but cannot prove) that whenever there exists a suitable flat space solution there 

also exists a Kerr metric solution approaching it at large distances. (The existence and 
uniqueness problem seems to be qualitatively unchanged from that in flat space (Scharlemann 
& Wagoner 1973) by the introduction of general relativity.) If we assume that this is true, 
then we can specify a second relation between W and Y, thus determining the efficiency, e, 
and the source function, S. This second relation effectively fixes the current flowing through 
the hole for a given potential difference. Alternative electromagnetic conditions at infinity 

would yield an alternative relation. 

6 Split monopole magnetic field 

Our first example of the use of this perturbation technique is in calculating the effect of 
spinning up a radial magnetic field of opposite polarity in the two hemispheres. The un- 

15 
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448 R. D. Blandford and R. L. Znajek 

perturbed vector potential, 

X(/y0) = — Ceos 0, O<0<7t/2 (6.1) 

with C constant, is an exact solution of the vacuum Maxwell equations in a Schwarzschild 
metric, except on an equatorial disc containing a toroidal surface current density (as 
measured by a static observer) 

/ = 
2Ce0 

(6.2) 

This is admittedly a somewhat artificial application as none of the field lines, defined by 
(6.1) actually cross the disc and furthermore the current given by equation (6.2) must 

extend right up to the horizon at r = 2AÍ despite the fact that stable circular orbits only exist 
up to r = 6M. However, there is no objection in principle to maintaining this current distribu- 
tion, e.g. by using non-gravitational forces. 

We now let the hole rotate slowly. The boundary condition at the horizon, (5.7), gives 
one equation relating Y and W 

Y= C(W — V4) sin2 0. (6.3) 

The exact solution for a rotating radial field in a flat spacetime has been given by Michel 
(1973) and it is to this that we choose to match our complete solution in the far field, well 

beyond the gravitational influence of the hole. A trivial generalization of Michel’s solution to 
include the possibility that the angular velocity be variable gives a second equation 

Y = — CW sin2 0, (6.4) 

where we have used the boundary condition T->0 as 0 ->0. As 0, W and Y are constant along 
the unperturbed field lines, we can equate (6.3) and (6.4) to obtain 

W = Vs 

r=-y8Csin20. (6.5) 

This means that the electromagnetic angular velocity co is constant and equal to half the 
hole angular velocity £2h (t° 0(a/M)). The value of co is effectively determined by the shape 
of the poloidal field lines rather than the geometry of spacetime in the vicinity of the hole. 
The efficiency of electromagnetic energy extraction, as defined by (4.10) is then 50 per cent. 

If we substitute (6.1) and (6.5) into the source function, we obtain 

CM / 2M\ 
S(r, 0) = —— \l + —j sin 0 cos 0. (6.6) 

Only the 1 = 1 term of the summation in the Greens function (A2) contributes to the solution 
of equation (4.5), i.e. the equation is separable in r and 0. Straightforward but lengthy calcu- 
lation yields the following expression for the perturbation x(r, 0). 

"i ' (i) (2 (is) - Hi) - i -3 (7 ) 4 'n (i)) 

’HHKÍt) "(íH"1 H OH«“»«’ 
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where 

Ç00 dt i t \ 
,w‘l 7ln(~i); 

x>\. 

449 

(6.7) 

We have chosen that solution of the differential equation which is finite at the horizon 
[x(2Af,0) = C(jr2l 12 — 49/72) sin2 0 cos0] and falls off faster than X(r,0) as r-* q0: 

CM 0 
x(r>M, 0) sin2 0 cos 0. 

4r 

We have found, correct to 0(a/M)2, a force-free electromagnetic solution in which electro- 
magnetic energy is being extracted continuously from the rotating hole. Further electro- 
magnetic properties of this solution can be derived using the results of Section 3. At 
distances well beyond the light cylinder (r>M2/a), the magnetic field is predominantly 
toroidal and becomes equal in magnitude to the (poloidal) electric field — see Michel (1973) 
and Fig. 2(a). 

