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A finite-size particle scheme for the numerical solution of two- and three-dimensional 
gas dynamical problems of astronomical interest is described and tested. The scheme 
is then applied to the fission problem for optically thick protostars. Results are given, 
showing the evolution of one such protostar from an initial state as a single, rotating 
star to a final state as a triple system whose components contain 60% of the original 
mass. The decisiveness of this numerical test of the fission hypothesis and its relevance 
to observed binaries are briefly discussed. 

INTRODUCTION 

The hypothesis that fission is the mechanism 
by which close binaries are formed has regained 

favor in recent years. Those responsible for this revival 
(Lynden-Bell 1964, 1965; James 1964; Stoeckly 1965; 
Roxburgh 1966; Bodenheimer and Ostriker 1970; Le- 
bovitz 1972, 1974) have rebutted earlier theoretical 
objections (see also Ostriker 1970) and have discussed 
the hypothesis in the context of our current under- 
standing of pre-main-sequence evolution. The' early 
history of the fission hypothesis and the related investi- 
gations into the figures of equilibrium of rotating liquids 
has been summarized by Chandrasekhar (1969). 

Although fission is now commonly considered to be 
the most likely explanation for the existence of close 
binaries, the hypothesis cannot be regarded as proved 
until the evolution of a rotating protostar has been fol- 
lowed from an initial state as a single star to a final state 
as a detached binary system. This is a formidable prob- 
lem, however, since it requires the ability to compute the 
three-dimensional motion of a self-gravitating, com- 
pressible gas. Fortunately, some simplifying circum- 
stances make it less than forbidding. First, the high 
frequency of close binaries over a wide mass range surely 
implies that no special characteristics of the properties 
of stellar matter are essential to binary formation; con- 
sequently, these properties need not be treated accu- 
rately. 

A second and crucial simplification concerns the 
spatial resolution of the calculation. Because the initial 
departure from axial symmetry is due to the onset of 
dynamical overstability for a mode of low order, we 
might reasonably hope that the subsequent evolution can 
be adequately followed with a low-resolution description 
of the protostar’s structure. If this is indeed so, the 
problem can be tackled with present-day computers. 

On the assumption, therefore, that a decisive test of 

the fission hypothesis might be provided by a three- 
dimensional gas dynamical calculation of low spatial 
resolution, the bulk of this paper is devoted to describing 
(Sec. II) and testing (Sec. Ill) a numerical scheme for 
carrying out such calculations. This scheme is then used 
(Sec. IV) to follow the contraction of a rotating protostar 
and results illustrating the fission mechanism are ob- 
tained. 

I. ASSUMPTIONS AND EQUATIONS 

In this section, after stating our assumptions, we derive 
the basic equations in the form used when applying the 
numerical technique of Sec. II. 

(a) Assumptions. A rotating, axisymmetric, optically 
thick protostar of homogeneous composition will be the 
starting point of the calculation, and this protostar’s 
evolution will be followed up to and beyond the point of 
instability to a nonaxisymmetric perturbation. To ensure 
that contraction does not halt prior to this point, energy 
generation by nuclear burning will be omitted. Ac- 
cordingly, the basic equations are those describing the 
motion of a self-gravitating, compressible gas with en- 
tropy changes occurring only as a result of radiative 
conduction. 

In accordance with the argument that the detailed 
properties of stellar matter cannot be of decisive im- 
portance, we assume that the matter is a fully ionized 
perfect gas and that radiation pressure may be neglected; 
the ratio of specific heats 7 and the mean molecular 
weight p are then constants. In addition, we assume that 
the opacity k is independent of state váriables. 

(b) Units. In the interest of computational accuracy, 
it is useful to express dimensions in terms of a time- 
dependent length scale R(t) chosen so as to largely 
eliminate the protostar’s contraction. We also adopt M, 
the protostar’s mass, as the unit of mass, r* = (R3/ 
GM)1/2 as the unit of time, and T* = (pmn/k)(GM/R) 
as the unit of temperature. In terms of these basic units, 
we now take R/r* to be the unit of velocity, 1 /r* to be 
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1014 L. B. Lucy: Fission hypothesis 

the unit of angular velocity, GM/R to be the unit of 
potential, M/R3 to be the unit of density, GM2/R4 to 
be the unit of pressure, and F* = (16/3)(R2/kM)(aTÍ) 
to be the unit of radiative flux. 

(c) Equations. With all quantities expressed in terms 
of these time-dependent units, the rates of change of the 
position r and velocity v of an element of gas are given 
by the equations 

lL(R-\/2y)= R-\/2 (-Lxjp (1) 
dr \ p / 

£ {Rr) = R\, (2) 

where 0, the gravitational potential, satisfies Poisson’s 
equation, 

V2</> = 47rp. (3) 

If we now define 

S = (y-l)-'\n(P/py) (4) 

as a specific entropy variable, its rate of change following 
an element of gas is given by the equation 

r(f+x^r) = -pv-F’ (5) 

where x =: (3y — 4)/(y — 1) and 47tX = t*/(GM2/RL*) 
with L* = 4ttR2F*. For the radiative flux F, we adopt 
the usual conductivity approximation, 

T3 

F = VT, (6) 
p 

since the protostar is assumed to be optically thick. 
The system of equations is completed by the equation 

of state, 

P=pT. (7) 

The equation of continuity is omitted since the adopted 
numerical scheme (Sec. II) conserves mass automati- 
cally. 

As initial conditions, we must specify v, S, and p as 
functions of position at r = 0. As boundary conditions, 
we require that 

|V0| |r|-2 as |r| <» (8) 

and that 

T = 0 when p = 0, (9) 

which is well known to be an acceptable surface bound- 
ary condition for stars with radiative envelopes. 

