A COMPILATION OF FLUORESCENT MOLECULAR LINES ORIGINATING IN OR AROUND STELLAR OBJECTS WITH STRONG ATOMIC EMISSION LINES

G.F. GAHM*, B. LINDGREN** and K.P. LINDROOS*

- * Stockhom Observatory, Saltsjöbaden, Sweden
- ** Institute of Physics, University of Stockholm, Sweden

Received May 5, 1976

A catalogue of fluorescent lines of diatomic molecules is presented. The lines may originate in regions of low to moderate thermal energies in or around objects showing strong emission in the Lyman and Balmer lines of hydrogen and/or in the resonance doublets of Mg II and Ca II. Possible identifications of such lines with unidentified emission lines in various astrophysical objects are discussed.

Key words: diatomic molecules - fluorescence - planetary nebulae - Mira variables

1. INTRODUCTION

A table of fluorescent atomic lines that could originate in objects with strong emission lines has been prepared by Gahm (1974). The present paper represents an extension of that work to fluorescent processes in diatomic molecules. There is a number of possible exciting lines in astrophysical objects. As in the previous compilation we have restricted ourselves to some of the Lyman and Balmer lines of hydrogen and the resonance doublets of Mg II and Ca II. It is clear that different kinds of astrophysical objects may develop molecular emission and in fact, the fluorescent process may be a way of detecting such molecules.

Some possibilities of molecular fluorescence have been considered by Swings and Swings (1970). Evidence of molecular fluorescence has been reported for some astrophysical objects and we have searched the literature for possible identifications of fluorescent molecular emission.

2. DESCRIPTION OF THE TABLES

When listing fluorescent molecular lines, the following restrictions were imposed.

- a) Included are diatomic molecules for which the product of the cosmical abundances (as given by Cameron 1968 and Reeves 1974) is equal to or larger than 7.8×10^8 on a scale where the abundance of Si is set at 10^6 . This lower limit is the product of Sc and O.
- b) We consider primarily regions of low to moderate temperatures and therefore we require that the excitation is from the ground state. Moreover, the original vibrational quantum number v'' is zero and the rotational quantum number J is such as to provide a large population of this level for these temperatures.
- c) The following exciting lines are considered: α , β , γ , δ and ϵ of the Lyman and Balmer series of hydrogen; the resonance doublets of Mg II at 2795 Å and 2802 Å and of Ca II at 3933 Å and 3968Å.
- d) The wavelength difference between the <u>exciting</u> line and the <u>excited</u> line should not exceed 100 kms⁻¹ as expressed in radial velocity shift. It should be noted that some astrophysical objects show emission lines that are broader than this.
- e) Only transitions that have been observed in the laboratory are considered. Some of these transitions may be weak, however, The procedure when searching laboratory data was the following: Molecules which possibly could be excited were taken from the compilations by Kopp et al. (1974, 1976). The details of the laboratory analysis of a given molecule were taken from the references quoted by Rosen (1970), Barrow (1973) and complementary references were obtained from the "Physical Abstracts" for the period 1971 to 1974.
- f) For certain molecules excitation is suggested over several (more than 10) rotational levels. These molecules were omitted from the tables, since the fluorescent lines are numerous and the chances of detection are small. Notes on some of these molecules follow in a separate section.

In table 1 the so-compiled fluorescent lines are listed according to increasing wavelength. The details of the transitions are given for each molecule in table 2.

Table 1

Wavelength of the fluorescent line in Angström units. Wavelengths shorter than 2000 Å refer Column 1:

to laboratory wavelengths in vacuum.

Chemical symbol of fluorescent molecule. Column 2: Column 3: Exciting line with shortened wavelength.

Table 2

Column 1: Chemical symbol of the fluorescent molecule in alphabetic order. The accompanying number

gives the product of atomic abundances.

Column 2: Exciting line with shortened wavelength.

Column 3: Electronic transition (excitation). Column 4: Vibrational transition (excitation).

Column 5: Rotational transition (excitation).

Column 6: The temperature in K for which the thermal distribution of the rotational levels in the

ground state has a maximum at the J given in column 5. For the sake of simplicity the

approximate formula $J_{\text{max}} = 0.5896 \, (\text{T/B})^{1/2} - 0.5$ (Herzberg 1950) has been used.

The wavelength difference in Angström between the exciting line in column 2 and the excited Column 7:

line.

Column 8 to 10: Data for fluorescent line, with notations as in columns 3 to 5.

Column 11: Wavelength in A for the fluorescent line.

Column 12: Notes to table 2.

3. NOTES ON CERTAIN MOLECULES

AlS In addition to the excitation described in table 2, AlS can be excited by H δ 4101 in the transition $P(18) \lambda 4101.69$ of the (2.0) band of $A^{2}\Sigma - X^{2}\Sigma$ (MacKinney and Innes 1959). No other transitions from the upper level of this line have been observed.

CIO It is seen from the work by Durie and Ramsay (1958) that Mg II 2795 could possibly excite CIO through the (11,0) band of $A^2\Pi - X^2\Pi$. The bands are weak, however, and have not been measured.

CO Exciting line: Lα 1215

Excitation: System $A^{-1}\Pi - X^{-1}\Sigma^{+}$

Transitions: (14,0): P(8) - P(11); Q(10) - Q(13); R(12) - R(15)

Reference: Simmons et al. (1969)

Especially the P(10) and R(15) lines fall close to L α . Guided by the computed Franck-Condon factors we expect fluorescent lines in the bands (14,4), (14,7), (14,9), (14,10), (14,11), (14,12), (14,22) and (14,23) in the same system. Of these only the (14,7) and (14,23) have been observed. All transitions give emission in the UV region.

NH⁺ Exciting line: Hγ 4340

Excitation: System $A^2\Sigma^- - X^2\Pi$ Transition: (1,0) R_{11d} (7.5) λ 4340.2 \mathring{A} Reference: Colin and Douglas (1968) Fluorescence in the (1,1) band is possible but this band has not been observed and is probably weak. In the (1,0) band we expect fluorescence in the P branch at 4438.9 \mathring{A} .

