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Planetary orbits in binary stars 

Robert S. Harrington 
E/.S. Naval Observatory, Washington, DC 20390 
(Received 19 May 1977; revised 24 June 1977) 

Numerical integrations of the general three-body problem, with one component having 
a planetary mass, indicate that stable planetary orbits can exist in binary stars. The 
limitation for stability is that the ratio of the periastron distance of the outer tertiary 
component to the semimajor axis of the close component be somewhere in the range 
3-4, regardless of which of the components is the planet. For most known binaries, this 
region of stability includes the region of habitability for planets. 

INTRODUCTION 

WrITH the modern improvements in astrometric 
instrumentation and reduction procedures, there 

has been an increased interest in the possibility of de- 
tecting planetary companions to nearby stars by the 
technique of astrometric perturbations [see Gatewood 
(1976) for a recent discussion of problems and possi- 
bilities]. Many of the nearby systems, however, are 
double, which brings up the question of whether stable 
planetary orbits are possible in such systems, and if so, 
what are the dynamical limitations on the existence of 
such orbits. Indeed, multiple-star systems with more than 
two components are known to be stable, provided the 
arrangement is hierarchical (Harrington 1968, 1969); 
in these cases the motion is approximately two-body 
motion in the close binary, plus two-body motion of the 
tertiary and the binary barycenter. Further, the solar 
system is stable even if several of the planetary masses 
are augmented considerably over their present values 
(Nacozy 1967), and the existence of the extensive sat- 
ellite systems of the outer planets indicates hierarchical 
dynamical systems are at least long lived. Thus, it is to 
be expected that stable planetary orbits are possible in 
binary stars, provided the planets are either sufficiently 
close to one of the components or sufficiently remote 
from the binary as a whole. The principal question, 
therefore, is that of the criteria or limitation for stability 
of such orbits. 

Because a planet would have a very small mass com- 
pared to the stellar components, the results of the re- 
stricted three-body problem may provide some infor- 
mation. Indeed, the case of equal-mass primaries in 
circular orbits is the exhaustively studied Copenhagen 
problem, the hierarchical configurations being classes 
(f)-(i), (1), and (m) [see Szebehely (1%7), Chap. 9, for 
a complete discussion of work on this problem]. Recog- 
nizing the importance of the binary eccentricity, Shelus 
and Kumar (1970) have studied various configurations 
of the elliptic restricted three-body problem, though still 
with fairly small eccentricities. All of these cases, how- 
ever, have concentrated on periodic orbits and their 
linear stability, rather than orbital stability in more 
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general cases. In addition, any (presumably limited) 
effects of the mass of the planet are neglected. A new 
alternative approach has been undertaken by Szebehely 
and his colleagues (e.g., Szebehely and Zare 1976; 
Szebehely and McKenzie 1977) in which they examine 
the conditions under which the zero-velocity surfaces 
open up. Their conditions, however, are, in a sense, limits 
only, but not sufficient ones at that, and in some cases 
give rather pessimistic results for the general three-body 
problem as compared to numerical results. Thus, it was 
decided to try to establish the stability criteria through 
direct experimentation via numerical integrations. 

I. THE EXPERIMENT 

A series of numerical integrations of general three- 
body systems, with one body much less massive than the 
other two, has been carried out to try to answer some of 
the questions just raised. Several characteristics of 
three-body motion, for the cases of comparable masses, 
have been assumed to apply to the present situation, in 
order to reduce the number of cases to be considered. 
First, it has been found (Harrington 1972) that motion 
in the third dimension (parallel to the total angular 
momentum vector) does not affect the stability charac- 
teristics, apart from the instability of the close binary if 
its plane of motion is perpendicular to the plane of mo- 
tion of the tertiary. There is a bifurcation about this in- 
stability into the two cases of co- or counterrevolving 
binary and tertiary, but the actual inclinations are not 
significant. Hence, it was possible to consider only the 
two planar cases of prograde (/ = 0) and retrograde 
(/ = tt) motion. Second, it was also found that the initial 
angles were not significant to the stability of the systems; 
hence, all integrations could be started with the systems 
at the same phase. For these experiments, the semimajor 
axes coincided in direction, the components of the close 
binary were at periastron, and the tertiary was at apas- 
tron, thus minimizing the perturbative influences in the 
initial motions. Third, it was found that stability de- 
pended only logarithmically on the masses of the large 
bodies (Harrington 1975), and therefore it varied only 
moderately over the mass range found for most stars; 
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Table I. Lower limit of a->/ai. 
7 = 0 