(d) Scale Factor. We now specify the hitherto arbi- 
trary scale factor R(t) by taking it to be the radius of the 
homologously contracting spherical protostar that, apart 
from having no angular momentum, is identical with our 
rotating protostar. (That a solution with homologous 
contraction exists is a consequence of the simplicity of 
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our assumptions about k, p, and 7.) 
With this choice of scale factor, the structure of the 

homologously contracting star is stationary and of unit 
radius in the contracting coordinate system. The struc- 
ture of this star may therefore be obtained from the 
above equations by finding the time-independent, 
spherically symmetric solution that satisfies the condi- 
tions: Mr = = 0 at r = 0, and p= T = 0atr = l.If 
inertial forces are neglected in the momentum equation, 
the ordinary differential equations governing the 
structure of this star reduce to the usual equations of 
stellar structure with energy generation rate 

e& = uT, (10) 

where v is given by the equation 

dr x 

Because the surface boundary conditions for this 
model are applied at a specified radius, a solution exists 
only for a particular value of v, which is therefore an 
eigenvalue. Using a Henyey code, we find that 

v = 0.256 (12) 

and the corresponding structure is such that L = 0.119L* 
and pc/p = 38.8. 

With v now known, Eq. (11) determines the e-folding 
time for the contraction of this model—and, therefore, 
also of the coordinate system used in following the 
structural changes of the rotating protostar. If this 
contraction time scale is compared to that of a polytrope 
of the same mass, radius, and luminosity, agreement is 
found for n = 2.85, which may therefore be regarded as 
the effective polytropic index of the spherical model. 

II. NUMERICAL SCHEME 

We now describe a numerical scheme for obtaining 
approximate solutions of the equations in Sec. I. 

(a) Monte Carlo Theory. Let us first consider the 
problem of approximating the function, 

I?« = X "O- - r'W)p{r')dV, (13) 

where p > 0. According to standard Monte Carlo theory 
(see, e.g., Hammersley and Handscomb 1964), if a set 
of J points Vj are randomly distributed in V in such a way 
that the probability of a point being found in the volume 
element dV' at r' is proportional to p(r')dV', then 

W^Lv^r-r,-)^) (14) 
J j 

converges to 77(1*) as / —> «>. 
If we now suppose that 
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1015 L. B. Lucy: Fission hypothesis 1015 

and 

x 
w(r - r')dV' = 1 05) 

w = 0 for |r — r'l > a, (16) 

then 7;(r) ^(r)p(r) as o- 0. It therefore follows 
that 

îKr)£(r)p(r) as Jand a0. (17) 

(b) Basic Idea. In this scheme, the evolution of the 
protostar is followed by computing the histories of a fi- 
nite set of its constituent gas particles. At time r, there- 
fore, the state of the protostar will be represented by the 
positions ry, the velocities vy, and the specific entropies 
Sj of J macroscopic gas particles, and this discrete 
representation will be advanced to time r + Ar using 
difference equations to approximate Eqs. (1), (2), and 
(5). 

The difference equations for Eqs. (1) and (5) must 
provide a means of approximating the space derivatives 
in VP and V*F, but how to do this is far from obvious 
since the positions ry at which information is available 
do not define a cubical grid. In the adopted technique, 
this problem is solved by applying Monte Carlo theory 
to the discrete representation in order to obtain contin- 
uous representations of the spatial variations of two state 
variables; analytical differentiation then gives the re- 
quired space derivatives. 

If we stipulate that the broadening function w be a 
continuous function of position, then a continuous 
function approximating the mass density is obtained 
from Eqs. (14) and (17) by setting £(r) = 1; the result 
is 

P(f) := 7Z w(r - r,). (18) 
J j 

Similarly, a continuous function approximating the 
entropy density s = pS is obtained by setting £(r) = 5(r), 
the specific entropy; the result is 

s{r) = -TSjW{T-Tj). (19) 
J j 

From our earlier discussion, it follows that these ap- 
proximations converge as / and <r —► 0. 

Equations (4), (6), and (7) may be used to express VP 
and V*F in terms of space derivatives of the two state 
variables p and s, and these derivatives can now be ex- 
pressed in terms of derivatives of w using Eqs. (18) and 
(19). In this way, approximations for VP and V*F are 
obtained for use in the difference equations discussed 
below. 

Although the convergence of the approximations for 
p and 5 imposes no constraints on w additional to those 
given in Eqs. (15) and (16), the behavior of the scheme 
when J is not large can be improved by also insisting that 
w be non-negative and have continuous second deriva- 
tives. The non-negativity of w ensures that p and P are 

everywhere non-negative, and the continuity of its second 
derivatives ensures that V*F is a continuous function of 
position. 

According to this continuous representation, the 
protostar occupies the volume made up of the points that 
lie within <r of at least one of the points ry. Now, since the 
assumed continuity of w requires that w 0 as | r — rj | 

<r, it follows that p —* 0 as the surface of this volume 
is approached and, for 7 > 1, this implies that T 0 
also. The continuous representation therefore satisfies 
the boundary condition given in Eq. (9); consequently, 
it is automatically taken into account when space de- 
rivatives of state variables are calculated from Eqs. (18) 
and (19). 

(c) Difference Equations. For the dynamical part of 
the calculation, we use the familiar time-centered, ex- 
plicit scheme in which position and velocity are defined 
at alternate time steps. The difference equations ap- 
proximating Eqs. (1) and (2) are then 

.,«+1 „ w— 1 

(P"+1)1/2 (Rn-\y/2 

= (Ar)^ 
(Rn)\/2 (20) 

R^rf1 - Rnr] = (AT)nRn+lvf\ (21) 

where the notation [ ]] indicates that the bracketed 
quantity is evaluated at time rn and position ry using the 
continuous representation provided by Eqs. (18) and 
(19). The scale factor Rn = R(rn) is obtained by inte- 
grating Eq. (11) with initial condition R(0) = 1. 

With the density given by Eq. (18), the solution of 
■ Poisson’s equation is straightforward if w is chosen to be 
a function only of |r — r'|, for then the mass distribution 
becomes a superposition of spherically symmetric dis- 
tributions, to each of which Newton’s theorem applies. 
Accordingly, 

V<ft = X m(r) r r* , (22) 
k r3 

where r = |r — r^| and 

m(r) =— Ç w(x)x2dx. (23) 
J Jo 

From Eqs. (15) and (16), it follows that m(r) = \/J for 
r > a; consequently, |V</>| |r|-2 as |r| —► <». The 
boundary condition on 0 is therefore satisfied. Equations 
(22) and (23) allow [V0]y to be calculated for use in Eq. 
(20). 