N₂ Exciting line: Lγ 972

Excitation: System $b^{-1}\Pi_u - X^{-1}\Sigma^+ g$

Transition: (3,0)

Reference: Carroll and Collins (1969)

Within ± 3 cm⁻¹ of L γ we find the three lines P(5), R(10) and Q(7) but 12 other lines are within 100 kms⁻¹ of L γ . The only fluorescent line that we can predict is P(12) at 973.38 \mathring{A} in the same system and band as above. We also expect excitation of N₂ by L ϵ 937 in the (14,0) band of the system $b^{-1}\Sigma_u^+ - A^{-1}\Sigma_g^+$, analysed by Tilford and Wilkinson (1964).

MgS Exciting line: Hy 4340

Excitation: System $B^{1}\Sigma - X^{1}\Sigma$, band (0,0) Reference: Marcano and Barrow (1970)

The 20 lines P(1) - P(20) are within 100 kms⁻¹ of H γ , P(8) being central. Fluorescence might be observed e.g. at the head of the (0,1) band of the same system at a wavelength of 4439.28 Å.

 O_2 In addition to the two fluorescent lines in tables 1 and 2, fluorescence is possible in the bands (1,5), (1,6) and (1,7) at the approximate wavelengths 3541, 3732 and 3940 Å. The relative intensities according to Degen and Nicholls (1969) favour the (1,6) band, but all these bands are expected to be weak.

ScO Exciting line: Hβ 4861

Excitation: System $B^2\Sigma^+ - X^2\Sigma^+$, band (0,0) References: Åkerlind (1962), Adams *et al.* (1968)

About 20 lines fall within 100 kms⁻¹ of the exciting H β line resulting in many fluorescent lines. We expect fluorescence to occur at about 5101 \mathring{A} in the P branch and at about 5098 \mathring{A} in the R branch of the above system.

4. SEARCH FOR ASTROPHYSICAL IDENTIFICATIONS

Many unidentified emission lines in the spectra of various objects are listed in the literature. We have searched the references quoted by Meinel et al. (1969) as well as a number of more recent works and compared the observed wavelengths with those of table 1. When comparing wavelengths the observed radial velocity shifts must be considered. In no case can fluorescent molecular emission be established for certain. Coincidences in wavelength do occur for a number of objects but in general only a few of the predicted fluorescent lines of one and the same molecule appear. Quite often, however, some of the predicted lines are hidden in strong atomic emission and thus no final conclusions can be drawn. The following is a brief description of the findings for different classes of objects.

Novae and nova-like stars. Two unidentified features observed in RR Pic by Jones (1931, 1932, 1933) do coincide with violet-displaced C_2^- excited by H β . It seems possible, however, that these lines are allowed or forbidden lines of highly ionized metals.

Planetary nebulae. For NGC 7027 and 7662 and IC 4997, Aller *et al.* (1963), Aller *et al.* (1966), Aller and Kaler (1964) found an unidentified line at around λ 3956.7. Considering the radial velocity shift involved in the fluorescent process, this line could be identified with violet-displaced CH⁺ λ 3957.70 excited by Hε. We note that the remaining two CH⁺ lines excited by Hβ come near unidentified and identified features as well,

if violet-displaced by the same amount. Moreover, in the peculiar object V 1016 Cyg, which is believed to be a planetary nebula in formation, FitzGerald and Pilavaki (1974) found an unidentified line at λ 4455.67 which is just on the red side of the λ 4455.03 line of CH⁺.

Furthermore, C_2^- at λ 5313.56 excited by H β is near an unidentified line observed by Aller and Walker (1970) in NGC 6302, 7009 and 7662. The λ 5313 – feature has been reported present also in IC 5217 by Wyse (1942).

The planetary nebulae therefore represent the best case we have found for possible fluorescent molecular emission and more work is necessary before any conclusions can be drawn.

Gaseous nebulae. Objects of this type are known to be molecular sources, but in terms of coincidences in wavelength, very little of interest was found.

Symbiotic stars. None of the many unidentified lines listed for this class of objects coincide with the lines of table 1.

Emission-line stars of spectral types O to G. Although many objects of these types have been investigated, very few coincidences in wavelength were found. It would be interesting, however, if high-sensitivity data were obtained for objects believed to be in a phase of pre-main-sequence evolution.

Ke, Me and N stars. The Mira variables are known sources of molecular emission (AlO, AlH, CN) and Maehara (1970) reported evidence of fluorescent SiH. We note coincidences between the CH⁺ line at λ 4455.03, excited by Hε, and an unidentified line in R And (Merrill 1947a), o Cet (Joy 1926, 1954) and χ Cyg (Merrill 1947b, Herbig and Zappala 1968). No evidence for other fluorescent CH⁺ lines is at hand and the unidentified feature at λ 3956.082 in o Cet (Joy 1954) seems to be too distant from the CH⁺ λ 3957.70 and behaves differently from the λ 4455 feature with phase. The SiH fluorescence reported by Maehara originates from relatively high J values and was therefore excluded from our compilation.

For other late-type emission-line stars very little is found. We note that in the spectrum of the VV Cep type star BD $+54^{\circ}2698$ there is an unidentified line (Barbier 1974) in close coincidence with the λ 4455 line of CH⁺ discussed above.

T Tauri stars. We have made a detailed investigation of the spectral tracings of RW Aur (described by Gahm 1970) and of the integrated spectral tracings of 28 individual spectrograms of RU Lup (Gahm *et al.* 1974). For RW Aur a strong unidentified feature at λ 4155 coincides with fluorescent NaH at λ 4154.82 excited by He. The other fluorescent NaH line is definitely absent, however, and no other traces of molecular emission can be found. In the spectrum of RU Lup an unidentified line is present at the position of the fluorescent SiH⁺ line at λ 4285.57 excited by Ca II, K at λ 3933. The other fluorescent SiH⁺ line falls in a spectral region of strong Fe II emission and no conclusions can be drawn. No other evidence of molecular emission can be found.

REFERENCES

Adams, A., Klemperer, W. and Dunn, T.M.: 1968. Canadian J. Phys. 46, 2213.

Aller, L.H., Bowen, I.S. and Wilson, O.C.: 1963, Astrophys. J. 138, 1013.

Aller, L.H. and Kaler, J.B.: 1964, Astrophys. J. 140, 621.

Aller, L.H., Kaler, J.B. and Bowen, I.S.: 1966, Astrophys. J. 144, 291.

