THE ASTROPHYSICAL JOURNAL, 211:L115–L119, 1977 February 1 © 1977. The American Astronomical Society. All rights reserved. Printed in U.S.A.

REDSHIFTS OF SOUTHERN RADIO SOURCES. II.

ALAN E. WRIGHT AND DAVID L. JAUNCEY Division of Radiophysics, CSIRO, Sydney, Australia

> BRUCE A. PETERSON Anglo-Australian Observatory

> > AND

JAMES J. CONDON

Department of Physics, Virginia Polytechnic Institute and State University Received 1976 October 6

ABSTRACT

Further redshifts, derived from observations with the image-tube dissector scanner on the 4 m Anglo-Australian telescope, are reported for 30 objects associated with Parkes radio sources. In-

cluded are redshifts for 25 QSOs and one QSO-galaxy pair.

Subject headings: galaxies redshifts — quasars — radio sources: general

I. INTRODUCTION

We present further observations from a continuing program designed to provide comprehensive optical and radio data for southern QSOs selected from the Parkes 2700 MHz survey. The aims of this program have been outlined in an earlier *Letter* (Peterson *et al.* 1976).

Briefly, two criteria are used to establish the optical identification with a Parkes source: (i) an optical-radio position coincidence, supported by an ultraviolet excess as shown by two-color photography (see, e.g., Shimmins *et al.* 1971) (this method is used for radio sources with positions of moderate [10"] accuracy); (ii) an optical-radio position coincidence alone for sources remeasured using the NRAO three-element interferometer (these positions have a typical accuracy of $\leq 2^{"}$ [Condon, Balonek, and Jauncey 1976]).

The use of these two criteria will allow an assessment of the effects of color selection in making QSO identifications.

II. OBSERVATIONS

The image-tube dissector scanner (Robinson and Wampler 1972) was used at the f/15 Cassegrain focus of the 4 m Anglo-Australian telescope (see Wampler 1975) to obtain spectral scans covering the wavelength range from about 3800 Å to 8000 Å with a resolution of about 10 Å. Scans of 37 objects were obtained, principally from observations on the nights of 1976 January 27 and 28, when the seeing disk did not exceed 1".5 and was normally less than 1". A small number of scans were also acquired on the nights of 1975 November 11, 12, and 26–29 under poorer seeing conditions.

Details are given in Table 1 for the 30 extragalactic objects for which redshifts could be determined. The positions given are normally accurate to about 8'', except where extra figures denote positions accurate to about 1". The magnitudes given are from the integrated spectrum scans and are accurate to about 0.3 mag: known optical variables are indicated by parentheses.

The radio flux densities are from the most recent Parkes measurements. In the "color" column, the letters UVX and BSO indicate objects with ultraviolet excess and blue stellar objects, respectively.

Details of the line identifications and strengths used to determine redshifts are given in Table 2. Values given in parentheses are of relatively low accuracy. The letter A against an observed wavelength denotes an absorption line. The line-to-continuum ratio is the excess height of the line above the continuum divided by the height of the continuum, and is thus negative for absorption features. (This differs from the definition given in Peterson *et al.* 1976.) The line width, $\Delta \lambda_{1/2}$, is the full width at half-maximum intensity. The notation NR implies that the line was not resolved by the instrument.

Apart from the objects given in Tables 1 and 2 for which we have determined redshifts, three other objects, 0301-234, 1216-010, and 0521-36 (see note in following section), were found to have essentially "continuous" spectra-i.e., no lines were observed at greater than 10% of the continuum. Two other objects observed were clearly stars: these are the object suggested as the identification for 0629-418 by Peterson and Bolton (1973) and the 13th mag object close to the radio position of 0937 - 328. For three sources a second object with an ultraviolet excess lies in the field. In two cases, 0506-61and 0642-349, this second object was also found to have a stellar spectrum. In the case of 0254-334 the second ultraviolet object was described in our earlier Letter (Peterson et al. 1976). It was reobserved in 1976 January to cover the red end of the spectrum. No further strong emission lines were seen.