The difference equation adopted as an approximation 
for Eq. (5) is 

Sf2 -S] = ^ (Ar)"(i/"+2 + HJ), (24) 

where 

//; = X" j" + [-V • F/pT]?). (25) 
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1016 L. B. Lucy: Fission hypothesis 1016 

The derivative d(\n R)/dr has been eliminated using Eq. 

This difference equation is implicit and must be solved 
iteratively. The following procedure has proved suc- 
cessful: (1) A first estimate of S]+1 is obtained from the 
explicit difference equation 

Sf2 - S] = (Ar)nHJ; (26) 

(2) the current estimate of Sj+2 is used to calculateHj+2, 
which is then substituted into Eq. (24) to obtain an im- 
proved estimate of Sj+2; (3) step (2) is repeated until 
convergence is achieved. 

In the calculations reported later (Sec. IV), this iter- 
ative procedure (modified to include an 80% undercor- 
rection factor) gives an accuracy of 0.0001 in Sj+2 after 
about three to five iterations. 

As initial values for these difference equations, the 
quantities r°, v“1, and S® must be specified for each of 
the J gas particles. The boundary conditions, as noted 
earlier, have been incorporated into the procedures for 
calculating [VP]", [V</>]", and [V-F]" from the continuous 
representations of p and s. 

(d) Broadening Function. In addition to the condi- 
tions given in Eqs. (15) and (16), we have assumed that 
w is a non-negative function of the single variable r = |r 
— r' I and has a continuous second derivative. A function 
satisfying all these conditions is 

w' = t^a(1 + 3z)(1-z)3 (2?) Iôtt 

for z = r/<7 < 1 and w = 0 for z > 1. This bell-shaped 
function is such that w(r) = 72^(0) for r = 0.386o\ 

With such a simple choice for w, the quantities Vw 
and V2w required in the calculation of VP and V-F can 
be evaluated analytically, as can m{r). 

(e) Stability. The explicit difference scheme for 
computing the motions of the gas particles [i.e., Eqs. (20) 
and (21)] should be stable if At is small compared to the 
minimum characteristic time scale for the motion of any 
one particle. When the scheme is representing a gas— 
that is, before significant collisional relaxation has oc- 
curred [see Sec. II (g)]—this minimum time scale is the 
oscillation period associated with the passage of a sound 
wave of the maximum wave number &max permitted by 
the scheme’s spatial resolution. Accordingly, since km2iX 

^ I/o-, we expect stability when, for every particle, 
lira/cs » At, where cs is the local adiabatic speed of 
sound. The stability criterion should therefore be 

(At)« < (Ar)ï = min(,•) (28) 

where a? is a number ^ 1 whose precise value depends on 
the shape of w. Not surprisingly, this stability criterion 
has the form of a Courant condition on the time step. 

The value of a appropriate for the broadening function 
given in Eq. (27) has been approximately determined by 

the following numerical experiment: Adiabatic (i.e., S® 
= S) stellar models in hydrostatic equilibrium [see Sec. 
II (h)] were perturbed, and the isentropic evolution (i.e., 
Sj+2 = Sj) of the perturbation followed using Eqs. (20) 
and (21) with scale factor R(r) = 1 and time step (At)" 
= (At)". For a given model, such integrations do indeed 
reveal instability when a is greater than a certain critical 
value. This critical value is, however, somewhat model 
dependent. Moreover, the abruptness of the onset of 
instability becomes less marked for models with smaller 
values of Ja3—such models are of course poorer repre- 
sentations of a continuum. 

The following results are typical: For a 7 = 5/3 adi- 
abat (« = 3/2) of unit radius (S = —1.2862) with J = 
100 and <7 = 0.6, instability is found for a > 0.75. For a 
7 = 3 adiabat {n = 1/2) of unit radius {S = 0.4622) with 
/ = 80 and (7 = 0.7, instability is found for a > 0.59. This 
model dependence is probably a consequence of &max not 
greatly exceeding unity, which implies that the particles 
are responding not to sound waves but to pulsations in 
low-order modes. 

The thermal histories of the gas particles are deter- 
mined by Eq. (5), which, if V-F is expressed in terms of 
derivatives of state variables, becomes the equation of 
heat conduction with the addition of lower-order terms. 
The stability of difference equations for the equation of 
heat conduction is, however, known to be practically 
unaffected by such terms (Richtmeyer and Morton 
1967, p. 195); consequently, our knowledge of the sta- 
bility criteria for the various schemes (Richtmeyer and 
Morton 1967, p. 189) can be used to anticipate ( 1 ) that 
the centered, implicit scheme given in Eq. (24) will be 
unconditionally stable and (2) that the uncentered, ex- 
plicit scheme given in Eq. (26) will be stable if (At)" < 
(At)", where 

(29) 

As with a in the Courant condition, ß is a number ^ 1 
whose precise value depends on the shape of w. 

Because the explicit scheme was used during the de- 
velopment of this numerical technique, the value of ß 
appropriate for the broadening function given in Eq. (27) 
was also determined by numerical experiment. In these 
experiments, the radiative cooling of static (i.e., r"+2 = 
ry) stellar models was computed using Eq. (26) with 
(At)" = (At)". Such integrations reveal instability when 
ß > 0.35, a critical value having little dependence on the 
model; Eq. (29) with ß = 0.35 therefore determines the 
maximum stable time step for Eq. (26). 

The expectation that Eq. (24) is unconditionally stable 
is not contradicted by the available numerical results. 
Stability for time steps significantly exceeding (At)" 
cannot be tested, however, since the convergence of the 
iterative procedure [Sec. II (c)] for obtaining Sj+2 then 
becomes very slow. 