Aller, L.H. and Walker, M.F.: 1970, Astrophys. J. 161, 917.

Barbier, M.: 1974, Astron. Astrophys. Suppl. 18, 251.

Barrow, R.F. (ed.): 1973, Molécules Diatomiques Bibliographie Critique de Données Spectroscopiques, CNRS, Paris. Cameron, A.G.W.: 1968, in L.H. Ahrens (ed.), Origin and Distribution of the Elements, Pergamon Press, p. 125.

Carroll, P.K. and Collins, C.P.: 1969, Canadian J. Phys. 45, 563. Colin, R. and Douglas, A.E.: 1968, Canadian J. Phys. 46, 61.

Degen, V. and Nicholls, R.V.: 1969, J. Phys. B2, 1240.

Douglas, A.E. and Herzberg, G.: 1942, Canadian J. Research 20, series A, no. 6.

Douglas, A.E. and Morton, J.R.: 1960, Astrophys. J. 131, 1.

Durie, R.A. and Ramsay, D.A.: 1958, Canadian J. Phys. 36, 35.

FitzGerald, M.P. and Pilavaki, A.: 1974, Astrophys. J. Suppl. 28, 147.

Gahm, G.F.: 1970, Astrophys. J. 160, 1117.

Gahm, G.F.: 1974, Astron. Astrophys. Suppl. 18, 259.

Gahm, G.F., Nordh, H.L., Olofsson, S.G. and Carlborg, N.C.J.: 1974, Astron. Astrophys. 33, 399.

Grevesse, N. and Sauval, A.J.: 1970, Astron. Astrophys. 9, 232. Hagland, L., Kopp, I. and Åslund, N.: 1966, Arkiv Fysik 32, 321.

Heimer, T.: 1935, Z. Phys. 95, 328.

Herbig, G.H. and Zappala, R.R.: 1968, Z. Astrophys. 68, 423.

Herzberg, G.: 1950, Spectra of Diatomic Molecules, Van Nostrand Reinhold Company.

Herzberg, G.: 1952, Canadian J. Phys. 30, 185.

Herzberg, G. and Howe, L.L.: 1959, Canadian J. Phys. 37, 636.

Herzberg, G. and Lagerqvist, A.: 1968, Canadian J. Phys. 46, 2363.

Holst, I.W.: 1935, Thesis, Stockholm University.

Hori, T.: 1930, Z. Phys. 62, 352.

Johns, J.W.C., Grimm, F.A. and Porter, R.F.: 1967, J. Molecular Spectroscopy 22, 435.

Jones, H.S.: 1931, Monthly Notices Roy. Astron. Soc. 91, 777. Jones, H.S.: 1932, Monthly Notices Roy. Astron. Soc. 92, 728. Jones, H.S.: 1933, Monthly Notices Roy. Astron. Soc. 94, 35.

Joy, A.H.: 1926, Astrophys. J. 63, 281. Joy, A.H.: 1954, Astrophys. J. Suppl. 1, 39.

Klynning, L. and Lindgren, B.: 1966, Arkiv Fysik 33, 73.

Kopp, I., Jansson, K. and Rydh, B.: 1977, to be published.

Kopp, I., Lindgren, R. and Rydh, B.: 1974, Table of Band Features of Diatomic Molecules in Wavelength Order, Version A. Inst. Phys. University of Stockholm.

Lofthus, A.: 1957, Canadian J. Phys. 35, 216.

MacKinney, C.N. and Innes, K.K.: 1959, J. Molecular Spectroscopy 3, 235.

Maehara, H.: 1970, Publ. Astron. Soc. Japan 22, 119.

Maltsev, A.A., Shevelkov, V.F. and Krupnikov, E.D.: 1966, Optics and Spectroscopy Suppl. 2, 4.

Marcano, M. and Barrow, R.F.: 1970, Trans. Faraday Soc. 66, 2936.

Meinel, A.B., Aveni, A.F. and Stockton, M.W.: 1969, Catalogue of Emission Lines in Astrophysical Objects, 2nd edition, Optical Sciences Center and Steward Observatory, The University of Arizona, Tucson.

Merrill, P.W.: 1947a, Astrophys. J. 105, 360. Merrill, P.W.: 1947b, Astrophys. J. 106, 274.

Nilsson, B.E.: 1944, Arkiv Mat. Astron. Fysik 31 B, 4. Nilsson, B.E.: 1946, Arkiv Mat. Astron. Fysik 33 B, 9.

Olsson, E.: 1935, Z. Phys. 93, 206.

Pomeroy, W.C.: 1927, Phys. Rev. 29, 59.

Reeves, H.: 1974, Annual Rev. Astron. Astrophys. 12, 437.

Rosen, B. (ed.): 1970, Données Spectroscopiques relatives aux Molécules Diatomiques, CNRS, Paris.

Simmons, J.D., Bass, A.M. and Tilford, S.G.: 1969, Astrophys. J. 155, 345.

Stenvinkel, G.: 1936, Thesis, University of Stockholm,

Swings, J.P. and Swings, P.: 1970, in L. Houziaux and H.E. Butler (eds.), IAU Symp. No. 36, 226.

Tanaka, Y.: 1944, Sci. Papers Inst. Phys. Chem. 42, 49.

Tilford, S.G. and Wilkinson, P.G.: 1964, J. Molecular Spectroscopy 12, 231.

Wyse, A.B.: 1942, *Astrophys. J.* **95**, 356. Åkerlind, L.: 1962, *Arkiv Fysik* **22**, 41.