III. NOTES ON INDIVIDUAL OBJECTS

0005-239, 0514-161. Redshifts have already been obtained by Wills and Wills (1976), and we confirm their values.

0222-00. The original identification with an SO

WRIGHT, JAUNCEY, PETERSON, AND CONDON

TABLE 1

OBJECTS WITH REDSHIFTS

Name	h	Po R./ m	osition A. s	(19 1	50) Dec.		Ident	z. m	Z	S ₂₇₀₀ (Jy)	S ₅₀₀₀ (Jy)	Colour	Finding chart ref.*
0005-239 0150-334 0222-00 0338-214 0355-483	00 01 02 03 03	05 50 22 38 55	27.43 57.8 35.02 23.23 52.57	-23 -33 -00 -21 -48	56 24 49 09 20	00.0 57 02.0 07.6 50.2	Q Q Q G? Q	17.2 18.6 18.4 15.6 16.9	1.407 0.610 0.687 0.048 1.005	0.58 0.92 0.68 0.82 0.61	0.53 0.86 0.42 0.94 0.57	UVX Neutral Neutral UVX	A B C A D
0422-380 0448-392 0454+039 0506-61 0514-161	04 04 04 05 05	22 48 54 06 14	55.6 01.3 08.72 08.55 01.09	-38 -39 +03 -61 -16	03 16 56 13 06	02 20 16.5 33.1 22.2	Q Q Q Q Q Q Q Q Q	(16.5) (18.0) 17.0 17.5 17.1	0.78 1.288 1.345 1.093 1.278	$0.49 \\ 0.90 \\ 0.40 \\ 1.89 \\ 0.80$	0.81 0.87 0.42 2.05 0.74	UVX UVX UVX UVX	E F G
$\begin{array}{c} 0528-250\\ 0602-319\\ 0622-441\\ 0642-349\\ 0723-008 \end{array}$	05 06 06 06 07	28 02 22 42 23	05.24 22.5 02.70 36.8 17.86	-24 -31 -44 -34 -00	05 55 11 56 48	43.0 48 24.2 36 54.6	Q Q Q Q N	17.7 18.3 16.6 18.5 17.8	2.805 0.452 0.688 2.165 0.127	1.25 1.89 0.77 1.07 3.03	1.13 1.25 0.84 1.00 2.25	RED UVX UVX UVX Neutral	H G B G J
0819-032 0906+01 0959-443 1101-325 1103-006	08 09 09 11 11	19 06 59 01 03	09.54 35.16 58.91 08.2 58.07	- 03 + 01 - 44 - 32 - 00	13 33 23 35 36	38.8 48.0 25.1 05 37.7	Q Q Q Q Q	(18.2) 17.3 15.5 15.4 15.4	2.352 1.020 0.840 0.3545 0.426	0.42 1.20 0.87 0.93 0.68	0.26 1.01 0.81 0.73 0.42	BSO UVX UVX UVX UVX	K L B F
1146-037 1157+014 1158+007 1203+011 1205-008/Q	11 11 11 12 12	46 57 58 03 05	23.9 10.99 50.1 14.4 07.90	-03 +01 +00 +01 -00	47 28 44 10 49	30 51.0 54 54 54.8	Q Q Q Q Q	16.4 (17.0) 19.0 18.2 18.6	$\begin{array}{c} 0.341 \\ 1.986 \\ 0.325 \\ 0.104 \\ 1.002 \end{array}$	$\begin{array}{c} 0.39 \\ 0.14 \\ 0.26 \\ 0.13 \\ 0.11 \end{array}$	0.29	UVX BSO UVX UVX	F M M F M
1205-008/G 1215+013 1240-294 2326-477	12 12 12 23	05 -15 40 26	07.7 54.11 30.05 33.6	-00 +01 -29 -47	49 19 26 46	45 18.1 57.7 52	G G? Q Q	17.5 17.4 17.3 17.0	0.306 0.118 1.135 1.302	0.10 0.57 2.48	0.41 2.36	UVX UVX	M M G D