The above results show that the stability criteria for 
this finite-size particle scheme have the same form as 
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1017 L. B. Lucy: Fission hypothesis 1017 

those for conventional difference equations. The mesh 
size Ax in conventional criteria is simply replaced by a 
length that is approximately the half-width of the 
function w. 

(/) Bulk Viscosity. Because of the nonadiabicity of 
motions in its outer envelope, pulsations of the protostar 
are damped on time scales short compared to the con- 
traction time scale. Unfortunately, this characteristic 
is not shared by a model having a feasible number of 
particles since, with particles distributed according to 
mass density, none are to be found in the outer envelope 
[see Sec. Ill (a), Fig. 1]. The consequence of this near 
absence of damping is a slow buildup of acoustic energy, 
since both integration errors and the accelerated con- 
traction [Sec. IV (a)] are sources of acoustic disturbance. 
In order to prevent this, a viscous pressure term is added 
to the scheme. 

The viscous pressure is taken to be 

where 

Q = -€(7pcsV -U, 

d\nR 
u = v ;— r 

dr 

(30) 

(31) 

is the velocity with respect to the contracting coordinate 
system. From Eqs. (11) and (31), it then follows that 

V • u = V • v + (3v\/x). (32) 

In order to calculate V*v, we follow our earlier pro- 
cedure and adopt 

pv = 7 Z VyW(r - 17) (33) J J 
as a continuous representation of the momentum density. 
Combined with Eq. (18), this gives a continuous repre- 
sentation of the velocity, from which V«v may be calcu- 
lated. With the further approximation of replacing [v]¿ 
by \ic, the resulting expression for V-v at particle position 
Tk iS 

Z (V; - V*) • (Vw^k 
[V-v]*=^ . (34) 

Z (>vU 
j 

Because the desired quantity is Vß, a continuous 
representation of Q is required. Accordingly, again fol- 
lowing the earlier procedure, we take 

ô(r) = 7 Z [Q./p\kw(* ~ r*), (35) 
J k 

where [ß/pk is calculated from Eqs. (30), (32), and 
(34). The quantity p“1 Vß is then readily calculated at 
the position of each particle and the result included in 
the right-hand side of Eq. (20). 

The viscous pressure gradient derived in this way is 
not properly centered when included in Eq. (20) since 

it is calculated using velocities at time rn~l. This failure 
is, however, shared by a widely used one-dimensional 
Lagrangian scheme (Richtmeyer and Morton 1967, p. 
318). 

The energy dissipated by this viscous term is not re- 
turned to the system by means of a heating term in Eq. 
(25) since, for the real protostar, the dissipation occurs 
in the outer layers. This heating term is of course nec- 
essary when the purpose of the viscous pressure is to treat 
shock formation. 

(g) Collisional Relaxation. The technique described 
above may be regarded as an analog for gas dynamics 
of the finite-size particle schemes used in stellar dy- 
namics and plasma physics (see, e.g., Dawson 1972). As 
for such schemes, therefore, we can anticipate that, as 
an integration advances, particle encounters will have 
an increasingly deleterious effect on the results. Clearly, 
when most particles have undergone significant deflec- 
tions due to encounters, the calculation will no longer be 
relevant to the gas dynamical problem being investi- 
gated. 

The overlapping of the finite-size particles produces 
continuous, but somewhat bumpy, distributions of mass 
and specific entropy; the force fluctuations resulting 
from this bumpiness cause the deflections. The effect of 
encounters may therefore be diminished by increasing 
either J or 0-, since the result, in both cases, is a smoother 
gaseous configuration. Accordingly, the useful duration 
of an integration may be extended by using more com- 
puter time (increasing J) or by sacrificing spatial reso- 
lution (increasing a). 

Because of collisional relaxation, the error of a cal- 
culation with this technique will not remain bound as r 
—► 00. [For example, if a stellar model close to hydrostatic 
equilibrium is integrated forward in time without radi- 
ative cooling (i.e., X = 0), it does not remain close to hy- 
drostatic equilibrium indefinitely. A slow buildup of 
kinetic energy in particle motions occurs and this even- 
tually leads to particle loss to infinity.] Within a specified 
finite interval of time, however, we may anticipate that 
a solution of specified accuracy can always be obtained 
by choosing a small enough to provide adequate spatial 
resolution and J large enough to limit the effects of en- 
counters. 

{h) Initial Models. Because Monte Carlo theory has 
been used in the derivation of this technique, the initial 
particle positions should ideally be a random sample 
from the mass distribution of the initial configuration. 
For feasible values of /, however, the resulting sampling 
errors in the number density of particles are not small. 
As a result, the forces acting on the particles have large 
deviations from their expected values and these devia- 
tions give rise to violent motions that dominate the effects 
being investigated. 

This problem also arises for the analogous plasma 
physics codes, where it is overcome by suppressing sta- 
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1018 L. B. Lucy: Fission hypothesis 

tistical fluctuations to such a degree that a quiet start to 
an integration is obtained (Dawson 1972, p. 319). For 
this technique, the following procedure has been used to 
generate adiabatic stellar models that yield quiet 
starts: 

A set of particle positions is chosen randomly and 
we set Sj=S and v“1 = 0. This model is then integrated 
forward in time using the difference equations 

v«+i = jv»-i +Ax J-IvP-+5), 

(36) 

r"+2 = r] + (1 + ô)Arv"+l, (37) 

and 

Sf2 = S]. (38) 

With <5 > 0, the factor (1+6) damps the motions arising 
from the sampling errors in the initial model; conse- 
quently, after ^5 pulsation periods (with ô = 0.3), a 
solution is obtained in which, to a good approximation, 
the force on each particle vanishes. The resulting particle 
positions then give a quiet start when used as initial 
conditions for Eqs. (20), (21), and (24). 

By including centrifugal force in such a calculation, 
models for rotating adiabatic stars are readily ob- 
tained. 

