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ABSTRACT 

This paper is the first of a series in which we present the results of a study of accretion by a 
slowly rotating, magnetic neutron star when the accretion flow is approximately radial. In this 
study we examine in detail the physical processes that occur in the neighborhood of the magneto- 
spheric boundary and the manner in which accreting plasma enters the magnetosphere. Here we 
investigate the conditions necessary for the formation of a magnetospheric cavity and for its 
stability. We find that although the boundary of the cavity is initially close to instability, magneto- 
spheric models strongly suggest that it is stable until the plasma outside undergoes at least some 
cooling. Assuming that little plasma enters the magnetosphere when the boundary is stable, we 
show that there is, typically, time for the plasma outside to form a quasi-static atmosphere 
around the magnetosphere before instability sets in. We discuss the scale and structure of such 
static configurations, including the nature of the current layer at the magnetospheric boundary. 

We also investigate the structure of the magnetosphere when there is a steady inflow of plasma 
across the boundary, and describe the possible flow patterns at the boundary and in the interior. 
Assuming that plasma enters the magnetosphere predominantly via Rayleigh-Taylor instability of 
the boundary, we discuss the conditions necessary for a steady accretion flow and note that 
beaming of X-rays from the stellar surface can strongly affect the plasma flow pattern near the 
boundary. We show that the Alfvén surface, within which the stellar field channels the flow, 
generally does not coincide with the magnetospheric boundary and could conceivably lie well 
within it. 

A discussion of the applicability of the present study to observed compact X-ray sources shows 
that it may apply directly to the longer-period pulsating sources, such asAlllS — 61,3U 0900 — 40, 
A0535 + 26, and 3U 1728 — 24, if the accretion flow is sufficiently radial, and to some X-ray burst 
sources, if these are slowly rotating neutron stars. 
Subject headings: stars: accretion — stars: magnetic — stars: neutron — stars: rotation — 

X-rays: sources 

I. INTRODUCTION 

Accretion by magnetic neutron stars appears to be 
a promising model both for many binary X-ray sources 
(for recent reviews, see Blumenthal and Tucker 1974; 
Giacconi 1974; Lamb 1975a; Lightman, Shapiro, and 
Rees 1976) and for X-ray and soft y-ray burst sources 
(Harwit and Salpeter 1973; Lamb, Lamb, and Pines 
1973; Lamb et al. 1977). In a previous paper (Lamb, 
Pethick, and Pines 1973, hereafter LPP) a basic model 
of the flow of accreting plasma and the emission of 
X-rays was developed. Similar models have been 
proposed by Pringle and Rees (1972) and by Davidson 
and Ostriker (1973), among others. 

* Research supported in part by the National Science 
Foundation through grants GP-41560 and PHY-75-08790 
(Illinois); and AST 75-21153 (Cornell). 

t Alfred P. Sloan Foundation Research Fellow. 

This paper is the first of several in which we present 
the results of a detailed study of the magnetic neutron 
star model, in the particular case when the accretion 
flow is approximately radial and the star is slowly 
rotating. Although this case is an idealization, we 
believe that it provides important insights into the 
physics of accretion by magnetic neutron stars gener- 
ally. Furthermore, if the slowly pulsing X-ray sources 
such as All 18 —61 (Eyles et al. 1975; Ives, Sanford, 
and Bell-Burnell 1975), 3U 0900-40 (McClintock 
et al. 1976), and A0535 + 26 (Rosenberg et al. 1975) 
are rotating neutron stars, the results presented here 
may be directly applicable to them (see Eisner and 
Lamb 1976a and § IV below). 

In our investigation we have focused on the physical 
processes that occur in the neighborhood of the mag- 
netospheric boundary and, in particular, on the manner 
in which accreting plasma enters the magnetosphere. 
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These affect important properties of X-ray source 
models, including the conditions under which a steady 
accretion flow is possible; the location and dimensions 
of hot spots at the stellar surface; the character of the 
X-ray spectrum, which may depend on reprocessing 
within the magnetosphere as well as on the sizes of 
surface hot spots ; the extent to which the X-rays are 
beamed; and the time scales of X-ray variability. We 
have considered particle entry through the polar cusps, 
magnetic flux reconnection, diffusion of plasma across 
the magnetopause, and Rayleigh-Taylor instability of 
the magnetospheric boundary. We conclude that under 
the conditions typical of the steady, bright binary 
X-ray sources, plasma enters the magnetosphere of an 
accreting neutron star via Rayleigh-Taylor instability 
of the magnetospheric boundary except in circum- 
stances, which we believe to be unusual, when magnetic 
flux reconnection “opens” the magnetosphere. On 
the other hand, magnetic flux reconnection may be 
responsible for the steady background luminosity 
observed in some bursting X-ray sources (see Lewin 
1977). 

In the present paper we develop a basic theoretical 
framework within which to discuss the calculations of 
subsequent papers. In a second paper (Eisner and Lamb 
19766, hereafter Paper II) we discuss the hydromagnetic 
stability of the magnetospheric boundary in more 
detail, considering line-tying, finite Larmor radius, and 
viscosity effects, and describe qualitatively possible 
plasma flow patterns within the magnetosphere. In 
a third paper (Eisner and Lamb 1977a, hereafter 
Paper III) we present the results of detailed calcula- 
tions of the rate at which plasma can enter the 
magnetosphere when the boundary is stable and use 
these results to estimate, within the context of the 
magnetic neutron star model of bursting X-ray sources 
(Lamb et al. 1977), the rate at which plasma “trickles” 
into the magnetosphere between bursts and the result- 
ing “steady” X-ray luminosity to be expected from 
these sources. In a fourth paper (Eisner and Lamb 
19776, hereafter Paper IV) we present analytical and 
numerical solutions for the steady flow, heating, and 
cooling of plasma outside the magnetospheric bound- 
ary. Preliminary accounts of some of our results have 
been given previously in Lamb (1975a, 6), and Eisner 
and Lamb (1975a, 6, 1976a). More recently calcula- 
tions similar to ours have been reported by Arons and 
Lea (1976). 

The remainder of this paper is organized as follows. 
In §11 we discuss the formation of a magnetosphere, 
the approach to static equilibrium of the plasma 
atmosphere that builds up outside the magnetospheric 
boundary prior to the onset of the Rayleigh-Taylor 
instability, and the hydromagnetic stability of such 
configurations. These are of interest both because of 
their possible relevance to X-ray burst sources and 
because they provide insight into the initial develop- 
ment of steady accretion flows. In § III we develop 
further the model of steady accretion flows outlined 
by LPP, in the particular case when the neutron star is 
slowly rotating and the accretion flow is approximately 
radial. We consider in § IV the applicability of the 

present study to observed X-ray sources and investi- 
gate in § V the time scales for heating and cooling of 
plasma at the magnetospheric boundary, and their 
implications for accretion flows. Section VI summarizes 
our results and describes briefly some possible effects 
that strong X-ray beaming and nonradial flow around 
the boundary may have on plasma entry into the 
magnetosphere via the Rayleigh-Taylor instability. 

II. STATIC CONFIGURATIONS 

In this section we consider the initial interaction of 
accreting plasma with the stellar magnetic field. As 
noted in the Introduction, our calculations show that 
in the absence of cooling the magnetospheric boundary 
is stable. Assuming that little plasma enters the mag- 
netosphere when the boundary is stable, we show that 
the shock-heated plasma outside will form an atmos- 
phere there, and that there is time for this configuration 
to reach static equilibrium. We then discuss the struc- 
ture of the equilibrium magnetosphere and its shape 
for various confining pressures. Finally, we consider 
the hydromagnetic stability of the boundary. 

In this discussion, we shall make the following basic 
assumptions concerning the accretion flow: 

1) Accreting matter approaches the magnetosphere 
at a steady rate 71^. 

2) The accreting plasma is in spherically symmetric, 
radial free fall as it approaches the magnetospheric 
boundary. Thus the mass density />, inward radial 
velocity vr, and dynamical time scale td near the 
boundary are given by 

p = pff = M/ Attv 2 

= 4.9 x 10-10r8-
3/2^17(M/Mo)-

1/2gcm-3, (1) 

Vr = rff = (2GM/r)112 

= 1.6 x 109r8"
1/2(M/Mo)1/2 cms“1, (2) 

td = tu = ir/v¡i 

= 4.1 x 10-2rB
3l2(M/M0)"

1/2 s, (3) 

where r is the distance from the neutron star, rQ is 
r measured in units of 108 cm, and Ti^17 is the mass 
accretion rate in units of 1017 g s-1. 

3) Free fall is halted outside the magnetosphere by 
a strong, collisionless shock wave, in which the directed 
kinetic energy of the ions is converted into random 
thermal motion. The ion temperature 7V behind the 
shock wave is then of the order of the free-fall tem- 
perature, 

Tff(r) = = 1.6 x 1010 ^ r8 - 1(M/Mq) K, (4) 

at the radius rs of the shock. Here A is the ion mass 
number. (At present there is some uncertainty about 
the formation and structure of collisionless shock 
waves in situations of this kind; see Tidman and Krall 
1971 ; LPP; Shapiro and Salpeter 1975; Arons and Lea 
1976. We note, however, that the qualitative features 
of the equilibrium magnetospheric structure and 
stability do not depend on the formation of a collision- 
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less shock wave, but only on the heating of the plasma 
outside the magnetosphere to a temperature ~Tff.) 