*Finding Chart references: A, Bolton, Shimmins, and Wall (1975); B, Peterson and Bolton (1973); C, McEwan, Browne, and Crowther (1975); D, Wall and Cannon (1973); E, Peterson and Bolton (1972); F, Bolton and Wall (1970); G, Peterson, Bolton, and Shimmins (1973); H, Jauncey, Wright, and Peterson (1976); J, Browne, Crowther, and Adgie (1973); K, Browne and McEwan (1972); L, Bolton, Shimmins, and Merkelijn (1968); M, Condon, Balonek, and Jauncey (1976).

galaxy given by Bolton and Ekers (1967) is incorrect (McEwan, Browne, and Crowther 1975).

0422-380. Only the Mg II line was seen with a good signal-to-noise ratio. However, the presence of a shallow trough extending shortward of the emission line is typical of this region in other QSO spectra, and this, together with the presence of the other weaker lines, supports the identifications given.

0338-214. This object appears stellar, and its radio flux density increases to higher frequencies, suggestive of a QSO. However, the presence of the MgH absorption feature, the low redshift, the neutral color, and a rather steep optical spectrum suggest that it is a very compact galaxy.

0521-36. Spectra for this object have been obtained by Westerlund and Stokes (1966) and Searle and Bolton (1968). They describe it as a galaxy with a redshift of about 0.06. The spectrum now appears to be essentially continuous.

0528-250. This object appears to have no emission lines but a particularly rich absorption spectrum showing over 20 lines. It will be described in more detail in a separate paper. Only the most prominent absorption lines are used here to obtain the redshift.

0602-319. The [O III] line at an observed wavelength

of 6336 Å is contaminated by the O I λ 6300 and λ 6364 night-sky lines.

0723-008. A redshift has been obtained for this object by Strittmatter *et al.* (1974), and we confirm their value. However, a strong emission line at a rest wavelength of about 4785 Å remains unidentified.

0906+01. A redshift has already been obtained by Burbidge and Strittmatter (1972), and we confirm their value.

1103-006. [O II] $\lambda 3727$ is predicted at an observed wavelength of about 5320 Å but was not seen. This implies a line-to-continuum ratio of less than 0.08.

1157 + 014. This object was observed on two nights. The C IV λ 1549 line is strongly self-absorbed to the blue side, making accurate estimation of the observed center wavelength difficult.

1203 \div 011. The [O III] λ 5007 line at an observed wavelength of 5563 Å is contaminated by the O I λ 5577 night sky line. This probably explains why it appears weak relative to [O III] λ 4959. In spite of the very low redshift, the stellar appearance, an inverted radio spectrum, and an ultraviolet excess indicate that the identification of this object with a QSO rather than a galaxiis correct.