A model obtained with the above technique is typically 
far more accurate than one in which the particles are 
randomly distributed. Improving the precision of an 
estimator by departing from random sampling is, in fact, 
standard Monte Carlo practice. An example is the 
technique of stratified sampling (Hammersley and 
Handscomb 1964), for which the gain in precision de- 
rives, as in our case, from a reduction in the statistical 
fluctuations of the number density of quadrature 
points. 

(/) Related Techniques. Particle schemes for gas 
dynamical problems of astronomical interest have re- 
cently been described by Gott and Thuan (1976) and by 
Lin and Pringle (1976). Both of these schemes were 
devised for pressure-free, viscous flows; they are there- 
fore not applicable to the slow, pressure-controlled 
contraction of a protostar. Nevertheless, the work of Lin 
and Pringle was the direct stimulus of the present in- 
vestigation. 

More closely related to the scheme described herein 
is the particle-in-cell (PIC) method developed at Los 
Alamos (Harlow 1964). In the PIC method, however, 
the particles’ momentum changes are due not only to the 
action of forces but also to a momentum sharing that 
occurs in each cell after each time step—a process that 
effectively introduces a coefficient of viscosity large 
enough to spread shocks over several cell widths. In a 
three-dimensional calculation of low resolution, this 
numerical viscosity would be prohibitively large, as also 
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would be the numerical heat conduction that arises from 
the corresponding sharing of internal energy. 

Prendergast’s “beam” scheme (Sanders and Pren- 
dergast 1974) would also be expected to suffer from large 
transport coefficients if used for a three-dimensional 
calculation of low resolution. 

III. TESTS 

With a view to demonstrating the merits of this fi- 
nite-size particle scheme, we now test its ability to solve 
hydrostatic and hydrodynamic problems for stars. Be- 
cause preliminary fission calculations showed no sig- 
nificant departures from symmetry about the invariable 
plane, symmetry about the x,y plane is imposed for all 
the calculations reported below and in Sec. IV. The 
difference equations are therefore used to compute the 
changes in ly, vy, and Sj for half of the particles, the 
changes for the remaining half being such as to preserve 
symmetry. 

{a) Hydrostatics. As a first test, we apply the tech- 
nique of Sec. II (h) to obtain an equilibrium model for 
a nonrotating n = 3/2 polytrope of unit radius. The pa- 
rameters are / = 60, a = 0.6,7 = 5/3, and Sy = -1.2862 
for ally. 

In Fig. 1, the values of log p and —p~1V-F at the po- 
sitions of the 30 particles with z > 0 are plotted against 
distance from the center of mass. Results of an essen- 
tially exact one-dimensional calculation are also 
shown. 

Inspection of the log p values reveals very good 
agreement with the exact solution. In particular, the 

FlG. 1. Structure of « = 3/2 polytrope. Log p (open circles) and 
—p-1V*F (filled circles) are plotted against distance from center of 
mass. 
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1019 L. B. Lucy: Fission hypothesis 

Fig. 2. Oscillations oí n = 3/2 polytrope. Radii of gyration kx, ky, 
kz and kinetic energy Tk are plotted against time r for model with / 
= 40 and a — 0.6. 

small vertical scatter implies that departures from 
spherical symmetry are slight. Thus, starting with ran- 
dom particle positions, the code is able to discover that, 
in the absence of angular momentum, a star must be 
spherically symmetric. This is an important test of the 
scheme’s representation of gas pressure. 

Inspection of the values of -p~lV-¥ reveals greater 
vertical scatter and poorer agreement with the exact 
solution. Poorer results are of course to be expected for 
this quantity since it requires that the slightly bumpy 
continuous representations of p and 5 [i.e., Eqs. (18) and 
(19)] be differentiated twice. Nevertheless, the values 
of —p~lV-F are still such that the interior of the model 
is cooling relative to the exterior; consequently, its secular 
evolution would indeed be contraction to a more centrally 
condensed structure. 

The accuracy of the solution has been tested at the 
particles’ positions because this determines the success 
of time-dependent calculations. The continuous repre- 
sentation can, however, also be used to test a model’s 
properties throughout its structure. Such tests for static 
and rotating polytropes are reported by Gingold and 
Monaghan (1977) with excellent results. 

(b) Hydrodynamics. As a further test of the scheme’s 
representation of pressure, we now study the propagation 
of disturbances. To do this, we attempt to compute 
spherical, isentropic pulsations of polytropic models with 
n = 3/2 and 7 = 5/3. 

Using the technique of Sec. II (h), we first determine 
the equilibrium positions 17 of the J particles. The initial 
conditions for the dynamical calculation are then taken 
to be v"1 = 0, S<] = “1.2862, and r? = [1 + 0.1£ 
( 1171 )]ry-, where £ is the eigenfunction of the fundamental 
radial mode, normalized so that £(1) = 1. (A tabulation 
of £ was kindly provided by A. Cooper.) This model is 
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then integrated forward in time using Eqs. (20), (21), 
and (24) with X(r) = 0. 

Results for a model with / = 40 and a = 0.6 are shown 
in Fig. 2. Radii of gyration in three perpendicular di- 
rections (computed on the assumption that the particles 
are point masses) are plotted against time in the upper 
part of this diagram. We see that only for r< 10 does the 
motion approximate the expected spherical pulsations 
of constant amplitude. At later times, large departures 
from sphericity are evident. 

Particle encounters are, of course, responsible for these 
disappointing results [see Sec. II (g)]. Their effect, on 
average, is to introduce increasing departures from each 
particle’s expected motion, which is a purely radial os- 
cillation with constant amplitude and period. For the 
model as a whole, this implies a diversion of energy from 
the fundamental radial mode to other modes, both radial 
and nonradial. Because this is not a dissipative effect, the 
resulting decay of the fundamental mode should not 
correspond to a decay of the time-averaged kinetic en- 
ergy. This expectation is confirmed by the time variation 
of kinetic energy shown in the lower part of Fig. 2. (The 
time-averaged kinetic energy actually increases slowly 
with time at the expense of gravitational energy as the 
system tries to approach a relaxed state.) 