7 Paraboloidal magnetic field 

In our second application of the perturbation equations, we generalize the paraboloidal 

magnetic field solution discussed in Blandford (1976). This is an exact Newtonian solution 
for a force-free magnetosphere in which the magnetic field lines lie on paraboloidal surfaces 
cutting an equatorial disc, rotating with angular velocity co(r) and with surface current 
density / = Ce0/r(l + o;2r2)1/2. 

Fortunately, we can also satisfy our second requirement as there exists a simple analytic 
solution for the magnetic field in a Schwarzschild metric when the surface current distribu- 
tion /= Ce0/r, with C constant, extends down to the horizon. By direct substitution in the 
source-free Maxwell relations (5.4) we can confirm that the required solution is given by 

X(r, 0) = - [r(l - cos 0) + 2M(l + cos 0)(1 - ln (1 + cos 0))]. (7.1) 

Imposing boundary condition (5.7) at the horizon, we obtain 

Y(2M, 0) = CM(W - &) sin2 0(1 + ln (1 + cos 0)). 

The vector potential for the far field Newtonian solution is 

X(r,0) = -Kl -cos0) + 2Of(l -ln2); r>M 

(7.2) 

(7.3) 

where the second term is a constant chosen so that the solutions match when r > Af and 0 -*0. 
From Blandford (1976) we have for the second relation between Y and W, 

Y = — CWr{\ — cos 0), r>M. (7.4) 

Now Y and W are conserved on the field lines, given to sufficient accuracy by X(r, 0) = con- 
stant. Treating the value of 0 at the horizon, 0h as a parameter labelling the field lines, we 
obtain from (7.1)—(7.4) 

V4 sin2 0H [1 + ln (1 + cos 0H)] 
ft/(0 ) =  

[4 In 2 + sin2 0H + [sin2 0H - 2(1 + cos 0H)] ln (1 + cos 0H)] 

which varies monotonically over the horizon from W(0) = 0.125 to W(n/2) = 0.0663 

(7.5) 
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(a) 

Figure 2. Electromagnetic structure of force-free magnetosphere with (a) radial and (b) paraboloidal 
magnetic fields. Hh*® is taken to be positive. Space charge, currents and non-zero field components 
shown are as seen by a static observer outside the ergosphere E. Physical observers travelling round the 
hole at constant r and Q and angular velocity dÿ/dt will see the electric field reverse direction on the sur- 
face d<t>/dt = co. Inside this surface they see a Poynting flux of energy going towards the hole. (For a 
system of observers with time-like worldlines d(¡>/dt-+ Sl\\ on the event horizon and d(J>/dt-+0 at infinity. 
Hence when 0 < co < i-e- when the hole is losing energy electromagnetically, this surface always 
exists.) The discs are assumed to be Keplerian; the electromagnetic structure of the magnetosphere of the 
transition region, T, in (b) cannot be determined without additional assumptions. Outside this region 
Blandford’s (1976) Newtonian solution applies. Note the difference in the shape of the light surface, L, in 
the two cases. For a paraboloidal field the energy appears to be focussed along the rotation axis. 
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Extraction of energy from Kerr black holes 451 

We now know how W varies in the far field on those field lines that emerge from the hole. 
We can therefore calculate an average efficiency of energy extraction appropriate to this 
field geometry. If S is the Poynting flux well beyond the light surface and the element of 
area, then the overall efficiency is given by 

Ji/2:-(S/4H0 

where the integrals are over all field lines crossing the horizon. A straightforward calculation 
using (4.11) gives e = 38 per cent, somewhat less than the efficiency for the radial field. 

Further electromagnetic properties of this approximate solution can be calculated following 
Blandford (1976) — see also Fig. 2(b). 