4) The star rotates sufficiently slowly that the 
effects of its rotation on the plasma flow can, to a 
first approximation, be neglected. 

a) Formation of a Magnetosphere 

Initially, the radial flow of accreting plasma toward 
a slowly rotating magnetic star will tend to sweep the 
stellar field inward before it, since the plasma is highly 
conducting. However, as long as the pressure of the 
stellar magnetic field, increases with decreasing 
radius more rapidly than that of the accreting plasma, 
it will eventually halt the inflow, creating a magneto- 
sphere from which the plasma is at first excluded. For 
example, if the stellar field is dipolar so that B2 ~ 
fjL2/r6, in terms of the stellar dipole moment p, and if 
the pressure P of the accreting plasma varies as r~n, 
then a magnetosphere will form for n < 6. 

Regardless of the complexity of the magnetic field 
near the star’s surface, at large distances the stellar 
field B will be dominated by its dipole component, and 
will vary like r~3. The shape and size of the magneto- 
spheric cavity will therefore be largely determined by 
the dipole component as long as the stellar magnetic 
field is confined to a region of dimension much larger 
than R. On the other hand, higher multipole moments 
of the undistorted stellar field must be taken into 
account if the stellar field is confined to a region of 
dimension comparable to R. Furthermore, confine- 
ment of the magnetic field to such a small region will, 
if the star is highly conducting, induce currents within 
the star which will cause the distorted stellar field to 
manifest magnetic multipoles, even if the undistorted 
field is purely dipolar. (We include in the “stellar” 
field that field generated by currents within the star, 
whether intrinsic or induced.) 

Let us assume for the moment that there is no flow 
of plasma into the magnetosphere. There will then be 
no emission of radiation from the stellar surface due 
to accretion and the star will certainly not be a bright 
X-ray source. The shock-heated plasma will accumu- 
late outside the magnetosphere, forming an increasingly 
extended atmosphere, and the magnetosphere will 
assume its equilibrium shape in a time ~ td. Since the 
plasma is unexposed to X-rays prior to the onset of 
instability at the magnetospheric boundary, it cools in 
a time tcooi which is typically much longer than td 
(see §V), and there is therefore a considerable time 
interval during which the structure of the magneto- 
sphere is determined by a static balance between the 
plasma and magnetic pressure outside and the pressure 
of the stellar magnetic field inside. 

b) The Scale and Structure of Static Magnetospheres 

Consider further the case in which there is no flow 
of plasma across the magnetospheric boundary and 
the boundary is in static equilibrium. There are then 
two fundamental lengths associated with the magneto- 
sphere: (1) the overall scale, rm°, of the magnetosphere, 
and (2) the thickness, <>m, of the boundary layer which 

separates the interior of the magnetosphere from the 
plasma and magnetic fields outside. If Sm « rm°, then 
the gravitational force acting on the plasma in the 
boundary layer can be neglected, and static pressure 
balance and continuity of the normal component of 
the magnetic field imply 

across the magnetospheric boundary, Sm. Here Pin 
and Pout are the (isotropic) plasma pressures inside and 
outside the boundary, {B^in and (P¿)out are the 
tangential components of the magnetic field inside and 
outside, and 6 and are polar angles. 

In the absence of plasma flow into the magneto- 
sphere we expect Pin to be small compared to Pin

2/87r, 
$nd Bin and Pout to be tangential to the boundary. Then 
the boundary rm(0, </>) of the magnetosphere is the 
surface of pressure balance between the pressure of 
the plasma and embedded magnetic field outside and 
the pressure of the stellar magnetic field inside; more- 
over, in this case the nature of the interface can be 
characterized by the parameter ß = 87rP0Ut/Pin. 

This pressure balance relation can be used to esti- 
mate the scale size, rm°, of the magnetosphere. For 
example, if accretion at the rate M created a static, 
adiabatic atmosphere in which P = 0, one would have 
Ponfr) ~ puip)vi{

2(r) oc r~512. Adopting Bin = pr~3 

and Pout = pfivff
2, one finds the characteristic radius 

rm° = EE 2.7 x 103M17-
21^p30^(M/MQ)~^ cm , 

(6) 

where /x30 is the stellar dipole moment in units of 
1030 gauss cm3. As a second example, were plasma 
to cool and accumulate at the magnetospheric bound- 
ary, the pressure Pout required to support it would 
become larger than pif;Vff

2 after a time of the order of 
the cooling time at the boundary. In the limit Pout » 
PifVn2 one would have, for a thin shell of plasma of 
mass Ms, a pressure Pout(r) ~ GMMs/47TrA oc r~é 

(cf. McCray and Lamb 1976) and a characteristic 
radius 

« 0 _ r (s) ' m ' m 

= 1.9 xl08(Ms/1017g)-1/2/x30(M/Mo)-
1/2cm. (7) 

However, in the absence of support other than mag- 
netic pressure, the boundary is likely to become 
Rayleigh-Taylor unstable before such a large quantity 
of plasma can accumulate, as discussed in § \ld below. 

The thickness of the boundary layer at rm depends 
on the physical conditions in the plasma at the 
boundary. Characteristic values of the most important 
plasma length scales at the boundary are listed in 
Table 1. For ion temperatures ^ ~ 109-1010 K, elec- 
tron temperatures Te ~ 108-1010 K, and number 
densities n ~ 1015 cm-3, which are typical of condi- 
tions near the boundary (see § V), the ion and electron 
mean free paths are ~ 107-109 cm and 105-109 cm, 
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TABLE 1 
Characteristic Plasma Length Scales at the Magnetospheric Boundary 

Vol. 215 

Parameter Symbol Characteristic Value (cm)* 

Mean free paths : 
ion-ion   A* 1.8 x 109(7;/1010 K^Z4^ In A/1016 cm"3)-1 

electron-electron   Ae 1.8 x lO^TyiO8 K)2(/ie In A/1016 cm-3)"1 

Transverse screening lengths : 
ion     c/copi 0.72 fa/lO15 cm-3)"1/2 A112 Z1 

electron   c\o)ve 1.7 x 10-2(«e/1015 cm"3)“1/2 

Larmor radii: 
ion.    flit 0.13 (Ti/lO10 K)1/2 A112 Z-H^/IO6 G)"1 

electron.         flet 3.1 x 10-4(7;/108 K)1/2(Bin/10
6 G)"1 

Debye length.  ÀD§ 2.2 x lO"3 (T/108 K)1/2 (n/lO15 cm'3)-112 

* T and Te are the ion and electron temperatures; tit and ne, their number densities; A and Z the ion 
mass and charge numbers; and Bin is the magnetic field strength at the magnetospheric boundary. Both 
ions and electrons are assumed nonrelativistic. 

t fli = (IkuTilmd^iniiClZeB). 
t ae = (2kBTelme)

ll2(mecleE). 
§ AD = (k^TIAirne2)112. 

respectively. Thus if « rm ~ 108 cm, the boundary 
layer will be collisionless. The other length scales are 
all much smaller than both the dimensions of the 
magnetospheric cavity and the collisional mean free 
paths. 

Models of stable, collisionless boundary layers 
separating regions of different magnetic field strength 
(cf. Phelps 1969, 1973; Spalding 1971; Willis 1971; 
Hamasaki et al. 1974) show that Sm ^ c/wpe if ß ~ 1, 
where cope is the electron plasma frequency. If the 
sheath is broadened by microinstabilities or the 
presence of trapped particles, as seems probable in 
the present context, one expects Sm ~ ah the ion Larmor 
radius. Since ^ ~ 0.1 cm (see Table 1), the collision- 
less approximation is self-consistent and Sm « rm°, as 
we assumed above. In this case the stellar magnetic field 
threads only the very small quantity of plasma that is 
in the boundary layer. 

c) Equilibrium Shapes 

The shape of the magnetospheric boundary in static 
equilibrium depends, in general, on the multipole 
structure of the star’s magnetic field and the variation 
of confining plasma pressure with position around the 
boundary. When rm° » R, so that the stellar field is 
dipolar (B2 cc r~6), and the confining pressure is a 
function only of r, the boundary is convex toward the 
plasma, the magnetic field increases inward every- 
where, and, if gravitational forces were absent, the 
boundary would be stable (cf. Rosenbluth and Long- 
mire 1957). Since gravitational forces are indeed 
present, the magnetospheric boundary is driven 
Rayleigh-Taylor unstable as soon as the weight of the 
plasma on the boundary becomes sufficiently large, 
as we show in § IW. Furthermore, the boundary forms 
cusps above the magnetic poles, as pointed out in the 
context of accreting neutron stars by LPP. (An argu- 
ment which shows that cusps must form above the 
poles of a dipole field in the case of static confinement 
was given in an early paper on the geomagnetosphere 
by Midgley and Davis 1962; see also Grad and Hu 

1966; Spreiter and Summers 1967; Willis 1971 and 
references therein.) 

If in addition the confining pressure has a power- 
law dependence on radius, Poc r"n, and Pin can be 
neglected, the equilibrium shape of the magnetosphere 
in three dimensions depends only on the quantity 
v = 6 — n. Ram pressure confinement, for example, 
corresponds to v = 3.5, whereas confinement by the 
weight of a thin shell of cold plasma of fixed mass 
corresponds to v = 2. The variation of the boundary 
shape with v is illustrated by the exact two-dimensional 
solutions for confining pressure laws corresponding to 
v = 4 and v = 2, which are shown in Figure 1. Shapes 
similar to these would be obtained by slicing through 
the corresponding three-dimensional magnetospheres 
in a plane containing the dipole axis. The solutions 
shown have been obtained analytically by conformal 
mapping (the solution for v = 4 is due to Cole and 
Huth 1959; the general mapping for arbitrary v and 
the solution for v = 2 are given in the Appendix). 
Although the shape of the corresponding three- 
dimensional magnetosphere will actually be slightly 
different, we expect the character of the variation with 
v to be the same. In either two dimensions (Z) = 2) or 
three dimensions (D = 3) the magnitude of B just 
inside the magnetospheric boundary is given by 

Bin = > (8) 
where 

Vs(0) ^ /*[rm(0)/rmT
2 - (9) 

In equation (9), /x is the dipole moment of the undis- 
torted field, rm° is the reference radius defined in § lib 
and the Appendix, and v is related to D byv = 2D — n. 