From the discussion of Sec. II (g), we expect that in- 
creasing either / or <7 will extend the interval over which 
spherical pulsations can be followed. As an illustration 
of this, Fig. 3 shows the result of repeating the above 
experiment with J increased from 40 to 100. A dramatic 
improvement is evident. 

Because of the scheme’s poor representation of the 
outer layers of centrally condensed stars [see Sec. II (f) 
and Fig. 1], accurate pulsation periods are not to be ex- 
pected. Nevertheless, the results in Fig. 3 yield the esti- 
mate F = 3.40 for the fundamental period, which com- 
pared favorably with the exact value 3.82. 

(c) Numerical Fission?. The above time-dependent 
calculations involve neither rotation nor radiative losses. 

Fig. 3. Oscillations of « = 3/2 polytrope. Radii of gyration kx, ky, 
and kz plotted against time r for model with / = 100 and a = 0.6. 
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1020 L. B. Lucy: Fission hypothesis 1020 

Without further tests, therefore, a calculation showing 
fission might well be doubted on the grounds that fission 
may be an artifact of the scheme’s treatment of these 
effects. Accordingly, we now carry out tests to see if the 
inclusion of either effect leads to fission. In the first test, 
the motion of a rotating star is followed with radiative 
losses suppressed. In the second test, the motion of a 
nonrotating star is followed with radiative losses per- 
mitted. 

For the first test, an equilibrium model of a uniformly 
rotating « = 3/2 polytrope was obtained using the 
technique of Sec. II (h). The parameters are / = 140, cr 
= 0.7,7 = 5/3,5/ = —1.2862 for all j, and the angular 
velocity ti = 0.54. As in the pulsation calculation, the 
motion (i.e., the rotation) of this model was then com- 
puted using Eqs. (20), (21), and (25) with X(r) = 0. 

In reporting the results of this test, it is convenient to 
represent the model’s dimensions and shape in terms of 
the semimajor axes a, 6, and c of the homogeneous el- 
lipsoid whose moments of inertia about its principal axes 
are identical to those of the model. Represented in this 
way, the initial model has dimensions a = 0.773, b = 
0.761, and c = 0.579. These results show the marked 
rotational flattening to be expected for Q, = 0.54; they 
are also consistent with negligible departures from axial 
symmetry. The motion of this model was followed for 5.2 
rotation periods (r = 60), and during this time the range 
of variation was 0.773-0.790 for a, 0.759-0.773 for b, 
and 0.570-0.580 for c. The model therefore preserves its 
shape and dimensions rather accurately; no tendency to 
fragment is apparent and no particles are lost. 

Conservation of angular momentum was also checked. 
Calculated on the assumption that the particles are point 
masses, this quantity meanders between 0.1266 and 
0.1272—i.e., constancy to ±0.2%. 

For the second test, an equilibrium model of a non- 
rotating n = 3/2 polytrope was obtained with parameters 
j = mo, a = 0.7, 7 = 5/3, and Sj = -1.2862 for all j. 
The motion that results from setting X(r) = 0.8 was then 
calculated, the initial velocities being v/1 = 0. 

The quantity f = (tf — c)/(a + c) is a convenient 
measure of the departures from sphericity that arise 
during the contraction. From its initial value of 0.002, 
f reaches a high of 0.29 at r = 18 and averages 0.12 
during an integration to r = 56. Thus, non-negligible 
departures from sphericity do indeed occur. The model 
does not fragment, however, and only for a brief interval 
is one pair of particles detached. 

This second test and the values of —p“1 V-F plotted in 
Fig. 1 show that the treatment of radiative conductivity 
is not one of the scheme’s strong points. These mediocre 
results are, however, a consequence of the need to eval- 
uate second derivatives; a simple remedy is, therefore, 
not likely. 

For V‘F to be a smooth function of position, many fi- 
nite-size particles must overlap at a typical point in a 
model. Accordingly, for problems involving radiative 
conduction, the lower limit on a (given J) is likely to be 

determined by the need to limit the dynamical conse- 
quences of the fluctuations in V«F, rather than to limit 
the effects of particle encounters [Sec. II (h)]. 

IV. FISSION 

In the belief that the above tests have demonstrated 
the scheme’s utility even at low resolution, we now use 
it to study the contraction-of a rotating protostar. 

{a) The Ideal Problem and its Modification. Ideally, 
perhaps, one would wish to start with a uniformly ro- 
tating « = 3/2 polytrope—i.e., a fully convective Hay- 
ashi star. This model’s slow, Kelvin-Helmholtz con- 
traction to a differentially rotating and more centrally 
condensed configuration would then be followed to the 
point of dynamical overstability to the growth of a non- 
axisymmetric perturbation (Bodenheimer and Ostriker 
1970). Finally, the ensuing rapid evolution would be 
followed and the fission hypothesis thereby tested. 

Unfortunately, this ideal problem poses two serious 
practical difficulties for the scheme described in Sec. II. 
The first is the obvious impossibility of computing Kel- 
vin-Helmholtz contraction with a code whose time step 
is limited by the Courant condition [Eq. (28)]. The 
second difficulty is the need for high spatial resolution 
as the model becomes very centrally condensed {n ^ 
3). 

Fortunately, these difficulties can be overcome by 
suitably modifying the ideal problem. The time-step 
difficulty is eliminated by speeding up the contraction, 
and this is done by choosing X in Eq. (5) to be such that 
the ratio of the thermal and dynamical time scales is ^5 
instead of 106-1010. Provided the contraction remains 
sufficiently slow for the point of instability to be reached 
with rotation accounting for most of the kinetic energy, 
the results may reasonably be regarded as pertaining to 
the fission problem for optically thick protostars 
undergoing quasistatic contraction and not to the frag- 
mentation problem for optically thin protostars under- 
going free-fall collapse. 

The difficulty with spatial resolution is overcome by 
increasing 7 from 5/3 to 3; the initial adiabatic model 
is then the less centrally condensed n = \/2 polytrope. 
This change allows a greater amount of rotational kinetic 
energy (relative to gravitational energy) to be stored in 
the uniformly rotating initial model, and this implies that 
less evolution in the direction of increasing central con- 
densation suffices to bring the model to the point of in- 
stability. 