Unfortunately, this second example is also rather artificial because there is no natural way 
to match the black hole solution at 0H = tt/2 to an equatorial disc solution. Unless there is a 
current sheet in the magnetosphere, W must be continuous. At large radii, Wis presumably 
determined by the angular velocity of the disc which increases to ~ (6\/6Aff1 at r ~ 6Af. For 

6M>r>2M, there would have to be a transition region within which the angular velocity 
changes smoothly to 0.27 £2H. This could in principle be achieved using non-gravitational 

(especially electromagnetic) forces, although it would involve dynamical considerations 
totally absent from the present treatment. In particular any fluid velocity would have to 

have a substantial radial component at the horizon, because the angular velocity of a purely 
circular orbit must approach £2H there. As most of the gravitational energy of the infalling 
material is actually liberated within this transition region we cannot obtain a reliable 
estimate of the efficiency of electromagnetic energy extraction from the disc. However, 
there is no reason to suppose that given a similar field geometry to that just described, the 
efficiency of removal of the hole’s rotational energy should be seriously different from 
38 per cent and that the total efficiency for the disc cannot exceed that associated with the 
last stable circular orbit (6—42 per cent as a increases from 0 to Af — Bardeen (1970)). 

8 Black holes in active galactic nuclei 

We have demonstrated the existence of an astrophysically efficient mechanism for extracting 
rotational energy from a Kerr hole: electromagnetic braking resulting from fields supported 
by external currents. This process has been exhibited in the slow rotation limit for two basic 
field geometries that occur when the magnetic fields and Poynting fluxes are either radial or 
parallel to the rotation axis at infinity. The simplest application of these ideas is to a model 
of an active galactic nucleus containing a massive black hole surrounded by an accretion disc 
(e.g. Lynden-Bell 1969; Lynden-Bell & Rees 1971). As the length scales associated with the 

observations of nuclear activity get shorter (e.g. Epstein et al. 1972; Kellermann 1974; 
Martin, Angel & Maza 1976) the idea that the central gravitational machine be a black hole 
becomes increasingly attractive. One light day is only 100 Schwarzschild radii for a 108Af© 
black hole, which is more or less the minimum mass necessary to supply the energy require- 
ments of quasars and double radio sources. The argument against the alternative type of 

model involving a cluster of stellar mass objects (e.g. Arons, Kulsrud & Ostriker 1975) which 
associates each outburst with a supernovae-like event is that many outbursts are either too 
rapid and individually too feeble, or too energetic (cf Fabian et al. 1976). No characteristic 
‘quantum’ of energy ~1052erg appears to be involved. Nevertheless the above theory can 
also be applied to a cluster of stellar mass holes. 
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There are two well-known difficulties associated with the black hole hypothesis. Firstly in 
spite of the gravitational potential well being as deep as possible, a hole may turn out to be 
a rather inefficient emitter of non-thermal and high-frequency radiation. It is quite possible 
that most of the liberated potential energy of accreted matter may be swallowed by the hole 
as thermal energy, kinetic energy or trapped radiation. Alternatively, in the case of a viscous 
disc, the effective temperature may be too low for the production of X-rays or relativistic 
particles. This is discussed in Fabian et al (1976) where some methods for improving the 

efficiency are described. 
The second problem involves inverse Compton losses. If, as is generally believed, the non- 

thermal radio and optical emission from quasars is synchrotron radiation by relativistic elec- 
trons in an ordered magnetic field, then as originally pointed out by Hoyle, Burbidge & 
Sargent (1966), the radiation energy density must not greatly exceed the field energy 
density. This imposes a serious lower limit on both the field strength and, for the radio 
emission, on the size of the source. The implication is that the synchrotron emitting electrons 
cannot be accelerated in the vicinity of the event horizon as their radiative losses would then 
be far too large. 

Both these objections can be met in the present model by the device of liberating the 
gravitational energy from the region near the hole using a large-scale Poynting flux. As 
discussed in Blandford (1976), inertial effects may dominate beyond the light surface, 
leading to a relativistic electromagnetic wind. The energy in this form is usable in the sense 
that it can, for example, accelerate relativistic particles behind a distant shock located where 
the momentum flux in the wind balances the ambient pressure in the nucleus. This can avoid 

serious Compton losses because the total energies of particles in the wind can be much less 
than those inferred to be responsible for the non-thermal emission. (In this respect the 
present model is similar to a pulsar radiating strong waves, for example as in Arons et al. 