Arons and Lea (1976), for the case v = 3.5, and 
Midgley and Davis (1962), for the case v = 6, cal- 
culate,...using numerical methods, the shape of the 
magnetospheric boundary in three dimensions (see 
also Michel 1977). The radius re of the magnetospheric 
boundary at the magnetic equator and the radius rp of 
the boundary at the polar cusp, scaled in terms of the 
appropriate value of rm°, are given in Table 2 for these 
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Fig. 1.—The shape of the magnetospheric boundary for the two-dimensional model magnetospheres constructed in the Appendix. 
The models assume a power law confining pressure, P oc r~n, and are labeled by the index v = 4 — w. The full shape of the boundary 
may be obtained from the curve shown in the figure by reflection through both axes. 

three-dimensional model magnetospheres as well as 
for the two-dimensional model magnetospheres dis- 
cussed above. Note that the sizes and shapes of the 
two- and three-dimensional magnetospheres corre- 
sponding to the same value of v need not be the same. 
Thus comparisons between two- and three-dimensional 
models must be approached cautiously. Nevertheless, 
the results given in Table 2 can be summarized by the 
statement that the steeper the increase of plasma 
pressure with decreasing radius (i.e., the smaller v is), 
the farther the magnetic equator lies from the stellar 
surface and the more oblate is the overall shape of the 
cavity. 

d) Stability of the Magnetospheric Boundary 
The magnetohydrodynamic stability of these equi- 

librium magnetospheres can be determined using the 
energy principle of Bernstein et ai (1958). According 
to this analysis the magnetospheric boundary is stable 
to infinitesimal perturbations if 

SWs = Í dS(n0-m0-V(P0 - V/Stt) > 0 (10) 
Jsm 

for all perturbations Here Pq is the equilibrium 
plasma pressure outside the bounding surface Sm9 B0 
is the magnitude of the undisturbed vacuum magnetic 
field inside, and n0 is a unit vector normal to the 
interface which points into the vacuum region. 
Condition (10) neglects line-tying, viscous, and finite 
Larmor radius effects, and assumes that convection is 
absent in the plasma. As discussed by Bernstein et al. 
(1958) (see also Schmidt 1966), one can always find 
a Ç for which 8fVs < 0 if the inequality 

ho-VPo - ñ0-V(B0
2/87r) > 0 (11) 

is satisfied; this is therefore the condition for the onset 
of instability. A more detailed analysis, to be presented 
in Paper II, shows that this condition is not significantly 
altered when line-tying, viscous, and finite Larmor 
radius effects are taken into account. 

Using the equilibrium conditions VP0 = p0g and 
(V x B0) x B0 = 0, where p0 is the unperturbed mass 
density and g = —{GM!r2)r is the gravitational 
acceleration, and the relation ñ-(BQ'V)BQ = kB0

2
9 

where /c is the curvature of the magnetic field lines at 

TABLE 2 
Characteristic Radii of Model Magnetospheres 

Model Dimension rw°* v relrm
0J\ rPlrm°-f 

Arons and Lea 1976  3 rm
(0) 3.5 1.78 0.91 

Midgley and Davis 1962  3 rm
(6) 6 1.41 0.90 

Cole and Huth 1959   2 rm
<4) 4 1.33 0.67 

This work  2 rm
(2> 2 1.65 0.65 

* The scale factor rm(a) is defined in equation (6) while the scale factors rm
i2) and rm

(4) are defined in the Appendix; 
the scale factor rm

(6) is given by rm
(6) = [^2/87rP0]

1/6, where P0 is the (constant) pressure on the magnetospheric boundary. 
t As noted in the text, comparisons of the numerical values of re/rm° and rp[rm° for two- and three-dimensional 

magnetospheres should be approached cautiously. 
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the boundary, condition (11) may be conveniently 
rewritten 

gets: = COS xGMjrJ - KBin
2lAtTPoM > 0 . (12) 

Here x is the angle between the radius vector and the 
outward normal to the boundary, and we have neglected 
the force of radiation pressure. The first term in this 
expression represents the destabilizing effect of the 
weight of the plasma on the boundary, which tends to 
drive it Rayleigh-Taylor unstable, while the second 
term represents the stabilizing effect of the curvature 
of the field lines at the boundary, which are convex 
toward the plasma. If the boundary is in static equi- 
librium, as we have assumed, one has Bin

2¡$7T = 
+ Zre)]out, where n* is the ion number density 

and Ti and Te are the ion and electron temperatures. 
Since K is necessarily of order rm

_1 for rm » R, the 
stabilizing and destabilizing terms in expression (12) 
are comparable. If one uses the equation for static 
pressure balance at the boundary, condition (12) for 
the onset of the Rayleigh-Taylor instability can be 
rewritten 

(Ti + ZTXuv < Tc^(6) = a(6)TM6)], (13) 
where 

a(S) = cos xßKrm • (14) 

Prior to the onset of instability one typically has 
Ti = Te in the plasma at Sm (see § Y), and hence 
{Ti + ZTe)ont = (1 + Z)Tont. 

Figure 2 displays the function a{6) for the four model 
magnetospheres discussed earlier in this section. From 
this figure we conclude that these models have the 
following important properties in common: 

1) To the extent that rout oc rff(rm), the magnetic 
equator is the least stable point on the boundary. 

2) The polar cusps (8 = 0° and 180°) are absolutely 
stable to infinitesimal perturbations.1 Nevertheless, the 

1 The nonzero value of a at the polar cusp for the Midgley 
and Davis (1962) v — 6 magnetosphere is presumably an 
artifact of inaccuracies in their numerical treatment. 

boundary arbitrarily close to the cusp axes may be 
driven unstable if the temperature there becomes low 
enough or, equivalently, if the density there builds up 
sufficiently. 

3) The density of the plasma is sufficient to drive 
the magnetic equator unstable only if (1 + Z)T0VLt 
there is at a temperature below Tcrit(7r/2) which is 
typically ^0.4 T,

ff[rm(7r/2)]. Since, for example, forma- 
tion of a static atmosphere leads to an initial tempera- 
ture at the boundary given by 

(1 + Z)T0Ut X T0 = 51^1 Tii(rm) = 0.4 rff(0, 
r 

(15) 

where in the last expression on the right we have 
assumed y = 5/3, and since we expect real magneto- 
spheres to be characterized by an effective v < 3.5, at 
least some cooling is required before the weight of the 
plasma is sufficient to drive the boundary unstable. If 
accreting plasma is available and cooling is sufficiently 
rapid (see § V), the instability may continue. 

4) Since the function a{6) is relatively flat except 
near the cusps, instability may set in over a large 
fraction of the magnetospheric boundary if (1 + Z)T0Ut 

< T'crit occurs first at the magnetic equator. 
The onset of instability for (1 + Z)T?Vit < Tcrit also 

bears on the question of whether buildup of static 
plasma pressure at the boundary can crush the mag- 
netosphere to the surface of the star. If rm° ~ R, the 
magnetosphere is nearly crushed by the initial inflow 
of plasma, although in this case multipole moments 
of the stellar field other than the dipole moment are 
bound to be important in determining the shape of the 
magnetosphere, if only because of the distortion of the 
star’s magnetic field (recall §IIa). If on the other 
hand rm.° » R, the magnetosphere can be crushed only 
if the pressure of the plasma at the boundary becomes 
much larger than the free-fall ram pressure. For 

Fig. 2.—The parameter « = cos xßKrm as a function of colatitude 9 for the four model magnetospheres discussed in the text. The 
broken line refers to the two-dimensional model constructed in the Appendix whereas the solid line refers to the two-dimensional 
model of Cole and Ruth (1959). The open circles refer to the three-dimensional model of Arons and Lea (1976) and were obtained 
by reading from Fig. 3 of that work; the estimated reading error is comparable to the size of the circles. The filled circles refer to 
the three-dimensional model of Midgley and Davis (1962) and were calculated using their equation (9). 
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example, in order to force the cusps inward to r ~ R 
would require a pressure there 

^2 x W Kí11~
1ix30\MIM¿)~1í2Rq~112 

times the free-fall ram pressure of matter accreting 
at the rate til, where RQ is the stellar radius in units of 
106 cm. The pressure at the base of a static, adiabatic 
atmosphere changes little as the size of the atmosphere 
is increased, provided its gravitating mass is negligible 
and y is significantly greater than unity; in such a 
situation accumulation of plasma hardly changes rm. 
However, in any realistic situation the accumulation 
will end when the accretion radius ra is reached (in the 
case of exceedingly low densities) or cooling at the base 
of the atmosphere becomes sufficient that the matter 
there falls inward (in the case of moderate or high 
densities). If T’ont is typically ~0.1-0.3 Tff(rm), as it is 
for the model magnetospheres shown in Figure 2, the 
boundary will become Rayleigh-Taylor unstable before 
the density, and hence the pressure, has increased to 
more than a few times the free-fall value. Once 
instability occurs, inflow is likely to be rapid, halting 
any further buildup of pressure. Thus, it is very 
unlikely that the magnetosphere can be crushed by the 
weight of accumulated plasma. 