Planet close to one component 
1000 

300 000 
Planet outside binary 

1000 
 300 000  

0.5 

7 
7 

4 
4 

0.0 

4 
4 

2 
2 

0.5 

7 
7 

3 
3 

0.0 

3 
4 

3 
2  

hence, only cases in which the massive bodies had equal 
mass were considered. 

The various permutations of cases integrated were as 
follows: 

(a) The stellar binary had an eccentricity of 0.0 or 0.5 
(approximating known spectroscopic and visual systems, 
respectively). 

(b) The planet circled one component of the binary 
or the entire binary, but in both cases in an initially cir- 
cular orbit. 

(c) The planet had a mass, compared to the mass of 
each of the stellar components, of 1000-1 (approxi- 
mately Jupiter) or 300 000“1 (approximately Earth). 
The semimajor axis of the close pair was normalized to 
unity, and that of the tertiary about the binary was varied 
in increments of unity until a minimum value for stability 
was found. Stability is defined here as it has been in the 
previously cited publications by this author. That is, 
stability means bounded motion only, in particular, that 
the semimajor axes and eccentricities show no secular 
or large periodic variations over the rather limited time 
span covered by the simulations. The actual judgment 
of stability was made solely by examination of the axes 
and eccentricities and, hence, has a certain degree of 
subjectivity associated with it. Further, because of the 
way the initial conditions were chosen, the stated limits 
can be regarded as sufficient conditions for stability only 
in a probabilistic sense. 

range 3.5-4.0 for corevolving systems and 3.0-3.5 for 
counterrevolving systems if the massive components are 
of equal mass. 

These results can be combined with the previous re- 
sults on the stability of the general three-body problem 
to produce empirical functional stability criteria. An 
earlier suggestion for this functional form has been made 
(Harrington 1975) which obviously does not apply to the 
case of one component of very small mass. The following 
condition for stability of a three-body system is now 
suggested: 

qjjax >F = A 1 + 2? log 
t1 

+ mjjimx + m2) 
3/2 ]| 

+a:. 

The masses of the primary, secondary, and tertiary are 
given by mi, m2, and m3, the parameters A and B are to 
be determined empirically, separately for co- and 
counterrevolving cases, and is 0 if this is to be a mean 
fit, and is approximately 2 if it is to be an upper limit. The 
coefficient A is the limit on ^2/^1 for the equal-mass case 
and is taken directly from those results (Harrington 
1972); 2? is then determined by a least-squares fit to the 
unequal-mass cases (Harrington 1975). The results are 
given below: 

I A B 

0 3.50 0.70 
n 2.75 0.64 

The extensions of these fits to the planetary case are 
given in Figs. 1 and 2, in which the results from the 
various studies are plotted with the above fits. Note that 
this analysis has attempted to establish criteria for the 
geometry of the systems, given certain values for the 
masses of the components. The work of Nacozy (1976), 
for example, would establish additional constraints as 
functions of the masses. 