G.F. Gahm K.P. Lindroos

B. Lindgren

Stockholms Observatorium S-13300 Saltsjöbaden, Sweden

Institutionen för Fysik Stockholms Universitet Vanadisvägen 9 S-11346 Stockholm, Sweden

Table

Table 2 Details of fluorescent processes

Anomahase Sec. the Translation of the Augustian and the August of the Au	Molecule Excitation	xcitation					ſ	Fluorescence				Comments
He define $\Lambda_{11}^{11} - \chi_{1}^{1}\Sigma^{\dagger}$ (7.9) q(1) 21 1.14 $\Lambda_{11}^{11} - \chi_{1}^{3}\Sigma^{\dagger}$ (1.1) q(2) 4100.21 1 15 0.48 (1.1) q(2) 4100.21 1 15 0.48 (1.1) q(2) 4100.22 1 15 0.48 (1.1) q(2) q(2) q(2) q(2) q(2) q(2) q(2) q(2	Abundance E	exc. line	Transition Electr.	Vibr.	Rotat.	T _J (K) 4	λ(Å)	Fransition Electr.		Rotat.		References
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	AID		A ¹ Π - X ¹ Σ ⁺	(1,0)		21	1.14	$A^{1}\Pi - X^{1}\Sigma^{+}$	(1,1)		4309.49	
$He 4861 = \frac{4}{2} - \frac{4}{2} - \frac{4}{3} + \frac{115}{3} - \frac{4}{3} + \frac{115}{3} - \frac{4}{3} + \frac{115}{3} + \frac{4}{3} + $	3.3×1010					9			(1,1)		4309.81	
$H\beta 4861 \qquad A^{2}D^{-} - X^{D}D^{-} \qquad (1.0) \qquad (1.1) \qquad $					Q(3)	115			(1,1)		4310,22	
$H\rho \ 4861 \ A^2 E^{-} - X^2 E^{-} \ (0,0) \ P(29) \ A10 \ $	_								(1,2)		4535.30	
Hp 4881 4 2	_								(1,3)		4778.79	
Hg 4861 2					Q(4)	190			£,	Q(4)	4310,56	
$H\beta 4881 A^2\Sigma^{+} - X^2\Sigma^{+} (0,0) P(28) \qquad 290 -0.62 \qquad (1.1) Q(9) \qquad 44779.08$ $H\beta 4881 A^2\Sigma^{+} - X^2\Sigma^{+} (0,0) P(28) \qquad 1700 0.91 A^2\Sigma^{+} - X^2\Sigma^{+} (0,0) R(28) \qquad 44779.91$ $H\beta 4881 A^2\Sigma^{+} - X^2\Sigma^{+} (0,0) P(28) \qquad 1950 -0.71 \qquad (0.1) P(30) \qquad 6998.48$ $H\beta 4881 A^2\Sigma^{+} - X^2\Sigma \qquad (0,0) P(28) \qquad 1950 -0.71 \qquad (0.1) P(30) \qquad 6998.48$ $H\beta 4380 A^1\Pi - X^1\Sigma^{+} (0,0) P(28) \qquad 659 -0.71 \qquad (0.1) P(32) \qquad 5909.27$ $H\beta 4380 A^1\Pi - X^1\Sigma^{+} (0,0) P(28) \qquad 659 -0.75 \qquad (0.1) P(32) \qquad 5900.34$ $H\beta 4380 A^2\Pi - X^2\Sigma^{+} (0,0) P(28) \qquad 1950 0.56 B 0^{+} - X^{2} \qquad (0.0) R(9) \qquad 4387.53$ $H\beta 4380 A^2\Pi - X^2\Sigma^{+} (0,0) P(28) \qquad 1950 0.56 B 0^{+} - X^{2} \qquad (0.1) P(31) \qquad 6998.36$ $H\beta 4380 A^2\Pi - X^2\Sigma^{+} (1,0) R(11) \qquad 1950 0.56 B 0^{+} - X^{2} \qquad (1,0) R(11) \qquad 6998.36$ $H\beta 4881 2^2\Lambda^{+} - \Sigma^{+} \qquad (1,0) R(22) \qquad 2550 -0.11 2^2\Lambda^{-} - \Sigma^{+} \qquad (1,1) P(24) \qquad 5998.38$ $H\beta 4881 2^2\Lambda^{+} - \Sigma^{+} \qquad (1,0) R(22) \qquad 2550 -0.11 2^2\Lambda^{-} - \Sigma^{+} \qquad (1,1) P(24) \qquad 5998.38$ $H\beta 4881 2^2\Lambda^{+} - \Sigma^{+} \qquad (1,0) R(22) \qquad 2550 -0.11 2^2\Lambda^{-} - \Sigma^{+} \qquad (1,1) P(24) \qquad 5999.38$ $H\beta 4881 2^2\Lambda^{+} - \Sigma^{+} \qquad (1,0) R(22) \qquad 2550 -0.11 2^2\Lambda^{-} - \Sigma^{+} \qquad (1,1) P(24) \qquad 5999.38$ $H\beta 4881 2^2\Lambda^{+} - \Sigma^{+} \qquad (1,0) R(22) \qquad 2550 -0.11 2^2\Lambda^{-} - \Sigma^{+} \qquad (1,1) P(24) \qquad 5999.38$ $H\beta 4881 2^2\Lambda^{+} - \Sigma^{+} \qquad (1,0) R(22) \qquad 2550 -0.11 2^2\Lambda^{-} - \Sigma^{+} \qquad (1,1) P(24) \qquad 5999.38$ $H\beta 4881 2^2\Lambda^{+} - \Sigma^{+} \qquad (1,0) R(22) \qquad 2550 -0.11 2^2\Lambda^{-} - \Sigma^{+} \qquad (1,1) P(24) \qquad 5999.38$ $H\beta 4881 2^2\Lambda^{+} - \Sigma^{+} \qquad (1,1) R(12) \qquad R(11) \qquad (1,2) R(11) \qquad (1,2) R(12) \qquad (1,2) P(23) \qquad (1,2) P(24) \qquad (1,2) P(25) \qquad (1,2) P($									(1,2)		4535,69	
High 4861 2									(1,3)		4779.08	
High 4881 $A^2\Sigma^+ - X^2\Sigma^+$ (0,0) $R(20)$ 1700 0.31 $A^2\Sigma^+ - X^2\Sigma^+$ (0,0) $R(20)$ 4779.41 R239 4843.33 R239 5089.28 R239 5089.29 R239 6089.29 R239 608.29 R239 6089.29 R239 608.29 R					Q(5)	290			(1, t)		4311.09	
Hp 4861 2									(1,2)		4536.17	
Hp 4861 $A^2\Sigma^+ - X^2\Sigma^+$ (0,0) P(30) 1700 0.51 $A^2\Sigma^+ - X^2\Sigma^+$ (1.5) Q(6) 4778.51 Hp 4861 $A^2\Sigma^ X^2\Sigma^+$ (0,0) P(30) 1700 0.51 $A^2\Sigma^ X^2\Sigma^+$ (0.0) R(29) 6088.48 Rg30 608.48 Rg31 802 $C^2\Sigma^ X^2\Sigma^-$ (0,0) P(28) 650 -0.71 (0.0) R(30) 6080.34 Hp 4340 $A^1\Pi - X^1\Sigma^+$ (0,0) P(28) 650 -0.04 $C^2\Sigma^ X^2\Sigma^-$ (0.0) R(30) 6800.34 Hp 4340 $A^1\Pi - X^1\Sigma^+$ (0,0) P(28) 650 0.66 $A^1\Pi - X^1\Sigma^+$ (0,0) R(29) 6500.34 Hp 4340 $A^1\Pi - X^1\Sigma^+$ (0,0) R(21) 1950 0.66 $A^1\Pi - X^1\Sigma^+$ (0,0) R(31) 6502.46 Hp 4361 $2^2\pi^+ - 2^2\pi^+$ (1,0) R(11) 1950 0.66 $B^0\pi^+ - X^0\pi^+$ (1,1) R(11) 6032.05 Hp 4361 $2^2\pi^+ - 2^2\pi^+$ (1,0) R(22) 2550 -0.11 $2^2\pi^+ - 2^2\pi^+$ (1,1) R(11) 6032.46 Rg23 650.23									(1,3)		4779.41	