III. STEADY ACCRETION FLOWS 

Our analysis so far has been concerned with a static 
plasma atmosphere surrounding the neutron star 
magnetosphere. However, the essential feature of 
magnetic neutron star models of compact X-ray 
sources is plasma flow into the magnetosphere toward 
the stellar surface. In this section we assume a steady 
state and develop further the model outlined by LPP, 
considering conditions in the plasma approaching the 
magnetosphere, the scale and structure of the magneto- 
sphere, possible modes of plasma entry into the 
magnetosphere, and, briefly, plasma flow within the 
magnetosphere. 

In this discussion we shall make the following 
assumptions in addition to (l)-(4) stated at the begin- 
ning of §11: 

5) The stellar surface accretes mass at a rate tils 
equal to til. The accretion luminosity is then 

L = GMtif/R = 1.3 x IO37tifIM0)Re-1 ergs s'1. 

(16) 

6) Essentially all of the accretion luminosity is 
emitted in the form of X-rays from the surface of the 
star (Lx x L). 

7) The plasma in the neighborhood of the magneto- 
spheric boundary is exposed to these X-rays. 

8) The radiation temperature Tr, defined in § Va, 
of the X-rays is less than the critical temperature 
^crit> defined by equation (13). 

a) Flow toward the Magnetosphere 

As the plasma falls freely toward the magneto- 
spheric boundary at ~108-109 cm, the flow will 

typically be supersonic, as suggested by LPP. That 
this is so can be seen as follows. Since the plasma is 
exposed (by assumption) to X-rays from the star, the 
radiation heating and cooling time scales are short 
compared to the flow time scale, which is ~ t^ in this 
region (Buff and McCray 1974). In addition, the 
electron-ion energy exchange time scale te_i is com- 
parable to tff (cf. § V below). Therefore, the plasma is 
approximately in local thermal balance, and the 
electron and ion temperatures, Te and T{, are com- 
parable. 

In local thermal balance, the plasma temperature T 
is a function of the parameter 

Sr = L/ns2 = 4.6 x 106rQ-112AR6~1(M/Mq)312, (17) 

where 

ni = pffM 

= 2.2 x I0léA-1rQ-
3l2L3r7(M/Me)~3/2R6 cm“3. (18) 

For Çr > 104, Tis ~Tr, the radiation temperature of 
the X-rays (see Buff and McCray 1974, Fig. 1), which 
is typically ~107-108 K (Giacconi 1974). Thus the 
free-fall velocity (eq. [2]) at r ~ 108 cm is typically 
much greater than the ion thermal velocity, 

Vi == (SkaTi/mi)112 

= 1.6 x lOWlO8 K)1/2^-1/2 cm s"1, (19) 

and the flow is supersonic, although vif: at this radius 
is typically less than the electron thermal velocity, 

ve = (3/cBT>2e)
1/2 = 6.7 x 109(Te/108 K)1/2 cm s"1 . 

(20) 

Moreover, unless &2 ^ 47r/)ff%
2, which is unlikely 

(LPP, § II), the inflow velocity is also greater than the 
Alfvén velocity, rA' = (&2l47rpff)

112, in the embedded 
magnetic field &, and the flow is therefore super- 
Alfvénic in this sense. 

b) Scale and Structure of the Magnetosphere 

When there is plasma flow into the magnetosphere, 
its structure is necessarily more complex than that of 
the static configurations considered in the previous 
section. In particular, the static pressure balance 
equation (5) is no longer valid; instead, momentum 
balance and continuity of the normal component of 
the magnetic field across any surface S imply 

(£)*„+ Pin + {pv^ 

— + ^out + (^n2)out > (21) 

where pvn
2 is the dynamic pressure of the plasma in 

terms of its velocity component vn normal to the 
surface. To simplify the discussion of the magneto- 
spheric structure in the presence of flows, let us assume 
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that the magnetic field embedded in the accreting 
plasma can be neglected. 

Far from the star the stellar field will be screened out 
by currents induced in the infalling plasma. There is 
therefore a surface Sm, with radius rj^d, <£), beyond 
which the stellar magnetic field satisfies « 
F + pvn

2; outside the magnetospheric boundary Sm 
the flow of plasma is not appreciably influenced by the 
stellar field. On the other hand, sufficiently close to the 
star one expects the screening currents to be negligible, 
and the large-scale structure of the magnetic field to be 
essentially unaffected by the presence there of plasma. 
We suppose this region to be bounded by the surface 
Sq9 with radius r0(d,<l>). Thus the magnetopause, the 
region which contains the screening currents and in 
which the magnetic field may take up some of the 
momentum of the infalling plasma through j X B 
forces, has a thickness = rm — r0. Although the 
magnetic field inside S0 is unaffected by local currents, 
it is of course different from the undistorted stellar 
field because of the screening currents in the magneto- 
pause. 

In the presence of plasma flow into the magneto- 
sphere, the magnetopause is likely to be very much 
broader than the static magnetopause discussed in the 
previous section, which had a thickness 8m ^ If the 
magnetospheric boundary is stable, continuing micro- 
turbulence can lead to values of ~ 105 a*, while 
reconnection of strong, large-scale magnetic fields 
embedded in the accreting plasma to the stellar field 
can lead to Sm ~ rm (Paper III). If the boundary is 
Rayleigh-Taylor unstable, the nonlinear development 
of the instability could conceivably lead to 8m ~ rm 
(Paper II). 

When 8m « rm, the gravitational force acting on 
plasma within the boundary layer can be neglected, 
and hence equation (21) holds approximately with the 
left-hand side evaluated at r0 and the right-hand side 
at rm. If the magnetic field & embedded in the accreting 
plasma at rm satisfies @I2I%tt « pvu

2, the term (B2l%7r)0XiXi 
can be neglected. Then in the limiting case 

(P + pV2)iri « (Bt
2ßir)ln 

equation (21) reduces to equation (5) with Pout' = 
(P + pvn

2)out and Pout ^ 0. The scale rm° of the 
magnetosphere and the large-scale shape of the 
magnetospheric boundary are then the same as those 
of a static configuration with the same exterior 
pressure Pout'O*)- Obviously rm° and the shape of the 
magnetospheric boundary depend on the plasma flow 
pattern. For example, if little plasma accumulates 
outside the magnetosphere, one has Pout' ^ pffVn2 oc 
r~512 by momentum balance, and hence rm° £ rm

(a). 
Expressing this characteristic radius in terms of the 
accretion luminosity, one finds (cf. eq. [6]) 

rm
(a) = 2.9 x 108L37-

2/V304/7WMo)1/7P6-
2/7 cm. 

(22) 

The shape of the boundary should then be close to 
those of the v = 4 and v = 3.5 magnetospheres 
discussed in § II. 

c) Entry into the Magnetosphere 

By assumption (3) stated in § II, the supersonic flow 
of plasma toward the magnetospheric boundary is 
halted by a strong shock wave at rs = rm + As, where 
As is the standoff distance from the magnetospheric 
boundary. In a steady state As is determined by the 
requirement that the plasma en route from the shock 
front to the magnetospheric boundary have time to 
adjust to the flow boundary conditions at rm for 
acceptance of plasma at the accretion rate M. 

If the boundary is Rayleigh-Taylor stable, plasma 
can enter the magnetosphere via particle entry through 
the polar cusps, diffusion of plasma across the 
magnetopause, and magnetic flux reconnection. For 
each of these entry modes, the inflowing plasma auto- 
matically becomes threaded by the stellar field lines 
and is therefore effectively channeled along them; 
plasma flows primarily along field lines threading the 
magnetopause, implying that (P + pvn

2)in æ 0 at 
r < r0. Were these entry modes able to keep pace with 
the arrival of plasma at the boundary, with p ~ p{f 
and T ~ Tff, the standoff distance As would be small 
and a self-consistent flow of plasma across a stable 
magnetospheric boundary would be possible. How- 
ever, we argue in Paper III that except in circumstances 
which we believe to be unusual, when magnetic flux 
reconnection can “open” the magnetosphere, these 
modes are unable to keep up with the inflow of plasma. 

If these modes cannot keep pace, plasma will 
accumulate between rs and rm, causing As to increase. 
However, this cannot continue indefinitely: eventually 
the plasma at the boundary will cool and, according to 
the analysis presented in § II, when (1 + Z)T0VLt falls 
below ^Tcrit the boundary will become Rayleigh-Taylor 
unstable. Once hydromagnetic instability sets in, the 
magnetosphere accepts matter at a much larger rate; 
if cooling processes are sufficiently effective, the 
instability should continue and a steady flow may be 
possible. For the remainder of the present paper we 
shall assume that plasma enters the magnetosphere 
predominantly via Rayleigh-Taylor instability of the 
boundary. 

d) The Alfvén Surface 

The Rayleigh-Taylor instability does not, by itself, 
cause plasma to be threaded by stellar field lines but 
rather allows plasma to penetrate the magnetospheric 
boundary “between stellar field lines.” Although the 
inflow of accreting plasma is initially arrested at the 
magnetospheric boundary and, following the onset of 
instability, may continue to be slowed there, the plasma 
flow within the magnetosphere is unlikely to be 
channeled by the stellar field until either it is threaded 
by stellar field lines, after which the plasma flows along 
the field, or magnetic buoyancy forces become strong 
enough to appreciably channel the fall of plasma 
clumps or fingers between field lines. Let us therefore 
consider the extent of the region around the star in 
which the plasma flow is dominated by the stellar 
magnetic field. Following LPP we call the surface 
bounding this region the Alfvén surface and denote it 
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by SA. In this discussion, we assume that the transition 
layer at SA, in which the flow changes from being 
unchanneled by the stellar magnetic field to being 
channeled by it, is thin compared to the radius 
rA(0, <f>) of the Alfvén surface. When the magneto- 
spheric boundary is stable, the stellar field channels 
the flow of plasma along stellar field lines threading 
the magnetopause, and SA coincides with SQ; if 
8m « rm°, as is the case when the boundary is stable 
(unless reconnection of strong, large-scale embedded 
fields to the stellar field occurs), the surfaces Sm and SA 
nearly coincide. On the other hand, when the magneto- 
spheric boundary is Rayleigh-Taylor unstable, the 
extent to which the stellar field dominates the flow 
within S0 depends on the nature of the flow there; the 
surface SA obviously cannot lie outside S0 and could 
conceivably lie well within SQ. The plasma may or 
may not be threaded by the magnetic field, and it may 
be distributed homogeneously or it may be in the 
form of sinking clumps or narrow streams. 