II. RESULTS 

The derived lower limits on the axes ratios {a2la\) for 
stability for the various cases mentioned are given in 
Table I. The limit is in the range 3-4, except for two 
general cases. First, when the massive tertiary is in an 
eccentric orbit, the lower limit is significantly greater. 
This is consistent with the previous results (Harrington 
1972, 1975), in which it was found that the periastron 
distance of the tertiary (hence, the ratio ^2/^1) is the 
significant parameter. For the cases examined here, this 
ratio is still within the range 3-4. Second, when the close, 
equal-mass binary has a circular orbit, the limit is 
somewhat lower. This also is not unexpected, since the 
increased symmetry of equal masses plus circular orbit 
might well increase the stability of the system. In any 
case, it is not inconsistent with a limit in the range of 3-4 
as a sufficient condition for stability. In conclusion, even 
for the planetary case, the critical parameter for stability 
appears to be the ratio qijax, and it is probably in the 

Fig. 1. Limit on qi¡a\, for stability as a function of the ratio of the 
mass of the tertiary to the mass of the binary; corevolving cases. The 
asterisk marks the equal-mass case, the dots the results from the un- 
equal- but comparable-mass cases, and the squares the results from 
the planetary cases. Also shown is the mean fit. 
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Fig. 2. Same as Fig. 1; counterrevolving cases. 

III. THE SOLAR SYSTEM 

As part of a separate effort to develop a solar system 
integration procedure, several numerical integrations of 
the present system were carried out, with suitable 
modification to introduce the effects of a binary star. The 
initial conditions and masses employed were those given 
by Oesterwinter and Cohen (1972). For testing and 
comparison, the present solar system was integrated for 
the same 50-yr period covered by Oesterwinter and 
Cohen, and the agreement with the final elements (a, 
published to ten significant figures, and e, published to 
seven significant figures) was perfect, with the exception 
of Mercury (due to the omission of relativistic terms 
here), and Neptune (agreement to only 1 part in 106, for 
unknown reasons). 

Two special integrations were then run. First, the Sun 
was replaced by a binary with components each of mass 
0.5, semimajor axis 0.2, and eccentricity 0.5. The binary 
was fixed, in that the perturbations of the planets on the 
binary were neglected, making it possible to make the 
modifications only in the calculations of the forces. In 
this case, Mercury (qi/ax = T54) escaped from the 
system almost immediately, going toa = 0.86, e = 0.66 
in 100days, and toa = —3.4, e = 1.1 in4300days. The 
other planets showed virtually no additional perturba- 
tions (for Venus, <72/^1 = 3.59), the only detectable ef- 
fect being a slightly greater range of variation in the 
eccentricities. 

The second simulation increased the mass of Jupiter 
to 1M0. The initial velocities of the outer planets were 
increased by the factor [2/(1 + mjUpiter)]1^2 in order to 
keep the same initial elements. Because of the short in- 
terval covered by these integrations, only the inner 
planets were examined. The three innermost planets 
showed no significant additional perturbations (for the 
Earth, in this case, <72/^1 = 4.95). Mars (¿72/01 = 3.25) 
immediately showed large perturbations, with its he- 
liocientric distance varying between 0.5 and 4.3 and its 

eccentricity sometimes approaching 0.9. It did not escape 
in the time covered, but its motion would certainly be 
classified as unstable in the sense employed here. Thus, 
these experiments with a modified solar system generate 
results consistent with those from a consideration of the 
general three-body problem. 

Ten-year temperature curves were calculated for the 
Earth for each of the above situations, assuming black- 
body behavior for the Earth; the results are given in Fig. 
3, with temperatures normalized to 300 K at 1 AU from 
\Mq. Figure 3(a) is for the present solar system, Fig. 
3(b) is for the binary Sun, and Fig. 3(c) is for the solar 
Jupiter. It can be seen that temperature variations on the 
Earth would not be significantly greater in case (b) or 
(c) than they are in case (a). 

IV. HABITABILITY 

For some considerations, a second question may have 
to be considered—that of whether the planet is habitable. 
For a first analysis, habitability will be defined only as 
the planet being in a stable orbit such that (a) the ec- 
centricity is close to zero and (b) the time-average total 
luminosity received at the planet is close to unity when 
measured in terms of solar luminosity. Since apparent 
luminosity depends on intrinsic luminosity L and dis- 
tance r as L/r2, and the time average of 1 /r2 is 1 /rya2 [77 
= (1 — e2)xI2], the condition on luminosity for habita- 
bility can be stated as follows: 

2 (L/r]a2) = 1. 