He 4861 $A^2\Sigma^+ - X^2\Sigma^+$ (0,0) R(20) 1700 0.51 $A^2\Sigma^+ - X^2\Sigma^+$ (0,0) R(20) 6085.48 (5085.48 (7.1) R(21) (0.1) R(20) 6085.48 (5085.48 (7.1) R(21) (0.1) R(21) (0.1) R(21) (0.10 R(21) (0.10 R(21) (0.1) R(21) (0.10 R(21) (Q(6)	400	-1.35		(1,3)	Q(6)	4779.91	
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	AIO	Нβ 4861		(0,0)	P(30)	1700		$^{A}\Sigma^{+}_{-}x^{2}_{\Sigma}$	(0,0)	R(28)	4843.33	Pomeroy 1927
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	2.0×10								(0,1)	P(30)	5098.48	
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$										R(28)	5079.85	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					P(31)	1823	0.11		(0,0)	R(29)	4843.55	
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$									(0.1)	P(31)	5099.27	
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$										R(29)	5079.99	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					P(32)	1950			(0,0)	R(30)	4843.75	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									(0,1)	P(32)	5100.09	
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$										R(30)	5080,14	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					P(33)	2050	-1.55		(0,0)	R(31)	4843.99	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									(0,1)	P(33)	5100,90	
MgH 2802 $C^2D X^2D$ (0,0) P(28) 680 -0.04 $C^2D X^2D$ (0,0) R(26) 2890.71 Hy 4340 $A^1\Pi X^1D$ (0,0) P(2) P(2) 210 -1.05 $A^1\Pi X^1D$ (0,0) R(0) 4328.20 Hy 4340 $B^0- X^0D X^0D$ (1,0) R(11) 1950 0.56 $B^0- X^0D$ (1,0) P(13) 4387.53 Hy 4861 $D^2- X^0D D^2D$ (1,0) R(22) 2550 -0.17 $D^2- D^2D$ (1,0) P(24) 6928.95 Hy 4861 $D^2- D^2D D^2D$ (1,0) R(22) 2550 -0.17 $D^2- D^2D D^2D$ (1,1) P(24) 6889.95 Hy 4861 $D^2D D^2D D^2D$ (1,1) P(24) 6360.23										R(31)	5080,31	
Hy 4340 $A^{\dagger}\Pi - X^{\dagger}L^{\dagger}$ (0,0) $P(2)$ 210 -1.06 $A^{\dagger}\Pi - X^{\dagger}L^{\dagger}$ (0,0) $R(1)$ (3288.71 Hy 4340 $L^{\dagger}L^{\dagger}L^{\dagger}L^{\dagger}L^{\dagger}$ (0,0) $R(1)$ (1,0) $R(1)$ (1,0) $R(1)$ (1,0) $R(1)$ (1,0) $R(1)$ (1,1) $R(1)$ (1,2) $R(1)$ (1,3) $R(1)$ (1,4) $R(1)$ ($c^2\Sigma - x^2\Sigma$	(0,0)	P(28)	650		$c^2\Sigma - x^2\Sigma$	(0,0)	R(26)	2800.34	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									(0,2)	P(28)	2901.28	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										R(26)	2898.71	
Hý 4340 B 0^+ X 0^+ (1,0) R(11) 1950 0.56 B 0^+ X 0^+ (1,0) P(13) 4687.38 (1,2) R(11) 6092.02 (1,2) R(11) 6092.02 (1,2) R(11) 6092.46 (1,2) R(12) 6092.47 (1,			$A^1_\Pi - X^1_{\Sigma}^+$	(0,0)	P(2)	210		$A^1\Pi - X^1\Sigma^+$	(0,0)	R(0)	4328.20	
HØ 4861 $^2\Sigma_u^+ - ^2\Sigma_g^+$ (1.0) R(22) 2.550 -0.17 $^2\Sigma_u^+ ^2\Sigma_g^+$ (1.0) P(24) 6806.23 R(15) 6708.47 R(17) 6708.48 R(17) 670		Hŵ 4340	B 0 - X 0+	5		1950	95	+ 0 + 0 H	5	D/13)	4987 69	Helmer 1935
$H6 \ 4861 ^2 \mathcal{D}_u^{-2} \mathcal{D}_g^{+} (1.0) R(22) \qquad 2560 -0.17 ^2 \mathcal{D}_u^{-2} \mathcal{D}_g^{+} (1.0) R(24) \qquad 6982.32 $							3	4	5 5	E(11)	4667.38	
HØ 4861 ${}^2\!$. 23	B (11)	5032.02	
$ H6 \ 4861 \ \ ^2 L_u^{-} \ ^2 L_g^{+} \ \ (1,0) \ \ R(22) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $										P(13)	5092, 46	
H\$ 4861 $^2\Sigma_u^{-2}\Sigma_g^{+}$ (1.0) R(22) 2860 -0.17 $^2\Sigma_u^{-2}\Sigma_g^{+}$ (1.0) P(24) 6888.95 (1.1) P(24) 810.29 (1.1) P(24) 8269.25 (1.1) P(24) 8269.25 (1.2) P(24) P								B 0 - A 1	(1,2)	R(11)	6728.47	
Hg 4861 $^2\Sigma_u^{-}^2\Sigma_g^{+}$ (1.0) R(22) 2850 -0.17 $^2\Sigma_u^{-}^2\Sigma_g^{+}$ (1.0) P(24) 4800.29 R(27) R(27) R(27) 8 8808.37 R(27) R(27										Q(12)	6779.81	
H ρ 4861 $2 \sum_{u}^{+} - 2 \sum_{g}^{+}$ (1,0) R(22) 2856 -0.17 $2 \sum_{u}^{+} - 2 \sum_{g}^{+}$ (1,0) P(24) 4900.29 R(21) P(24) 5369.46 R(22) S191.56 (1,2) P(24) 6905.37 R(22) 5850.23										P(13)	6838.95	
(1,1) P(24) 6369,46 R(22) 6313,66 (1,2) P(24) 6305,37 R(22) 6305,37		Нβ 4861	2, - 2, - 2, -	6.5		2550	-0.17	2+ 2+ 2+ Σ+ 2 ± 1	(1,0)	P(24)	4900,29	Herzberg and
H(22) 5313,56 (1,2) P(24) 5905,37 H(22) 5850,23	1.961014		3					3	(1,1)	P(24)	5359.46	
P(24) R(22)	-									R(22)	5313,56	
R(22)									(1,2)	P(24)	5905.37	
_										R(22)	5850.23	