If the magnetic field threads the plasma, then stable, 
field-aligned flow is possible only if 

Pv^<B2/4n, (23) 

where rh is the flow velocity parallel to the magnetic 
field (Lamb and Pethick 1974). Otherwise the plasma 
flow simply carries the magnetic field along and, since 
/oí;,I2 necessarily becomes «B2/4tt near the stellar 
surface, becomes unstable at the point where pv\\2 = 
B2/47r (see, for example, Williams 1975). Therefore, 
if the magnetic field threads the plasma on a time scale 
much shorter than the inflow time scale, the Alfvén 
radius rA is just the radius at which inequality (23) is 
first satisfied. If, for example, the plasma flow velocity 
along the field is and the cross-sectional area a of 
the flow is ~47rr2, then the equation of continuity, 
^ = pva, implies that p ~ pf{. Assuming B ~ 
one finds that the characteristic radius of the Alfvén 
surface is, for this particular flow, given by 

va - rA
(0) = 3.2 x 108^17-

2/7/x3o4/7(M/MG)-
1/7 cm 

= 3.5 x 108L37-
2/7/x304/7(M/Mo)1/7R6-

2/7 cm. 

(24) 

Therefore, if threading of the plasma by stellar field 
lines occurs quickly, and if this particular flow occurs, 
then SA will nearly coincide with SQ. However, we note 
that a priori there is no reason to suppose that the 
width, &p = rm — rA, of the zone between the magneto- 
spheric boundary and the Alfvén surface is equal to 
the width, Sm, of the magnetopause. In particular, if 
v ~ vif but a « 477r2, then rA will be smaller than 
rA

(0) and 8P may be larger than Sm. 
If the magnetic field does not thread the plasma, it 

can still influence the plasma flow through the action 
of stresses at the plasma-field boundary. For example, 
the gradient of magnetic pressure across a plasma blob 
results in a magnetic buoyancy force, Fm, proportional 
to V2?2/87t, that acts to oppose the downward pull on 
the blob by the gravitational force, Fg, which is pro- 

portional to pg. In Paper II we show that if a plasma 
blob formed in a dipole field has sufficient weight to 
begin to sink (i.e., if > Fm initially), its motion 
through the magnetic field depends on the rate of 
plasma cooling. If cooling is sufficiently rapid (so that 
the plasma can be described as having an effective 
adiabatic index y < 6/5), the blob may sink through 
the magnetosphere to the stellar surface, unless thread- 
ing halts its fall. If cooling is less rapid (so that 
y > 6/5), then there exists a radius rb at which Fm 
balances Fg, and inside which a falling plasma blob is 
decelerated. 

If threading is inefficient, there are at least two types 
of flow possible within the magnetosphere. First, 
plasma may sink all the way to the stellar surface 
without being threaded by stellar field lines or, if 
cooling is sufficiently rapid, being slowed by magnetic 
buoyancy forces. If this type of flow occurs, the Alfvén 
surface coincides with the stellar surface. Second, 
plasma may sink to a radius rt > R before being 
threaded by stellar field lines ; if cooling is sufficiently 
slow that a balance radius rb > R exists, then we 
expect rt > rb. Inside rt the plasma will flow along 
stellar field lines toward the polar magnetosphere 
where, if rt » R, it will form accretion columns and 
fall onto the stellar surface near the magnetic poles. If 
this type of flow occurs, and if the plasma is not 
channeled by the stellar field outside rt, then rA will be 
equal to rt and, if rt « rm°, the Alfvén surface will lie 
deep inside the magnetosphere. In this case 8P may be 
much larger than 8m. 

IV. APPLICABILITY OF THE PRESENT STUDY 

Two important assumptions made in the present 
study are (1) that the neutron star is rotating sufficiently 
slowly that the effects of rotation on the plasma flow 
can be neglected, and (2) that the accreting plasma 
approaches the magnetosphere in approximately 
spherically symmetric free fall. In this section we 
discuss briefly the conditions which must be met for 
these two assumptions to be valid and conclude that 
while they probably are not valid for the sources 
HerX-1, SMCX-1, and CenX-3, they may be valid 
for 3U 0900-40, A0535 + 26, A1118-61, and 
3U 1728 —24, and possibly also for some X-ray burst 
sources. 

a) Stellar Rotation 

The rotation of the star couples to the motion of the 
plasma at the Alfvén surface, where the stellar mag- 
netic field first channels the flow (§ III). Thus the 
effects of the star’s rotation on the flow can, to a first 
approximation, be neglected if the centrifugal force 
acting on plasma corotating with the star at rA is small 
compared to the force of gravity there. This is the case 
if the angular velocity of the star, Qs, satisfies Qs « 
£^0a) = ((/M/rA

3)1/2 (see, for example, Lamb and 
Pethick 1974) or, equivalently, 

rA « rc = (GM/QS
2)1/3 = 1.5 x 108P2/3(M/Afo)1/3 cm. 
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Therefore, the relative importance of stellar rotation 
can be described by the parameter 

^ Qs/0*(rA) . (25) 

If rA has approximately the value rA
(0) given by equa- 

tion (24), then ojs is given approximately by 

= 3.6P"1L37"
3/7/x30

6/7(M/Mo)"2/7R6"
3/7. (26) 

If rA ^ rA
(0), as we expect when the accretion flow 

outside the magnetosphere is approximately spheri- 
cally symmetric, radial free fall (recall § III), one finds 
œs = oj^XrJr^)312 ^ cüs

(0). Therefore, for the types 
of flow considered in the present study, ous

(0) « 1 is a 
sufficient condition for neglecting the effects of the 
star’s rotation on the accretion flow. 

and shear stresses. However, for Qs sufficiently small 
compared to Op(rA), Qp(r) must go through a maxi- 
mum at a radius ~rA; since the shear stress necessarily 
vanishes at this point, the inequality in this case be- 
comes an approximate equality (cf. LPP, § Vlè). For 
a given observed value of ts, inequality (28) provides a 
lower bound on Qp(rA) and hence on œp, namely, 

MRg2ilS 
p " titsrA

2aK(rA) ’ 
(29) 

Although the precise value of rA is unknown, the right- 
hand side of inequality (29) depends only weakly on it 
(ocrA~1/2), and hence an approximate lower bound on 
o)v can be obtained by setting rA = rA

(0). One then has 
ojp ^ a>p(0), where 

b) Plasma Orbital Motion 

The effects on plasma entry into the magneto- 
sphere due to orbital motion of the accreting plasma 
can, to a first approximation, be neglected if the angular 
velocity of the plasma, üp(r), is much less than Dx(r) 
throughout the region rA ^ r ^ rm. Since Q*(r) oc 
r -3/2 while üp(r) oc r~2 for free fall or ocr _3/2 for disk 
flow, we expect Qp/Q-K to be largest at the smallest 
radius where the orbital motion of the accreting 
plasma is not yet strongly affected by the stellar 
magnetic field. Now by definition the stellar magnetic 
field first channels the flow, bringing the accreting 
plasma into corotation with the star, at rA. Therefore, 
a convenient parameter that indicates the extent to 
which the accretion flow near the magnetospheric 
boundary departs from radial inflow is 

^ ^ ^a)/^0a) • (27) 

If Wp « 1, as may happen if the neutron star accretes 
plasma (e.g., from a stellar wind) that has insufficient 
angular momentum to form an accretion disk at 
r ^ rA (cf. Davidson and Ostriker 1973 ; Illarionov and 
Sunyaev 1975; Shapiro and Lightman 1976), and if in 
addition o>s « 1, the results of the present study are 
directly applicable. Unfortunately, the quantity Üp(rA) 
is less accessible to observation than is Qs. However, 
accretion of matter with even a small amount of angular 
momentum will cause Qs to change on a time scale 
short compared to tI — (I/tif)(dM/dI)9 the time scale 
for changes in Qs caused by the change in the stellar 
moment of inertia / (LPP, § VI6); one therefore has an 
observational probe of the size of orbital motion in the 
observed time scale, ts = QS/|QS|, for long-term 
changes in the angular velocity of the star. For a star 
accreting plasma with significant angular momentum, 
theory predicts that ts satisfies (see, for example, Ghosh, 
Lamb, and Pethick 1977) 

MRg
2ns 

tirA
2ap{rA) ’ 

(28) 

where Rg is the radius of gyration of the neutron star. 
The inequality results from the fact that the material 
stresses at rA may be partially canceled by magnetic 

(0) MRg2 

Mt&rA™2 to™ = 2.4 P“1 -i 

(30) 

Therefore, ajp(0) « 1 is a necessary condition for neglect- 
ing the effects of the plasma’s orbital motion on the 
accretion flow. 

c) Observed Sources 

Although many of the “steady” (i.e., nonbursting) 
compact X-ray sources in which periodic pulsations 
have so far not been detected may well be accreting 
neutron stars (Lamb 19756; Basko and Sunyaev 1976; 
Eisner and Lamb 1976a; Maraschi, Treves, and van 
den Heuvel 1976), and may even satisfy our model 
assumptions (1) and (2) above, the fact that no pulsa- 
tion periods or spin-up time scales are available for 
these sources means that it is at present impossible to 
determine whether or not our model assumptions (1) 
and (2) are satisfied for them. Similarly, even if one 
adopts the magnetic neutron star hypothesis for some 
of the X-ray burst sources, unless evidence of stellar 
rotation is detected in them there is no obvious way of 
knowing whether or not they satisfy our assumptions. 
Therefore, in seeking examples of sources which do 
satisfy our model assumptions we are forced to focus 
on the regularly pulsating sources. 