Here, the summation is over all luminous bodies, and the 
elements should be of the planetary orbit with respect 
to each of the luminous bodies. 

The above condition can be combined with the pre- 
vious condition for stability to formulate a single general 
condition for habitability of a planet in a binary star that 
depends only on observable parameters of the binary 
orbit and the components. Let a, e, and 77 refer to the 

TIME 
FIG. 3. Mean temperature on the Earth, normalized to 300 K at 

1 AU from 1 L©. Time is in years from arbitrary starting point. Part 
(a), present solar system. Part (b), Sun replaced by close binary. Part 
(c), Jupiter augmented to 1 A/©. 
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Table IL Known nearby binaries. 
System F2n 

a Cent 
L726-8 
Sirius 
Procyon 
70 Oph 
Krug 60 
02Eri 

80 
6 X 104 

2.3 
9.9 

230 
2 X 104 

290 
9 X 104 

1230 
4 X 105 

6 X 105 

0.00 
0.00 
0.06 
0.00 
0.00 
0.00 
0.00 

orbit of the binary, ap,ep (=0) refer to the orbit of the 
planet about either component or the binary barycenter 
(all semimajor axes in astronomical units), and sub- 
scripts 1 and 2 refer to the primary and secondary stellar 
components. Two cases must be considered. The first 
case is when the planet is orbiting close to the primary 
(the case of orbiting the secondary is the same, with re- 
versed numerical subscripts). Therefore, we have a\ = 
ap,a2 = a,a(l -e)/ap>F, and Li/ap

2 + LjJy\a2 = 1. 
Eliminating ap from the above, the following first con- 
dition for a binary which could have a habitable planet 
results: 

(^2-L2)(l -e2)/Lx>F\ 

The second case is when the planet is orbiting the binary. 
In this case we have 01=02 — tfp, <7P — ap, {Lx + L2)l 
0P

2 =1, and 0p/0 > F. Again eliminating 0P, we have 
the following second condition for the possibility of 
having a habitable planet: 

(Li + L2)/02 > F2. 

If good astrometry and photometry are available for a 
system, Li, L2, 0, and e can be estimated reliably. 
Rougher estimates can be obtained by assuming lumi- 
nosities, and hence distance, from spectral type or color, 
and zero eccentricity and inclination for the binary orbit 
(hence 0 = r). In either case, a reasonable estimate of 
whether a habitable planet could exist in a binary star 
is possible, and if so, whether it would orbit just one of 
the components or the entire system. 

The habitability conditions have been calculated for 

a few nearby visual binaries, these being the systems 
most likely to reveal the existence of a planet through 
astrometric perturbations. The results are tabulated in 
Table II, where the criteria have been calculated for a 
planet orbiting the entire system Lq, or either component, 
F)x or F/2(except white dwarf components). In all cases, 
habitable planets are not possible around the entire 
system, since the systems are themselves quite wide. 
However, since the theoretical limiting value of F is 
generally on the order of 10, it appears from these con- 
siderations that most systems could carry habitable 
planets close to one component (there may, of course, be 
cosmological reasons why such systems would be un- 
likely). The only possible exceptions are Procyon, which 
is borderline, and Sirius, for which a habitable planet, 
by this definition, seems clearly impossible. 

V. CONCLUSION 

It has been found that it is, indeed, possible to have 
stable planetary orbits in binary stars, provided the 
planet closely orbits one of the components, or it orbits 
the binary at a distance. Further, the regions of stability 
of such orbits are sufficiently large that they may very 
well include the zones of habitability for most binaries. 
Therefore, binary stars should not be excluded as can- 
didates for objects with planets, even habitable plan- 
ets. 
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