(1975).) We might expect that if there were a fairly abrupt change in the field arrangement 
close to the horizon (e.g. arising from some field reconnection in the transition region) the 
electromagnetic luminosity would increase very abruptly leading to the possibility of rapid 
variability {cf Pringle, Rees & Pacholczyk 1973; Shields & Wheeler 1976). The final con- 
version to non-thermal radiation can be very efficient if the cooling time of the emitting 

relativistic electrons is sufficiently short (cf Blandford & McKee 1976). 
Variability and VLB observations of nuclear radio sources have in many cases to be 

interpreted in terms of apparent ‘super-luminal’ expansion speeds if the radio emission is 
incoherent electron synchrotron radiation (e.g. Burbidge, Jones & O’Dell 1974; Cohen et al 
1976). Such rapid expansion can be explained in terms of light travel time effects (Rees 
1967) involving either relativistic material motion of the emitting plasma or emission by a 
stationary plasma in response to a signal travelling at the speed of light. Both possibilities can 
occur with a time-varying relativistic wind. In addition the double structure characteristic 
of many VLB radio observations arises naturally in this interpretation as the poloidal 

magnetic field lines which determine the direction of the Poynting flux are probably curved 
towards the direction of the rotation axis. Alternatively, we can further exploit the analogy 
with pulsars. As the electromagnetic conditions around the hole and inner disc only differ by 
scale from those believed to be present in a pulsar magnetosphere, it would not be surprising 
if coherent curvature radiation were emitted (cf Cocke & Pacholczyk 1975). It may be 
possible to discriminate between these alternatives by means of polarization observations. 

The overall efficiency of electromagnetic energy extraction from a disc around a black 
hole is difficult to calculate with any precision. Neither of the electromagnetic solutions 

presented in the last two sections have been matched satisfactorily to solutions in regions 
where the magnetic field lines are attached to the disc. Within the transition region. 
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separating the horizon from the disc, the efficiency of energy extraction depends critically 
on the dynamical behaviour of the accreting material and this is where the greatest un- 
certainty in the physics lies. Attempts have been made (e.g. Novikov & Thorne 1974 and 
Stoeger 1976) to understand these problems, but such investigations may be irrelevant in 
the present context because most of the radial stress on fluid elements in this region could 

be magnetic (Znajek 1976). 
As discussed by Blandford (1976), if the magnetic field strength in the magnetosphere is 

to be stationary, then there must be an effective finite conductivity that enables the accret- 
ing material to cross the field lines. Perhaps the most likely way of achieving this is through 

magnetic reconnection occurring on sufficiently small scales for it to appear as an effective 
electrical resistance rather than as a global instability. The ‘ohmic’ dissipation associated 

with this reconnection is a fraction -\Vrc¡V%\ of the rate of liberation of gravitational 
energy, Vr and being the average radial and tangential fluid velocities of the disc. It is 
quite likely that this fraction, small in the outer parts of the disc, becomes of order unity in 
the transition region. Furthermore, even in the outer parts of the disc viscous transport of 

angular momentum could be dominant (as is conventionally assumed). The ratio of electro- 
mgnetic to viscous torques cannot be determined prior to obtaining an adequate under- 
standing of various dissipative processes that occur in the disc. 