Neither of these modifications changes the problem’s 
mathematical character. Such an assertion cannot be 
made with regard to the inclusion of a viscous pressure 
term [Sec. II (f)], however. 

{b) A Particular Case. Details of the evolutionary 
sequence for one model will now be used to illustrate the 
application of the scheme to the fission problem. 
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1021 L. B. Lucy: Fission hypothesis 

The parameters are J = 300, a = 0.55,7 = 3,6 = 0.25 
[Eq. (30)], and the contraction results from setting X(r) 
= 0.8. The initial particle positions are from an equi- 
librium model [Sec. II (h)] of a uniformly rotating n = 
1/2 polytrope with Q, = 0.54, and the initial velocities v“1 

corresponding, in the contracting coordinate system, to 
solid body rotation with this angular velocity. The initial 
specific entropies Sj = 0.4622 for all j are such that the 
model would have unit radius in the absence of rota- 
tion. 

With these choices, the initial rotation period is 11.6, 
the initial pulsation period (neglecting rotation) is ^2.4 
and, from Eq. (11), the Kelvin-Helmholtz time scale for 
the homologously contracting spherical model is x/v\ 
= 12.2. Initially, therefore, the e-folding time for the 
contraction of the coordinate system corresponds ap- 
proximately to one rotation period and to five pulsation 
periods. 

For the early evolution of the model, it is useful to 
detect departures from axial symmetry by again calcu- 
lating the major axes of the equivalent homogeneous 
ellipsoid [see Sec. Ill (c)] and to monitor the approach 
to instability by calculating tR= TR/\W\, where 

Tr = (1/2/) X {-yjuj + x^)7(x? + yj) (39) 
j 

is the rotational kinetic energy and W is the gravitational 
energy, which is evaluated with the quadrature formu- 
la, 

JF= -Ü//)Err [V0];. (40) 
j 

The quantity tR = Tk/\ W\, where TR is the total kinetic 
energy, is also useful, since (^ — tR)/tR is a measure of 
departures from purely rotational motion. (In calculating 
kinetic energies and the angular momentum, the velocity 
of a particle at time r" is obtained by averaging its ve- 
locities at times rn~l and rn+x.) 

For the initial model, the above quantities are a = 
1.091, b = 1.086, c = 0.700, tR = 0.121, and tK = 
0.125. 

From the work of Lynden-Bell (1964), Bodenheimer 
and Ostriker (1970), and Lebovitz (1972), we expect a 
rotating protostar with sufficient angular momentum 
to contract through a sequence of axially symmetric 
configurations until it becomes dynamically overstable 
to the growth of a nonaxisymmetric mode when tR ^ 
0.26. Because shear viscosity is probably intrinsic to the 
numerical scheme, the model will approximate a pro- 
tostar’s expected behavior only if the speeded-up con- 
traction is fast enough to prevent significant growth of 
departures from axial symmetry during the time that 
0.14 < < 0.26. On the other hand, the contraction 
must be slow enough to approximate quasistatic con- 
traction for tR < 0.26. Fortunately, these requirements 
turn out not to be mutually exclusive. The model reaches 
tR = 0.26 at r = 14.6 with a = 1.567, b = 1.443, c = 
0.474, and (ík — tR)/tR = 0.069; the departure from 
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axial symmetry is therefore slight, and rotation accounts 
for most of the total kinetic energy. 

One unsatisfactory aspect revealed by the above data 
at i/? = 0.26 is the lack of resolution in the z direction. 
The reduction of c from 0.700 at r = 0.0 to 0.474 at r = 
14.6 makes it comparable to the minimum resolved 
length, which is ^0.3 for a = 0.55. The subsequent 
models also suffer from inadequate resolution in the z 
direction. 

That departures from axial symmetry appear prior to 
tR = 0.26 indicates that the numerical scheme does in- 
deed effectively introduce shear viscosity. A further 
indication of this is the significant redistribution of an- 
gular momentum that also occurs prior to tR = 0.26. At 
this point, the average change since r = 0 of a particle’s 
angular momentum is 36% of a particle’s average an- 
gular momentum. {Note that the artificial bulk viscosity 
[Sec. II (f)] does not redistribute angular momentum 
and does not, therefore, contribute to secular instability 
at ¿r ^ 0.14 (Ostriker 1970)} 

In the above discussion, tR = 0.26 has been used to 
determine the onset of dynamical overstability, and 
this is justified by the finding of Ostriker and his co- 
workers (see Ostriker 1970) that this is rather accurate 
for polytropes of various n. Greater precision in locating 
this point cannot be achieved with this code because of 
the zero initial growth rate of the dynamical instability, 
the accelerated contraction, and the prior growth of 
departures from axial symmetry due to the secular in- 
stability at tR ~ 0.14. 

The model’s evolution subsequent to the onset of in- 
stability is illustrated by the six diagrams of Fig. 4, each 
of which is a plot of particle positions projected on the 
x,y plane—each point therefore represents two particles. 
Consecutive diagrams are separated by 30 time steps 
with At = 0.2, and the direction of rotation is anti- 
clockwise. 

In order to describe these results, it is useful to define 
a component to be a set of particles comprising all par- 
ticles within distance a of at least one other member of 
the set. If a component contains N particles, its mass will 
be referred to as Np; the term debris will be used to de- 
note the totality of particles belonging to components 
with mass less than 10/7. 

Defined in this way, a component is such that a pres- 
sure wave can propagate from any one of its member 
particles to any other member, but not to any nonmem- 
ber. The sorting of the J particles into components with 
this definition is therefore a sensible way of detecting the 
presence of distinct model stars. Initially, there is of 
course just one component of mass 300/? and no de- 
bris. 

Using these definitions, we now briefly describe the 
structural changes shown in Fig. 4. 

At r = 22, the principal component, which deviates 
significantly from axial symmetry, has mass 274/?. The 
remaining mass, 26/?, is in the form of debris. 