1205-008. The QSO and galaxy are separated by

Name	Mean z	Obs. λ (Å)	Ident.	Emitted λ (Å)	Z	Line-to- continuum ratio	Δλ ₁₂ (Å)
0005-239	1.407	(3730) 4605 5557 6750 (6832)	C IV C III] C II] Mg II [A IV]	1549 1909 2326 2798 2860	(1.408) 1.412 1.389 1.412 1.389	0.7 0.40 0.18 0.45 0.2	80 (120) 130 110 (40)
0150-334	0.610	(3780) 4505 4793 5550 5610 5990 6930	C II] Mg II [Ne V] [Ne V] N IV [Ο ΙΙ] Ηγ	2326 2798 2974 3426 3485 3727 4340	(0.625) 0.610 0.612 0.620 0.610 0.607 0.597	0.5 0.59 0.2 0.5 0.4 0.3 0.6	(30) 100 (20) 25 25 65 30
0222-00	0.687	(4703) (5032) 6284 (6525) (8460)	Mg II [Ne V] [O II] [Ne III] [O III]	2798 2974 3727 3869 5007	(0.68) (0.69) 0.686 (0.686) (0.69)	(0.55) (0.30) 0.71 0.32 0.8	200 35 20 50 50
0338-214	0.048	5110 A 5510 A 6875 A	Ηβ Mg Η Hα	4861 5269 6563	0.051 0.046 0.048	-0.1 -0.1 -0.2	(40) (50) 50
0355-483	1.005	5610 (5730)	Mg II [A IV]	2798 2860	1.005 (1.003)	0.38 (0.1)	110
0422-380	0.78	4982 6083 (6540)	Mg II [Ne V] [O II]	2798 3426 3727	0.781 0.776 (0.755)	$0.15 \\ 0.08 \\ 0.12$	60 50 50
0448-392	1.288	4360 6420	C III] Mg II	1909 2798	1.284 1.294	0.77 0.45	80 80
0454+039	1.345	4490 4830 A 5210 A	C III] ? ?	1909	1.352	0.20	50
0506-61	1.093	4003 5850 (6228)	Mg II C III] Mg II [Ne V]	1909 2798 2974	1.097 1.091 (1.094)	(0.40) 0.32 0.16	(75) 150 NR
0514-161	1.278	4350 6380 6645 6778	C III] Mg II [Mg V] [Ne V]	1909 2798 2931 2974	1.279 1.280 1.267 1.279	0.35 0.56 0.23 0.21	100 120 75 30
0528-250	2.813	4543 A (4633 A) 4801 A 4964 A 4081 A 4809 A 5901 A	Si II Ly α Si II Si II C II Si II C IV	1194 1216 1260 1304 1335 1527 1549	2.814 2.813 2.814 2.811 2.813 2.813 2.813 2.813	-0.52 -0.94 -0.32 -0.40 -0.36 -0.25 -0.27	NR (100) NR NR NR NR 25
0602-319	0.452	4997 5411 5613 5766 6336 7190 7272	[Ne V] [O II] [Ne III] [Ne III] [O III] [O III] [O III]	3426 3727 3869 3970 4363 4959 5007	0.459 0.452 0.451 0.452 0.452 0.452 0.450 0.452	$\begin{array}{c} 0.10\\ 0.32\\ 0.28\\ 0.17\\ (0.19)\\ 0.30\\ 1.00 \end{array}$	50 50 60 (100) 50 50
0622-441	0.688	(3970) 4710 4790 5466 5680 (8146)	C II] Mg II [A IV] He II [Ne V] Hβ	2326 2798 2860 3203 3346 4861	(0.71) 0.683 0.675 0.707 0.698 (0.68)	(0.2) 0.46 0.08 0.07 0.08 (0.5)	- 80 50 70 NR (80)
0642-349	2.165	3839 3934 4900 5185 6050	Ly a N V C IV He II C III]	$1216 \\ 1240 \\ 1549 \\ 1640 \\ 1909$	2.157 2.173 2.163 2.162 2.169	2.20 0.34 0.89 0.20 0.31	60 70 50 20 130
0723-008	0.127	(4200) 5392 A 5491 5585 5643 7394	[Ο II] ? Ηβ [Ο III] [Ο III] Ηα	3727 4861 4959 5007 6563	(0.13) 0.130 0.126 0.127 0.127	(0.5) 0.55 0.20 0.38 0.84 0.50	- 35 70 30 30 80

TABLE 2

(5)

(6)

(7)

(8)

DETAILS OF INDIVIDUAL SPECTRA

(4)

(1)

(2)

(3)