ble 1	1	List of fluorescent molecular lines in wavelength order	fluor	esc.	ent mo	lecul	ar E	ines in	wavel	leng	gth or	de:
	Mole	Mole-Exciting cule line	×	Mole- cule	Mole-Exciting cule line	~	Mole- cule	Mole-Exciting cule line	~	Mole- cule	Mole-Exciting cule line	
265.68	⊭°	Lβ 1025	2898.71	AlS	MgII 2802	4387.53	ВІН	Hy 4340	5032.02	BIH	Ну 4340	
272.82	" #°	Ly 972	2901.26	AIS	MgII 2802	4439.16	$_{\mathrm{CH}}^{+}$	Н€ 3970	5079.85	Alo	Нβ 4861	
279.10	" "	$L\gamma$ 972	3020.3	z°	1.5 949	4450.39	$\mathrm{CH}^{^{+}}$	CaII 3968	5079.99	Alo	Нβ 4861	_
356.07	, H	$L\gamma$ 972	3024.00	z	1.6 949	4455.03	CH ⁺	H€ 3970	5080,14	Alo	Нβ 4861	_
362.04	ı,	$L\gamma$ 972	3938.75	NaH	CaII 3933	4467.64	ZuH	CaII 3968	5080,31	Alo	Нβ 4861	
365,67	" <u>"</u> "	Lβ 1025	3949, 99	SiH	Call 3933	4472,74	ZnH	Н∈ 3970	5092,46	BIH	$\rm H_{Y}$ 4340	
394, 25	" ¤°	$L\gamma$ 972	3957.70	CH ⁺	H∈ 3970	4516.19	ZnH	CaII 3968	5098.48	Alo	Нβ 4861	
399.87	" "	Ly 972	4001.63	NaH	Н€ 3970	4516.91	ZnH	Н€ 3970	5099.27	Alo	нβ 4861	
414.68	" m"	L, 8 1025	4009.33	ZnH	Н∈ 3970	4535.30	AID	H6 4101	5100,09	Alo	нβ 4861	
457.97	, H	$L\gamma$ 972	4011.12	ZnH	CaII 3968	4535.69	AlD	H6 4101	5100.90	Alo	нβ 4861	
461.97	ı ıı	Lβ 1025	4110.62	SID	H6 4101	4536.17	AlD	HB 4101	5165.53	ZnH	CaII 3968	
462.31	ı "	$L\gamma$ 972	4110.67	SID	H5 4101	4667.38	BIH	Hy 4340	5180.68	ZuH	Н€ 3970	
480.39	ı ı	$L\gamma$ 972	4120.10	SHD	H ⁵ 4101	4721.42	ZuH	CaII 3968	5210.40	ZuH	Call 3968	
483.66	'n.	Ly 972	4120.16	SID	HB 4101	4728.78	ZnH	H€ 3970	5222.14	ZnH	Н€ 3970	
493.84	" #	$L\gamma$ 972	4122, 71	NaH	CaII 3933	4771.71	ZnH	Call 3968	5313.58	່ວ	Нβ 4861	
495.57	H,	$L\gamma$ 972	4154.82	NaH	H€ 3970	4774.61	ZnH	H∈ 3970	5359.46	່ວ	Нβ 4861	-
506.44	H,	Lβ 1025	4188.63	NaH	H€ 3970	4778.79	AID	Hb 4101	5850.23	່ວ	Нβ 4861	
546.72	H 2	LB 1025	4214.25	ZnH	CaII 3968	4779.08	AID	H6 4101	5905.37	່ວ	Нβ 4861	
581.10	H ²	LB 1025	4217,59	ZnH	Н€ 3970	4779.41	AID	H5 4101	6480,91	YbH	Hα 6562	
607.50	" H	LB 1025	4259.22	$_{\rm ZnH}$	H€ 3970	4779.91	AID	H5 4101	6483.63	ХЪН	Hα 6562	
623.37	H	LB 1025	4259.98	ZnH	CaII 3968	4843.33	Alo	нβ 4861	6728.47	він	$H\gamma$ 4340	
2746.2	z	1.6 949	4285.57	SIH	CaII 3933	4843.55	Alo	Нβ 4861	6779.81	Він	$H\gamma$ 4340	
2749.3	z	L6 949	4304.55	SIH	CaII 3933	4843.75	Alo	Нβ 4861	6838.95	Він	$H\gamma$ 4340	
2795.94	o	MgII 2795	4309, 49	AlD	H5 4101	4843.99	A10	нβ 4861	7024.97	ХРН	Hα 6562	_
2796.28	0	MgII 2795	4309.81	AID	HØ 4101	4900.29	່ວ	Нβ 4861	7027,98	УЪН	Hα 6562	
2800.34	AlS	MgII 2802	4310.22	AID	HB 4101	4961.94	ZnH	CaII 3968	7119.67	ХРН	Hα 6562	
811.74	ZnH	MgII 2802	4310,56	Alb	HB 4101	4972.45	Z_{nH}	Н€ 3970	7643.88	ХРН	Hα 6562	
811.80	Z_{nH}	MgII 2802	4311.09	AID	HØ 4101	5011.82	ZuH	CaII 3968	7647.24	ХЪН	Hα 6562	_
877.9	z	1.6 949	4328.20	вн	Ηγ 4340	5018.09	ZuH	Н∈ 3970	7753,01	ХЪН	Hα 6562	
2881.28		LØ 949										