At r = 28, the principal component has mass 254/?, its 
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1022 L. B. Lucy: Fission hypothesis 1022 

Fig. 4. Evolution of rotating protostar. Structure projected on equatorial plane is shown at the indicated times. Because of symmetry, each 
point represents two particles. The axes are marked at 5-a intervals. 
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1023 L. B. Lucy: Fission hypothesis 

Fig. 5. Projected structure at r = 56. The axes are marked at 10-cr 
intervals. 

departure from axial symmetry has increased, and a 
fore-to-aft asymmetry is evident. This latter effect 
suggests that a third-harmonic instability arises shortly 
after the onset of the second-harmonic instability that 
causes the initial departure from axial symmetry. 

At T = 34, the principal component has mass 232/? and 
there is a secondary component of mass 1 %p in the loose 
grouping of particles to the right of the principal com- 
ponent. This secondary component is short lived, how- 
ever. 

At r = 40, the principal component has mass 220/? and 
it is now bar shaped. In the loose grouping of particles 
to the left of the principal component, there is a com- 
ponent of mass 26/?. With some loss of mass, this com- 
ponent survives to the end of the calculation. 

At r = 46, the principal component has mass 176/? and 
fission is clearly imminent. At the bottom of this diagram 
is the component formed at r ^ 40. It is now well defined 
and has mass 20/?. 

At r = 52, the principal component in the previous 
diagram has now fissioned into components of mass 112/? 
and 58/?. Because of the contraction of the coordinate 
system, the component formed at r ^ 40 has moved off 
the diagram, but it survives and has mass 20/?. 

On a reduced scale, Fig. 5 shows the configuration of 
the system when the calculation ends at r = 56 with a 
further fission about to happen. The masses of the 
components at this time are 102/?, 56/?, and 22/?; they 
therefore comprise 60% of the original mass. 

Because energy generation by nuclear burning was 
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omitted, the contraction and the resulting fissioning 
continue indefinitely. Clearly, if energy generation had 
been included, the model could have been scaled so that 
the onset of nuclear burning stopped the contraction with 
the formation of a binary (r ^ 40) or a triple system (r 
^ 50). 

(c) Variation of Parameters. Because the main 
purpose of this section is to demonstrate that this fi- 
nite-size particle scheme does indeed render the fission 
problem amenable to direct investigation by numerical 
calculation, the details of other cases will not be de- 
scribed here. Some of their general features are worth 
reporting, however. 

The most important point to emphasize is the lack of 
robustness of the results. In other words, small changes 
in parameters do not always give small changes in the 
results. To some degree, this is a consequence of inte- 
grating through an instability—changing a parameter 
changes the preexisting perturbation that is amplified. 
A more important effect, however, seems to arise because 
gravitational torques between the debris and the main 
component (i.e., before fission) significantly influence 
the latter’s evolution. This evolution is then sensitive to 
parameter changes because they result in a different set 
of particles becoming debris. 

Despite this lack of robustness, the following general 
trends emerge from the numerous cases that have been 
computed: 

(1) Following the appearance of departures from 
axial symmetry, a substantial fraction of the mass is 
nearly always lost as debris. Because debris is not formed 
when either radiative losses or rotation are suppressed 
[Sec. Ill (c)], this effect is probably real and not nu- 
merical, though its magnitude may well be affected by 
the poor representation of surface layers. The formation 
of debris is presumably due to the transfer of angular 
momentum from the protostar’s interior to its surface 
by the action of gravitational torques. 

(2) Evolution into a bar-shaped structure is com- 
mon—the losses of angular momentum to the debris 
rarely stops this. 

(3) If fission does occur, it leads to a binary of small 
mass ratio, typically towards the lower end of the range 
0.1-0.5. 

V. DISCUSSION 

The main purpose of this paper has been to describe 
and test a numerical scheme that can be applied to two- 
and three-dimensional gas dynamical problems of as- 
tronomical interest. The tests reported in Sec. Ill show 
that the scheme behaves well even when used with low 
spatial resolution; it can therefore be applied to three- 
dimensional problems using present-day computers. 
(The usefulness of such calculations depends, however, 
on there being a significant question that is not known 
a priori to be unanswerable at low resolution.) The en- 
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couraging results obtained by applying this scheme to 
the fission problem have been described in Sec. IV. Its 
application to the two-dimensional gas flow in the plane 
of a barred spiral is described by Sanders (1977). Also, 
as noted earlier, Gingold and Monaghan (1977) have 
described experiments, similar to those of Sec. Ill (a), 
that test the scheme’s ability to reproduce static and 
rotating stellar models. 

With regard to the fission problem, perhaps all that 
can be safely claimed on the basis of the present results 
is that our belief in fission as the formation mechanism 
for close binaries is strengthened. A stronger statement 
is inadvisable in view of the low spatial resolution and the 
various necessary modifications of the ideal problem. In 
particular, it may be premature to conclude that fission 
always yields binaries with small mass ratios. Never- 
theless, because this aspect of the present calculations 
is in apparent contradiction with the existence of close 
binaries having mass ratios ^ 1, it is worthy of further 
discussion. The point to be made in this regard is that, 
following fission, we may reasonably expect the binary 
to be a contact system and that only after further evo- 
lution on a thermal time scale can it become a detached 
binary. Because significant mass exchange may occur 
during this contact phase (Lucy 1976), the mass ratio 
immediately following fission may have little relevance 
to observed mass ratios. Such an effect cannot be in- 
vestigated with this scheme because of its poor repre- 
sentation of the outer layers of the components. 

The computing time for the calculation described in 
Sec. IV (b) was 4.4 min on an IBM 360/95. Because the 
computing time per step is oc/2, calculations with J ~ 
500-1000 are the upper limit of what is possible with this 
code on this computer, and such calculations are planned 
after testing some possible improvements in the scheme. 
The gain in spatial resolution will be slight, however, 
since a cannot be reduced faster than J“1/3. For a sig- 
nificant gain in resolution, the scheme must be combined 
with an efficient Poisson-equation solver. 
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