TABLE 2-Continued

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
0819-032	2.352	4080 4708 5193 (5498) 6390	Ly α Ο IV] C IV He II C III]	1216 1406 1549 1640 1909	2.355 2.349 2.352 (2.352) 2.347	4.1 0.26 1.56 (0.18) 0.33	80 150 70 (80) 130
0906+01	1.020	(3870) 5648	C III] Mg II	1909 2798	(1.027) 1.019	(0.5) 0.34	(100) 110
0959-443	0.840	5177 (5261) (5325) 5459 6087 6277	Mg II [A IV] [Mg V] [Ne V] [Ne V] [Ne V]	2798 2860 2931 2974 3346 3426	0.850 (0.840) (0.817) 0.836 0.819 0.832	$\begin{array}{c} 0.37 \\ 0.16 \\ (0.1) \\ 0.14 \\ 0.10 \\ 0.07 \end{array}$	150 (50) (50) 50 70 70
1101-325	0.3545	$\begin{array}{c} 3790\\ 4650\\ 4722\\ 4920\\ 4985\\ 5051\\ 5246\\ 5379\\ 5560\\ (5903)\\ 6345\\ 6410\\ 6591\\ 6717\\ 6782 \end{array}$	Mg II [Ne V] N IV He I He II blend [O II] [Ne III] Hε Hδ Hγ + [O III] Hβ [O III] [O III] [O III]	2798 3426 3485 3643 (3688) 3727 3869 3970 4102 (4350) 5686 4740 4861 4959 5007	$\begin{array}{c} 0.3545\\ 0.3573\\ 0.3539\\ 0.3535\\ 0.3552\\ 0.3559\\ 0.3559\\ 0.3554\\ (0.356)\\ 0.3540\\ 0.3523\\ 0.3523\\ 0.3559\\ 0.3545\\ 0.3545\\ \end{array}$	$\begin{array}{c} 0.6\\ 0.26\\ 0.13\\ 0.13\\ 0.11\\ 0.18\\ 0.24\\ 0.12\\ 0.23\\ (0.3)\\ 0.11\\ 0.14\\ 1.46\\ 1.29\\ 3.25 \end{array}$	(50) 50 60 80 NR 50 (100) 60 50 90 NR NR
1103-006	0.426	3995 6191 6939 (7065) 7124	Mg II Ηγ Ηβ [O III] [O III]	2798 4340 4861 4959 5007	0.428 0.426 0.427 (0.425) 0.423	0.62 0.30 0.29 0.13 0.40	$100 \\ 110 \\ 100 \\ - \\ 60$
1146-037	0.341	(3755) 4479 4602 (4670) 5003 5188 5236 (5459) 5820 6509 6643 6711	Mg II [Ne V] [Ne V] [N IV [O II] ? Hô HY + [O III] HB [O III] [O III]	2798 3346 3426 3485 3727 4102 (4350) 4861 4959 5007	$(0.34) \\ 0.339 \\ 0.343 \\ (0.340) \\ 0.342 \\ 0.331 \\ 0.338 \\ 0.339 \\ 0.340 \\ 0$	$(0.5) \\ 0.16 \\ 0.20 \\ (0.1) \\ 0.30 \\ 0.52 \\ 0.22 \\ 0.13 \\ 0.20 \\ 0.60 \\ 1.75 \\ 5.81 \\ (0.5) \\ 0.16$	30 25 (100) NR 40 50 - (110) 60 25 25
1157+014	1.986	4640 5685	C IV C III]	$1549 \\ 1909$	1.995 1.978	0.26	170
1158+007	0.325	(4525) 4956 6631	[Ne V] [O II] [O III]	3426 3727 5007	(0.32) 0.330 0.324	(0.4) 0.35 0.50	(120) 80 120
1203+011	0.104	(4110) 5414 5491 5563 7290	[Ο ΙΙ] Ηβ [Ο ΙΙΙ] [Ο ΙΙΙ] Ηα	3727 4861 4959 5007 6563	(0.103) 0.114 0.093 0.111 0.111	(0.5) 0.44 0.29 (0.2) 0.75	40 30 30 (60)
1205-00 8/ Q	1.002	5601	Mg II	2798	1.002	0.65	80
1205-008/G	0.306	5119 A 5168 A 6378 (6530)	K-Ca II H-Ca II Hβ ΄ [O III]	3933 3967 4861 5007	0.302 0.303 0.312 0.304	-0.37 -0.33 0.25 0.13	35 60 100 (30)
1215+013	0.118	(4150) 5432 5547 5597 7345	[Ο ΙΙ] Ηβ [Ο ΙΙΙ] [Ο ΙΙΙ] Ηα	3727 4861 4959 5007 6563	(0.113) 0.117 0.119 0.118 0.119	(0.4) 0.21 0.1 0.34 0.36	- 25 25 25 50
1240-294	1.135	(4060) 5985 6065 6130	C III] Mg II [A IV] [A IV]	1909 2798 2854 2869	(1.127) 1.139 1.136 1.137	0.47 0.43 0.1 0.1	80 90 -
2326-477	1.302	(4400) 6435	C III] Mg II	1909 2798	(1.305) 1.300	0.27 0.40	(75) 80