If we assume that the disc is electromagnetic then we can attempt to compare the 
Poynting fluxes radiated by the hole and the disc beyond the last stable circular orbit. For 
a <71/ and a paraboloidal field, the power radiated by the hole, Z,H, satisfies, 

¿H ~ 0.3(a/A/)2 Z,D ~ 1038(tf/7l/)2M W 

where Z,D is the power radiated by the disc and M the mass accretion rate measured in 
Afo/yr. (We have estimated the ratio ¿h/¿d using the results of Section 7.) Even when 

# we do not expect Lu to exceed and so if the disc is completely electromagnetic 
we can probably ignore the hole’s contribution to the power. For self-consistency, we must 
confirm that the field strength is large enough to break down the vacuum near the event 
horizon. The field strength, B is related to Zh by 

B ~ 0.2 

using equation (4.11). For a hole of mass in the range 108—1010Afo supplying ^1038W of 
electromagnetic power to a galactic nucleus, the field strength must exceed 0.01 T and from 
(2.8) we see that this is certainly adequate for breakdown. 

If, alternatively, the torque in the disc is viscous then the gravitational energy of the 
accreting material in the disc will be mainly radiated away. (In the transition region most of 
this energy will probably be swallowed by the hole.) Energy liberated in this way is unlikely 
to be transformable into the non-thermal emission characteristic of active nuclei and we 
must rely on the electromagnetic power from the hole. If a fraction 0.1 fx of the rest mass 
of the accreting material is radiated from the disc, then the rate of mass accretion is 
restricted to the Salpeter (1964) limit: 

M 

— ^4.5 x 101 f-x yr 
M 

assuming electron scattering. 
In conclusion, we have discussed a mechanism for extracting rotational energy from a 

Kerr hole. The presence of the three principle ingredients: angular momentum, a magnetic 
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field and a massive black hole, seems difficult to avoid within a galactic nucleus. It appears 
that this could be an effective agency for transforming gravitational energy into non-thermal 
radiation. 
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Appendix 

Green’s function for Schwarzschild equation 

Petterson (1974) obtained an expression for the vector potential of a current loop around a 
Schwarzschild black hole at r = r0, 0 = tt/2. One can generalize his result to the case of a 
current loop at r = r0, 0 = 0q- This tells us that the solution of the differential equation 

LG = b{r - r0) 0(0 — 0O) (Al) 

where L is the self-adjoint operator 

i a / 2M\ a i a i a 
¿EE l-_ - +-  

sin 0 8r \ r J br r2 80 sin 0 80 

with boundary conditions such that G is finite at r = 2Af and tends to zero as r-*00 is 

G(r, 0;ro,0o) = Z 
1-0 

(/ + 3/2) 

(/ + !)(/+ 2) 
sin 0 sin 0o P'in (cos 0) P\+l (cos 0O) Ri(r, r0). (A2) 

Here 

(Ui(r) Vi(r0), 2M<r<r0\ 
Æ/0%'o) = 

I F,(r) Ui(r0), r»r0»2MI 

U,(r) = {2M)1 r2P¡2'tíH\ - r/M) 

being a Jacobi polynomial, and 

f df 
V,(r) = U¡(r) 

i (2M 

(A3) 

(A4) 

From (Al) we can write down the solution to Lx = S that falls to zero as r-*00 and is non- 
singular at the event horizon: 

x(r, 0) = í dr0 Í dd0G(r, 0; r0, 0O) S(r0, 0o). (AS) 
J2M JO 

G is logarithmically singular at (r, 0) = (r0, 0o), so we cannot use uniform convergence of the 
series for G to prove that (A5) converges. However, using a property of the roots of Jacobi 
polynomials (e.g. Abramowitz & Stegun 1964) equation (A3) can be rewritten as 

,/2/ + 2\ „ 
tf/W = (-!)'( t )r2(r-<xi)...(r-ocl) 
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where 0 < < 2M. It can then be shown that 

l^/O, |^/(r0,r)|< 
(£)' r0 - 2M \r0' 21 + 2 

(r<r0). 

and we then have sufficient information about Rt to be able to use the dominated con- 
vergence theorem (e.g. Kingman & Taylor 1966) to prove that if S(r,6) is continuous in 
r>2M, then (A5) converges — and one can interchange the summation and integration in 
(A5) — if, and only if, 

r „fV^1 

J2M Jo r 

converges. In the two cases treated in Sections 6 and 7, convergence at the horizon is 

ensured by the boundary condition (3.15). 
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