$\overline{}$
z
Ø
2
~
:=
+
2
9
\sim
_
\subset
۲
ر 2
ر 7
e 2 (c
<u>e</u>
<u>e</u>
<u>e</u>
able
<u>e</u>
able

1, 1, 1, 20 440.00 150.0				Comments	TOTAL STREET				
20 - 4.2 A \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2		Vibr.	Transition N Electr. Vibr.			Vibr.	$T_J(K) \Delta \lambda(\hat{A})$ Electr.		λ _{F1.} (Å)
200 -0.52 h ² / ₂ -x ² / ₂ (1.0) 783 2810 1 motivate with a control of the cont		İ	:				,		
150 2.51 A 1.75 1.0 1.00	CH Call 3968	A 11 - X 25	F.			(1,0)			3949.99 Grevesse and
110 - 0.12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Н€ 3970	их-ич	6,5		2.6×10 ¹⁶				4304,55 Sauval 1970
1 1 1 1 1 1 1 1 1 1									4285.57
300.4			R(0)						
2100 - 4.2 \$\beta_{1}^{2} \times \frac{1}{12} \times \frac{1}{		•			H5 4101	6.0	400	(0,0)	
89 - 4.4	H ₂ Lγ 972	B'E, - X'E, (11,0) P(3)	1.22 B'E, - X'E, (11,7)				707		4110 67
(1, 1) (6.8×10 ²⁰	R(1)	. 44		0.×e.s	W21d(0.0)	ř		4 00 4
201 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			(11.9) P(3)					P21e(')	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d					*P21d(7.5)	4120,16
1.1.0 1.20			(.)						
11 18 11 18 18 18 18 18			(11, 10) £(3)	10.88.0	ZnH MgII 2802 B ² E - X	(10,0)		(10,0) P ₂ (5)	2811.80 Stenvinkel 1936
(11.13 P(3) 1462.31 Cold 1966 A ² 1. A ² D			R(1)	1394.25	3.9×10 ¹³			P _c (5)	2811.74
1,13 PO 1457 ST 1458			(11, 12) P(3)	1462.31		5		20 0 5	4011 19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			R(1)	1457.97	V . II V 9066 TBO	5.		0,12(11)	4000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(11, 13) P(3)	1483.66				(1,1) F12(11)	4703.30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(F)d	1480 30				e, o €	4214.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(1) hr	20.00				(1,2) P ₁₂ (11)	4516.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(11,14) P(3)	1495.57				(6)'8	4467.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	•	1493.84					4771.71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L, 9 1025	B \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	$-0.23 \text{ B}^{1}\Sigma_{u}^{1} - x^{1}\Sigma_{g}^{1}$ (6,5)	1265.68					4721.42
(e. 1) P(1) (a. 6)		ò	(6,7)	1365.67					5011.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1414.68					4961.94
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1461.97					5210 40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1506.44 weak					6146
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1546.72			2		5165.53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1581 10		e,	1530 -0.53 ATI - X∑		4009.33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0 1 100 1					4259.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				00:100				(8)	4217.59
320 %) $b_{11}^{-1}a_{11}^{-1}$ (6.0 Pt) 2746.2 Lothins 1557 (6.2) $p_{11}^{-1}a_{11}^{-1}$ (6.1) Pt) 2851.28 see text also. (6.2) Pt) 2851.28 see text also. (6.2) Pt) 2851.28 see text also. (6.2) Pt) 2851.28 see text also. (7.3) 2746.0 See text also (6.2) Pt) 2851.28 see text also (6.3) Pt) 285				1623.37					4516.91
320 **) $D_{11}^{11} = R_{11}^{11}$ (6.0 Hy) 2746.3 **) $A_{11}^{11} = R_{11}^{11}$ (6.1 Hy) 2281.28 **) $A_{11}^{11} = R_{11}^{11}$ (6.1 Hy) 2281.28 ** see text also. (a) $A_{11}^{11} = A_{11}^{11} = R_{11}^{11}$ (7.1 Hy) 2281.28 ** see text also. (b) $A_{11}^{11} = A_{11}^{11} = R_{11}^{11}$ (7.1 Hy) 4122.71 Olsson 1936 (c) $A_{11}^{11} = A_{11}^{11} = R_{11}^{11}$ (9.1 Hy) 4122.71 Olsson 1936 (c) $A_{11}^{11} = A_{11}^{11} = R_{11}^{11}$ (9.1 Hy) 4128.21 (9.1 Hy) 4128.22 (c) $A_{11}^{11} = A_{11}^{11} = R_{11}^{11} = R_$			-					(8)	4472.74
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N ₂ L5 949	b'n - X'E (6,0) P(7)	b П - а П (6,0)						4774,61