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

REDSHIFTS OF SOUTHERN RADIO SOURCES

only 9".4. However, if both objects were at the distance, of the galaxy, assuming a Hubble constant of 75 km s⁻¹ Mpc^{-1} , the projected linear separation would be 56 kpc. This is about a factor of 4 larger than that found for other OSO-galaxy associations (see, e.g., Burbidge, O'Dell, and Strittmatter 1972).

1215+013. The [O III] λ 5007 line at an observed

Bolton, J. G., and Ekers, J. A. 1967, Australian J. Phys., 20, 109. Bolton, J. G., Shimmins, A. J., and Merkelijn, J. K. 1968, Aus-tralian J. Phys., 21, 81.

Bolton, J. G., Shimmins, A. J., and Wall, J. V. 1975, Australian J. Phys. Ap. Suppl., No. 34. Bolton, J. G., and Wall, J. V. 1970, Australian J. Phys., 23, 789. Browne, I. W. A., Crowther, J. H., and Adgie, R. L. 1973, Nature, 244, 146.

Browne, I. W. A., and McEwan, N. J. 1972, Nature Phys. Sci., 239, 101.

Burbidge, E. M., and Strittmatter, P. A. 1972, Ap. J. (Letters), 174, L57

Burbidge, G. R., O'Dell, S. L., and Strittmatter, P. A. 1972, Ap. J., 175, 601.

Condon, J. J., Balonek, T. J., and Jauncey, D. L. 1976, A.J., in press.

Jauncey, D. L., Wright, A. E., Peterson, B. A., and Condon, J. J. 1976, in preparation.

wavelength of 5597 Å is possibly contaminated by the O I λ 5577 night sky line.

The red color of this object, a curved optical continuum spectrum, and the low redshift suggest that it is a very compact galaxy.

J. J. C. acknowledges partial support from NSF grant AST 7511139.

REFERENCES

- McEwan, M. J., Browne, I. W. A., and Crowther, J. H. 1975, Mem. R.A.S., 80, 1.
- Peterson, B. A., and Bolton, J. G. 1972, Ap. Letters, 10, 105.
- Peterson, B. A., Bolton, J. G., and Shimmins, A. J. 1973, Ap. Letters, 15, 109.
 Peterson, B. A., Jauncey, D. L., Wright, A. E., and Condon, J. J. 1976, Ap. J. (Letters), 207, L5.
 Robinson, L. B., and Wampler, E. J. 1972, Pub. A.S.P., 84, 161.
 Searle, L., and Bolton, J. G. 1968, Ap. J. (Letters), 154, L101.
 Shimmins, A. J., Bolton, J. G., Peterson, B. A., and Wall, J. V. 1971, Ap. Letters, 8, 139.
 Strittmatter, P. A. Carswell, R. F., Gilbert, G., and Burbidge.

- No. 31.
- Wampler, E. J. 1975, Sky and Tel., 50, 224.
- Westerlund, B. E., and Stokes, N. R. 1966, Ap. J., 145, 354. Willis, D., and Wills, Beverley J. 1976, Ap. J. Suppl., 31, 143.

JAMES J. CONDON Virginia Polytechnic Institute and State University, Department of Physics, 325 Robeson Hall, Blacksburg, VA 24061

DAVID L. JAUNCEY Care of CSIRO, Division of Soils, P.O. Box 639, Canberra, A.C.T. 2601, Australia

BRUCE A. PETERSON Anglo-Australian Observatory, P.O. Box 296, Epping, N.S.W. 2121, Australia

ALAN E. WRIGHT Australian National Radio Astronomy Observatory, P.O. Box 276, Parkes, N.S.W. 2870, Australia