Table 3 presents estimates of oos
(0) and ojpi0) for seven 

such sources. In preparing these estimates we have 
assumed, for the sake of definiteness, M = 1.3 M0, 
P6 = 1.5, = 106 cm (cf. Pandharipande, Pines, 
and Smith 1976), and ^3o = 1; the estimated lumi- 
nosity that has been used is listed for each source. 
Table 3 indicates that the present study probably is 
not directly applicable to HerX-1, SMCX-1, and 
CenX-3, but could be directly applicable to 3U 
0900-40, A0535 + 26, A1118-61, and 3U 1728-24, 
if ajp is small for these sources (Eisner and Lamb 
1976a). If the sources 3U 0352 + 30, 3U 1223-62, 
and 3U 1813 — 14, which have recently been reported 
to be pulsating (White, Mason, and Sanford 1975; 
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TABLE 3 
Estimated Accretion Flow Parameters for Some Pulsating X-Ray Sources 

Parameter Her X-l SMC X-l Cen X-3 3U 0900-40 A0535 + 26 3U 1728-24 A1118-61 

P(s)  1.24a 0.716b 

L (1037 ergs s" ^... 6g 60b 

ts (yr)  3 x 105i 

a>s<0)  1.0 0.7 
a)<°>  0.02 

4.84a 

6a 

3 x 103i 

0.3 
0.4 

283° 
0.1h 

0.Ó3 

104d 

0.4(?) 

0.Ó4 

123® 
2(?) 

0.02 

405f 

5(?) 

0.ÓÓ3 

a Giacconi et al. 1974. The luminosity quoted for Cen X-3 is twice the 2-10 keV luminosity assuming a distance of 10 kpc. 
b Lucke et al. 1976. 
c McClintock et al. 1976. 
d Rosenberg et al. 1975. 
6 White et al. 1976 and Lewin et al. 1976. 
f Eyles et al. 1975 and Ives et al. 1975. 
E Compare McCray and Lamb 1976. 
h Rappaport, Joss, and McClintock 1976. 
1 Giacconi 1974. 

White et al. 1975), prove to be rotating neutron stars, 
the present study may also be directly applicable to 
them. 

d) Other Applications 

Our study also applies to accretion onto a magnetic 
white dwarf provided the mass accretion rate is low 
enough or the stellar magnetic field is strong enough 
that the inequality rm° » R is satisfied. If instead the 
condition rm° ~ R holds, then higher magnetic multi- 
pole moments can complicate the flow near the stellar 
surface and plasma may easily crush the magnetic 
field to the stellar surface along multipole axes. A 
well-defined magnetospheric cavity does not form 
under these conditions and our calculations therefore 
do not apply. 

Finally, we note that even in situations where the 
present calculations are not directly applicable, the 
flow may still resemble in certain respects the flow 
found here. Thus, if a slowly rotating star is fed by 
a thin disk that thickens near rm and the flow there 
becomes roughly spherically symmetric, it may re- 
semble the postshock flow of the present study. Even 
if the star is fed by a disk that remains thin at rm, the 
Rayleigh-Taylor instability may well play an important 
role in allowing the relatively cold disk plasma to 
penetrate the magnetosphere. In the case of accretion 
by a fast rotator, centrifugal forces as well as viscous 
and magnetic torques are important at the magneto- 
spheric boundary. Again, although our present 
calculations do not apply directly, they do represent 
a first step toward understanding this more com- 
plicated problem (see Eisner and Lamb 1976a for a 
discussion of accretion onto fast rotators and ways it 
is expected to differ from accretion onto slow rotators). 

V. HEATING AND COOLING OF PLASMA AT 
THE MAGNETOSPHERIC BOUNDARY 

In the present section we introduce the characteristic 
time scales of the heating and cooling processes 
dominant in the region between the shock front and 

the magnetospheric boundary and discuss their 
implications for the structure of the postshock layer 
both before and after the onset of the Rayleigh-Taylor 
instability at the boundary. The results of simple 
analytical and more sophisticated numerical calcula- 
tions of the steady postshock flow are presented in 
Paper IV ; here we introduce only those results from 
Paper IV relevant to the subject of this paper. 

a) Heating and Cooling Time Scales 

If the electron temperature Te greatly exceeds the 
temperature Tr of the radiation field (see below), 
nonrelativistic electrons cool via inverse Compton 
scatterings on a time scale (Weymann 1965) 

<31) 

The quantities aT and ur are the Thomson cross section 
and the radiation energy density, respectively. In the 
last expression on the right-hand side of equation (31), 
we have used ur = L/47rr2c, which is valid if the plasma 
in the postshock region is optically thin. In terms of 
ur and the spectral energy density ev, the temperature 
of the radiation field is (Levich and Sunyaev 1971) 

Tr = kB~1ur~
1 [ dvhvev. 

Jo 

The Compton cooling time scale tc is short compared 
to the dynamical time scale td at rm

{a) (cf. eqs. [3] and 
[22]) if 

L > 3 x 1036/x3o1/4(M/Mo)1/2i?6-1/8 ergs s"1 . (32) 

The electrons cool via electron-ion bremsstrahlung 
on a time scale (Allen 1973, p. 103) 

if Te/Ti > rnjin^ here g is the average Gaunt factor, 
of order unity. 
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The cooling processes we have discussed cool the 
electrons; if Ti » Te (see below), the ions lose their 
energy to the electrons on a time scale 

while the second inequality is satisfied if 

M « 102V3o2(M/M0)-
4(ln A/15)7/2 g s"1. (38) 

3meMi 
te-1 %(2-n)ll2Z2ei 

2.5 x 

i ¡k^e + ksTi)312 

ne In A \ me mi) 

1Q-g d ( »ein A W/ Te \ 
Z2\1016cm-3/ \108 K/ 

s . 

(34) 

In equation (34) In A is the Coulomb logarithm, and 
in the second expression we have assumed TJTi > 
me/rrii. 

In Paper IV (see also Arons and Lea 1976) we show 
that if a steady flow develops in the postshock zone 
following the onset of instability at the magneto- 
spheric boundary Sm, the electron temperature through- 
out most of the zone is typically determined by a local 
balance between heating due to collisions with ions 
and Compton cooling, and satisfies » Te y>Tr. The 
electron temperature is then 

re* ä 3.2 x 108(rs/108 cm)_1/5 

x (M/Mq)-1/5i?6
2/5(ln A/l5)2/5 K , (35) 

and the time scale for the electrons to cool the ions 
by collisions is of order 

te-* EE teJip\ T*) 

= 0.11L37
-1(rs/108 cm)6/5i?6"

2/5(ln A/15)" 2/5 s, 

(36) 

where p is the postshock mass density. 

b) Implications 

Prior to the onset of the Rayleigh-Taylor instability 
at the magnetospheric boundary, plasma is unable to 
enter the magnetosphere easily and therefore an 
increasingly extended atmosphere forms between the 
boundary and the shock front. Since little plasma 
accretes onto the neutron star’s surface during this 
phase of the accretion flow, the plasma is not bathed 
by a strong flux of X-rays, Compton cooling is in- 
effective, and the plasma there cools either by thermal 
conduction or by bremsstrahlung. However, a small- 
scale (scale Am « [me/md1'2/'™), tangled magnetic field 
of even moderate strength (à? ^ 1 gauss) is sufficient 
to inhibit conduction on the dynamical time scale 
(cf. Paper IV). In the discussion which follows we 
assume that thermal conduction can be neglected. 
Then tcool ~ thr, and after a time ~ t{f(rm) the atmos- 
phere near Sm settles into approximate hydrostatic 
equilibrium with Ti £: 7^ # (1 + Z)'1^ (see [15]), 
provided that thr » tif and ¿br » t^. Assuming 
Pout - PffVu2(r)9andr = rm

(a), and using equations (1), 
(2), and (6), one can show that for an electron-proton 
plasma the first inequality is satisfied if 

Kl « 1019/x3o" 1I3(M/Mq)1116 g s"1, (37) 

In deriving condition (38) we have used expressions 
(33) and (34), which are valid if the electrons are non- 
relativistic; since kBT0/2mec

2 ~ 1.4 for tif ~ 1020 g s"1, 
this condition is only approximately correct for such 
high accretion rates. 

Following the onset of the Rayleigh-Taylor in- 
stability at Sm, accretion onto the neutron star’s 
surface becomes possible and X-ray emission begins. 
Provided that the plasma at the magnetospheric 
boundary is then exposed to X-rays, it cools on the 
time scale ie_i* introduced above. The flow of energy 
in the postshock zone is then as follows: hot ions 
{Ti ~ [1 + Z]-1^) transfer energy to the cooler 
electrons (Te ~ Te*) in Coulomb collisions; the 
electrons, in turn, cool via inverse Compton scatterings 
with X-rays. In this way, the magnetospheric boundary 
may remain Rayleigh-Taylor unstable and plasma may 
continue to enter the magnetosphere. 