(6.2) P(7) 2881.28 see text also. (6.2) P(7) 3024.00 R(8) 3020.3 (6.3) P(7) 3024.00 R(9) 3020.3 3 -0.61 $\Lambda^1 \Sigma^- X^1 \Sigma^-$ (9.0) P(2) 3938.75 Hort 1830 3 -0.61 $\Lambda^1 \Sigma^- X^1 \Sigma^-$ (9.0) P(1) 401.43 1250 0.21 $\Lambda^1 \Sigma^- X^1 \Sigma^-$ (9.0) P(1) 1418.80 126 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^-$ (1.0) $\Phi_{12}(19)$ 1900 -0.71 $D^2 \Pi_{1/2} - X^2 \Sigma$ (0.0) $Q_1(11)$ P(2) $\Phi_{12}(19)$ 1150 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^-$ (1.0) $\Phi_{12}(19)$ 1250 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^-$ (1.0) $\Phi_{12}(19)$ 1250 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^-$ (1.0) $\Phi_{12}(19)$ 1250 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.42 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.54 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.55 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.55 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.56 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.56 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.56 $\Lambda^3 \Sigma^1 - X^3 \Sigma^2$ (1.0) $\Phi_{12}(19)$ 1250 0.59 $\Phi_{12}(19)$ 1250 0.50 Φ_{1	6.0×10		R(5)		-				4728.78
R(s)									5018,09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			R(5)	2877.9					4972.45
1.55 0.21 $\Lambda^{1}_{L}^{-} \times \Lambda^{2}_{L}^{-}$ (9, 0) P(2) 3883.75 Hort 1980 $\Omega^{1}_{1/2} \times \Lambda^{2}_{L}^{-}$ (1, 0) P(2) 192.71 Oisson 1985 $\Omega^{1}_{1/2} \times \Lambda^{2}_{L}^{-}$ (1, 0) P(1) 1980 $\Omega^{1}_{1/2} \times \Lambda^{2}_{L}^{-}$ (1, 1) 1980				3024.00					0.000
3 -0.61 $^{4}L^{5}L^{5}L^{5}L^{5}$ (9.0 P2) 3 8388 75 Hort 1930 YbH Hz 6583 $^{5}L^{1}L^{2}L^{2}L^{2}L^{2}$ (0.0 $^{6}L^{1}L^{2}L^{2}L^{2}L^{2}L^{2}$ (0.0 $^{6}L^{1}L^{2}L^{2}L^{2}L^{2}L^{2}L^{2}L^{2}L^{2$				3020.3	_				5222.14
3 -0.61 $^{1}A_{2}^{\perp} \times ^{1}A_{2}^{\perp}$ (9, 9 P2) 3838.75 Hori 1830 $^{1}A_{1/2} = ^{1}A_{2}^{\perp}$ (10, 9 P2) 1900 -0.71 $^{1}D_{1/2}^{\perp} = ^{1}A_{2}^{\perp}$ (10, 9 $^{1}A_{1/2} = ^{1}A_{2}^{\perp}$ (10, 9 $^{1}A_{2} = ^{1}A_{2}^{\perp}$								(e) (c)	5180.68
1250 0.21 $\Lambda_{L}^{1} - \chi_{L}^{1} = (0.1)$ P(2) 4122.71 Oleann 1905 $\frac{\chi_{D}}{4} = \frac{\chi_{D}}{4} = \chi$	NaH CaII 3933	$A^{1}\Sigma^{+} - X^{1}\Sigma^{+}$ (9,0) R(0)	$-0.61 \text{ A}^{1}\Sigma^{+} - \text{X}^{1}\Sigma^{+}$ (9,0)	3938.75 Hori 1930		2, 20	2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	8	200 to to backet co core
1250 0.21 $\Lambda^{1}_{L}^{+} \times \Lambda^{2}_{L}^{+}$ (9.0) F(11) 4001.63 (5.8cl) (0.1) $\Lambda^{1}_{L}^{+} \times \Lambda^{2}_{L}^{+}$ (1.0) $\Lambda^{1}_{L}^{+} \times \Lambda^{2}_{L}^{+}$ (1.1) $\Lambda^{1}_{L}^{+} \times \Lambda^{2}_{L}^{+} \times \Lambda^{2}_{L}^{+}$ (1.1) $\Lambda^{1}_{L}^{+} \times \Lambda^{2}_{L}^{+} \times \Lambda^{2}_{L}^{+}$ (1.1) $\Lambda^{1}_{L}^{+} \times \Lambda^{2}_{L}^{+} \times \Lambda^{2}_{L}^{+} \times \Lambda^{2}_{L}^{+}$ (1.1) $\Lambda^{1}_{L}^{+} \times \Lambda^{2}_{L}^{+} \times \Lambda^$	1.0×10 ¹⁵		(1.0)	4122.71 Olsson 1935	HG 6563	A 2 (0,0) P ₁₂ (13)	1900 -0.71 D 11/2 A	6, 6)	0400,00 magnanu et an
(9.1) P(1) P ₁ (9) P(1) P(1) P ₁ (1) P ₂ (1) P ₁ (1) P ₂ (1) P ₁ (1) P ₂ (1)	0408 PH	6	0 93 A 1 + X 1 + (0 0)	4001 83	5. tx10				6480.91
(9.1) $P(11)$ 4188.63 $Q_{q}(11)$ 1418.63 $Q_{q}(11)$ 128 0.42 $A^{3}\Sigma_{u}^{+} - X^{3}\Sigma_{u}^{-}$ (1.0) $Q_{21}(1)$ 128 0.42 $A^{3}\Sigma_{u}^{+} - X^{3}\Sigma_{u}^{-}$ (1.0) $Q_{21}(1)$ 129 $Q_{21}(1)$ 120 $Q_{21}(1$	0.66	(a, e) 4 A - 4 A	0.21 A 2 A 2 (3,0)	200					7119.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4188.63				6,(11)	7027.98
125 0.42 $^{3}\Sigma_{u}^{+} - X^{3}\Sigma_{u}^{-} - X^{3}\Sigma_{u}^{-$				4154.82				O.R., (11)	7024.97
125 0.42 $\Lambda^3 E_b^{1-} - X^3 E_b^{-}$ (1,0) $\Phi_{23}(\eta$ 2795.29 Herrberg 1952 see text also $\Phi_{24}(\eta)$ 230 -0.55 $\Phi_{24}(\eta)$ 2795.94 $\Phi_{24}(\eta)$ $\Phi_{24}(\eta)$									400
230 -0.55 $Q_{\rm f}(\eta)$ 2795.94 see text also $Q_{\rm f}(\eta)$	O. MgII 2795	A2 - x2 (1,0) P2.(5)	125 0.42 A E - X F - (1.0)	2796.28 Herzberg 1952					7705.01
230 -0.55 Q _Q (7) 2795.94 we tan into	2 14	1 8 Q. ZI	P P	11) D	7647.24
230 -0.50	0.X0.0	A. 23(9)						"R ₁₂ (11)	7643.88
		H ₁₂ (1)	230 -0.55	2795.94					