Whether or not a steady postshock flow is possible 
depends on the boundary conditions imposed by the 
nature of the unstable flow. Unfortunately, no reliable 
calculations of the Rayleigh-Taylor unstable flow in 
the nonlinear regime are yet available (the present 
state of knowledge and flow boundary conditions are 
discussed in Paper II). For the purposes of the present 
discussion we shall assume that the ions must cool to a 
temperature ~ TCTit by the time they reach rm, a simple 
model which is almost certainly qualitatively correct. 
This implicitly determines the standoff distance As. 
Since 7^(0)] would have the value 0.4 rff[rm(0)] 
(cf. eq. [15]) in the absence of cooling and since 
TCM2) < 0.4 rff[rm(7r/2)] for v ^ 3.5 (recall §W), 
this model implies that 

As x/critAC00l, (39) 

for a not too close to |, as shown in Paper IV. Here 
Acooi = v'te-i* is the postshock ion cooling length 
scale in terms of the postshock flow velocity v'y and 
/ent = 1 — (7"crit/-^Y)2 in terms of the postshock ion 
temperature TV. Since Compton scattering plays a 
crucial role in rapidly cooling plasma which is exposed 
to X-rays from the stellar surface, the possibility of a 
steady flow depends critically on the assumption 
Tr < Tcrit; were this not satisfied, the X-rays emitted 
when accreting matter reaches the stellar surface will 
tend to restabilize the magnetospheric boundary, 
which would then cut off the accretion flow into the 
magnetosphere (cf. Lamb et al. 1977). 

VI. DISCUSSION 

The results presented here together with those of 
succeeding papers imply that, for a wide range of 
conditions relevant to compact X-ray sources, the 
Rayleigh-Taylor instability is the most important 
plasma entry process. Thus the formation of a bright 
“steady” X-ray source under the conditions assumed 
in this study (radial inflow onto a slowly rotating star) 
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generally requires continuing Rayleigh-Taylor in- 
stability of the magnetospheric boundary. Similarly, 
if some of the bursting X-ray sources are neutron stars 
accreting under these conditions (Lamb et al. 1977), 
the high luminosities observed during bursts probably 
imply that the boundary is Rayleigh-Taylor unstable 
during this phase of their activity cycle. 

The results of § l\d show that under realistic condi- 
tions at least some cooling is required in order for the 
weight of the plasma to drive the boundary unstable. 
We note that this conclusion does not depend on the 
formation of a strong shock wave, but only on the 
heating of the plasma outside the magnetosphere to a 
temperature high enough that inequality (13) is not 
satisfied. Nevertheless, the magnetospheric boundary 
is probably initially close to instability at the magnetic 
equator. In any case, cooling is clearly required in 
order for plasma to enter the magnetosphere over a 
large fraction of its surface via this instability. 

If the magnetospheric boundary is initially Rayleigh- 
Taylor stable, as we expect, the plasma outside the 
magnetosphere cools slowly on the bremsstrahlung or 
thermal conduction time scale, and the density there, 
Pout» increases slowly on the same time scale. If 
thermal conduction is strongly inhibited by small-scale 
tangled magnetic fields, inequality (13) is violated for 
some value of 6 after a time of the order of the 
bremsstrahlung time scale and the boundary at that 
colatitude becomes locally Rayleigh-Taylor unstable. 
The exact value of d for which the boundary is first 
driven unstable depends on the balance between two 
competing factors: First, since the function a(0) has 
its maximum value at 0 = tt/2 whereas a(0) = «(tt) = 0 
(cf. Fig. 2), the plasma must lose the least amount of 
thermal energy at the magnetic equator in order to 
drive the boundary locally unstable, while it must lose 
essentially all of its energy in order to drive the 
boundary locally unstable close to the polar cusps. 
Second, the local bremsstrahlung cooling time scale is 
initially proportional to rm(0) for an adiabatic atmos- 
phere laid down by freely falling plasma, and it is 
therefore shorter near the polar cusps than it is at the 
magnetic equator. Thus if a(7r/2) is comparable to (but 
still smaller than) 0.4, so that only a little thermal 
energy must be radiated away in order to drive the 
equator unstable, the boundary will first be driven 
unstable near 0 = 7t/2, while if a(7r/2) « 0.4, the 
boundary will first be driven unstable nearer the polar 
cusps than the magnetic equator. 

If the conditions necessary for continued Rayleigh- 
Taylor instability of the magnetospheric boundary are 
met (a radiation temperature that is sufficiently low 
and a luminosity that is sufficiently high for effective 
Compton cooling, plus an adequate supply of matter), 
a steady accretion flow into the magnetosphere may 
be possible. However, once plasma flows across the 
magnetospheric boundary, inequality (13) is no longer 
a rigorous condition for stability of the boundary, as 
it was derived under the assumption that the plasma 
atmosphere outside the magnetosphere was static. 
Also, the boundary layer between the interior and 
exterior of the magnetosphere may broaden to a thick- 

ness 8m ~ rm after instability sets in, or significant 
amounts of plasma may build up in the outer portions 
of the magnetosphere. The plasma flow itself may alter 
the gross shape and stability of the boundary; indeed, 
it is not certain at present that the nonlinear develop- 
ment of the Rayleigh-Taylor instability is such as to 
permit a steady flow. Nevertheless, the force that 
drives and keeps the magnetospheric boundary 
Rayleigh-Taylor unstable is the weight of the plasma 
at the boundary, and the time scale for this weight to 
build up is sensitive to the rate of cooling of the plasma 
outside the magnetosphere. 

Once instability sets in and X-ray emission from the 
stellar surface begins, those portions of the boundary 
illuminated by X-rays will, under typical conditions, 
be driven and remain Rayleigh-Taylor unstable due 
to the very short Compton cooling time scale there. 
If X-rays from the stellar surface illuminate the mag- 
netospheric boundary uniformly, and if csie_i* < rm, 
where te.^ is the ion cooling time scale (cf. eq. [36]), 
we expect approximately radial flow into the magneto- 
sphere over virtually the entire boundary since even 
were the plasma flow velocity comparable to the local 
sound speed cs, it could only flow around a small 
fraction of the boundary before cooling to a tempera- 
ture that would satisfy inequality (13). In Paper IV 
we show that the condition cste_^ < rm, which is 
approximately equivalent to the condition As < rm, 
is satisfied if 

L > Lcrit ^ 2 x 1038(ys - l)
105/64(ys + 1)-91/32/¿so"3/16 

(ln A\ -7/16 

’IT) 

ergss-1, (40) 

where ys is the effective adiabatic index across the 
shock. If ys = 5/3, for example, inequality (40) is 
satisfied for L ~ 1037 ergs s-1. However, if L is much 
less than Lcrit, a substantial plasma “atmosphere” 
must exist outside the magnetosphere and significant 
nonradial motion of the plasma near rm may be 
expected, even if the illumination of the boundary is 
more or less uniform. 

On the other hand, if the X-rays from the stellar 
surface are narrowly beamed or if large portions of 
the boundary lie in the shadows of plasma streams 
within the magnetosphere (see Paper II), the pattern 
of flow across the boundary will be strongly affected 
and there is likely to be significant nonradial motion, 
since plasma is most likely to enter the magnetosphere 
over those portions of the boundary that are illumi- 
nated. If cc(7r/2) « 0.4, for example, plasma first enters 
the magnetosphere near the polar cusps. This plasma 
accretes onto the surface of the neutron star near its 
magnetic poles, and the resulting X-rays emitted from 
the polar caps may preferentially illuminate the polar 
magnetosphere. If this happens, plasma continues to 
enter the magnetosphere mainly in its polar regions. 
On the other hand, the X-rays may be emitted from the 
polar caps in a fan-shaped beam and may then 
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preferentially illuminate the equatorial magneto- 
sphere. If this happens, the boundary near 6 = tt/2 
will rapidly be driven Rayleigh-Taylor unstable, 
allowing plasma to enter there as well. Thus, under 
some conditions accretion onto the stellar surface of 
plasma entering the magnetosphere over a portion of 
the boundary may produce a comparatively narrow 
X-ray beam that illuminates previously stable portions 
of the boundary. If so, there would result a systematic 
variation in the zones of plasma entry and in the 
direction in which X-rays are beamed. Such a variation 
would be observed at Earth as a systematic time varia- 
tion in the X-ray flux. 

If significant nonradial flow occurs, the plasma 
pressure confining the magnetosphere is no longer a 
function of radius alone, and the stability and shape 
of the boundary may differ from that described in 
§§ II and III. One property of the magnetosphere that 
may lead to flows around the boundary is that, in the 
polar regions, the boundary lies deeper in the gravita- 
tional well of the neutron star than it does in the 
equatorial plane. Thus, for sources in which As ^ rm, 
plasma may have time to drain away from the magnetic 
equator into the polar cusps before it enters the 
magnetosphere, provided that there is sufficient cooling 
of the plasma to reduce the back pressures tending to 
halt such flow. If this type of flow occurs, a substantial 
fraction of the plasma may enter the polar magneto- 
sphere by means of Rayleigh-Taylor instability of the 
boundary there. 

We note that conditions in the flow outside the 
magnetospheric boundary can be such that a steady 
flow of plasma across the boundary is not possible. 
Lamb et al. (1977) examine various models in which 
unsteady flows may occur and apply these models to 
the bursting X-ray sources. Further development of 
their models may provide important insights into the 
conditions under which the magnetosphere of an 
accreting neutron star can accept plasma at a steady 
rate. 

Finally, we emphasize that under the conditions 
considered here (radial accretion onto a slowly rotat- 
ing neutron star), the Alfvén surface SA, within which 
the stellar magnetic field channels the flow, need not 
coincide with the magnetospheric boundary Sm, and 
could conceivably lie well within it (§ IIId). On the 
other hand, if one accepts the magnetic neutron star 
model of pulsating X-ray sources, the existence of 
strongly modulated pulsations in some sources 
(Giacconi 1974) and the order-of-magnitude agreement 
of observed spin-up time scales with theoretical values 
assuming rA ~ 108 cm (Eisner and Lamb 1976a) is 
evidence that, at least under some conditions, one can 
have rA » R. Clearly an important objective of future 
studies will be to develop more accurate estimates of 

VII. CONCLUDING REMARKS 

In the preceding sections we have described the 
formation of a magnetosphere around an accreting 
magnetic neutron star, and have analyzed the structure 
of such magnetospheres, both in static equilibrium 

and in the presence of plasma flow across the boundary. 
We have shown that the stability of the boundary is 
sensitive to heating and cooling of plasma outside the 
magnetosphere. Thus if accreting plasma enters the 
magnetosphere predominantly via Rayleigh-Taylor 
instability of the boundary, which we argue is usually 
the case, the zones of entry and the pattern of the flow 
can be greatly altered if the X-rays emitted from the 
stellar surface are strongly beamed. We have shown 
further that in the presence of plasma flow into the 
magnetosphere there are in general two important 
surfaces around the star : the magnetospheric boundary, 
Sm, outside which the stellar field is screened out, and 
the Alfvén surface, SA, inside which the matter flow is 
channeled by the magnetospheric field. We have also 
discussed the implications of these results for compact 
X-ray sources. 

The calculations presented in this and subsequent 
papers apply to accretion by a slowly rotating neutron 
star whenever the flow outside the magnetosphere 
approximates spherically symmetric radial inflow. 
Thus, our results apply directly to accretion onto such 
a star from a spherically symmetric cloud of gas around 
it, or from the stellar wind of a binary companion 
when the angular momentum of the accreted matter 
is too small to cause the formation of an accretion 
disk. These results may therefore be directly applicable 
to some observed “steady” X-ray sources, as discussed 
in § IV. For example, in Eisner and Lamb (1976a) we 
applied the results of this study to the long-period X-ray 
sources 3U 0900 — 40 and A0535 + 26 and suggested a 
possible explanation for the strong energy dependence 
of the pulse profiles observed in these sources. These 
results may also be directly relevant to some X-ray 
burst sources (see Lamb et al. 1977). 

In Paper II we shall present the results of our 
analysis of the Rayleigh-Taylor instability of the 
magnetospheric boundary and its consequences for 
steady accretion flows, using as a framework for our 
discussion the magnetospheric structure presented 
here. There we give the results of a normal-mode 
analysis of the onset of instability and a qualitative 
analysis of possible accretion flows within the magneto- 
sphere. 

In Paper III we shall consider the processes by which 
plasma outside may enter the magnetosphere when 
the boundary is Rayleigh-Taylor stable. These pro- 
cesses are particle entry through the polar cusps, 
diffusion of plasma across the magnetopause, and 
reconnection at the magnetopause of tangled magnetic 
fields embedded in the accreting plasma to the stellar 
magnetic field. In this investigation we make use of the 
results presented in this paper for the structure and 
stability of the magnetosphere together with specific 
models for each of these entry processes to show that 
in the absence of Rayleigh-Taylor instability, the 
magnetosphere is usually unable to accept matter at a 
rate equal to that at which it arrives at the boundary 
for conditions characteristic of bright binary X-ray 
sources. The only exceptions are situations, which we 
believe to be unusual, when magnetic flux reconnection 
can “open” the magnetosphere. We discuss the 
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implications of these results for both “steady” and 
bursting X-ray sources. In Paper IV we shall present 
analytical and numerical solutions for the flow and 
cooling of plasma between the standoff shock wave 
and the magnetospheric boundary, and discuss the 
implications for the production and beaming of X-rays. 
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APPENDIX 

THE SHAPE OF THE MAGNETOSPHERIC BOUNDARY 

The basic shape of the magnetospheric cavity created by a dipolar stellar magnetic field, as well as an idea of the 
way in which the shape differs for different scalings of confining pressure with radius, can be obtained from the 
equilibrium shapes and magnetic field structures of two-dimensional model magnetospheres. Field geometries 
similar to the ones in such models would be obtained by slicing through the corresponding three-dimensional 
magnetospheres in a plane containing the dipole axis. In the present Appendix we present exact, analytical solutions 
for two such models. In these models we assume that (1) the magnetospheric cavity is created by a line dipole, and 
(2) the magnetic field is confined by a cylindrically symmetric external pressure which has a power-law dependence 
on radius. The conformal mapping technique that we use here has been used previously by Cole and Huth (1959), 
Dungey (1961), and Hurley (1961a, b) in problems related to the shape of the geomagnetosphere. 

If coordinates x and y are chosen so that the dipole is at the origin and the j>-axis is parallel to the dipole axis, 
the undistorted magnetic field is 

B(x, y) = (x sin 20 + j; cos 2d)fjL,(r,)~2 , (Al) 

where x and y are unit vectors, 0 = tan " 1(ylx) is the polar angle measured from the y-axis, /x' is the dipole moment, 
and r' = (x2 + y2)112. The external pressure can be parameterized by the expression 

Pin^Poir'/ro)-". (A2) 

Since B2 # (r')-4* the two-dimensional analog of the quantity v defined in § II is v = 4 — n. Similarly, the two- 
dimensional analog of the reference radius rm° is 

(V) _ m 
JiilL' 
%7TP0r0

n 

l/v 
(A3) 

The equilibrium magnetic field structure can be obtained simply by conformal mapping if there exists a trans- 
formation which maps the (x, j)-plane onto the (a, 0)-plane, say, in such a way that the magnetospheric boundary 
in the (;t, j;)-plane, defined by the curve rm(0), is mapped onto a circle in the (a, j8)-plane. For arbitrary n < 4, 
the required transformation is 

a = [u cos (nd/2) + v sin («0/2)](r')~n/2 , (A4) 

ß = [ —w sin (nd/2) + v cos («0/2)](r')"n/2 , (A5) 

where u = By/B
2 and v = —Bx/B2. The coordinates a; and y satisfy Laplace’s equation on the (a, ß)-plane. The 

boundary conditions at the magnetospheric boundary rm(0) are (a) pressure balance, B(rm)2ß7T = P(rm), and 
(b) tangency of the magnetic field at the boundary, i.e., (By/Bx)m = (dy/dx)m, where the subscript m indicates that 
the equation holds only along the curve rm(0). In the (a, jS)-plane condition (b) becomes 

sin [(1 - n/2)0] - ^51' cos [(1 - n/2)0] = 0 , 

on on 
g sin [(1 -n/2)0] + g[(l -n/2)0] = 0. 

(A6) 

(A7) 

At r' = 0 the magnetic field B must approach the undistorted dipolar field, which is given by equation (Al). 
The solution for v = 4 has been given by Cole and Huth (1959): the magnetospheric boundary is the surface 

x = rm<«[sin(<¿/2)-isin(3¿/2)], (A8) 

y = rm
(4)[cos (<f>/2) - | cos (3^/2)], (A9) 
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where 0 < <£ < 47t, and the polar cusp is located at <£ = 0. For v = 2 the magnetospheric boundary is the surface 

a; = rm
(2) exp ^ cos (2^)] sin [i/j — % sin (20)], (A10) 

y = rm
(2} exp [—£ cos (20)] cos [0 — i sin (20)], (All) 

where — tt < 0 < tt, and the polar cusp is located at 0 = 0. 
Two interesting quantities are the radius at which the polar cusps close, rp = rm(0), and the radius of the magnetic 

equator, re = For v = 4, = 2rm
(4)/3 and re = 4rm

(4)/3, while for v = 2, rp = rm
i2)¡e112 and re = rm

i2)e112. 
The full curves rm(8) for the two solutions are shown in Figure 1. 
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Note added in proof.—The period derivatives of the pulsating sources 3U 0900 — 40, SMC X-l, 3U 1728 — 24 = 
GX 1+4, 3U 1223 — 62 = GX 301-2, and A0535 + 26 have recently been measured (Henry and Schreier 1977, 
Ap. J. Letters, 212, L13; Rappaport and Joss 1977, Nature, 266, 683; Primini, Rappaport, and Joss, preprint). The 
corresponding value of cop

(0) (see § IV and Table 3) is of order unity in each case except that of 3U 0900 — 40 for 
which one finds 6op

(0) # 0.06. The present study, which assumes that the accreting plasma approaches the magneto- 
sphere in approximately spherically symmetric free fall, is therefore directly applicable to 3U 0900 — 40 but probably 
not to the other four sources, where the angular velocity of the accreting plasma is apparently significant. However, 
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even in these four sources the Rayleigh-Taylor instability may well play an important role in allowing plasma to 
penetrate the magnetosphere (cf. § IW). The applicability of the present study to the pulsating sources Al 118 — 61, 
3U 0352 + 30, 3U 1813-14 = GX 17 + 2, 3U 1258-61 = GX 304-1 (McClintock et al., preprint), 3U 1626-67 
(Marker! et al, IAU Cire., No. 3054), and 3U 1538 — 52 (Becker et al, IAU C/rc., No. 3039) is as yet unknown. 
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