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ABSTRACT 

Effective temperatures of the exciting stars of 35 low-excitation planetary and five diffuse 
nebulae have been computed under both of the alternate assumptions that the stars radiate 
according to Hummer and Mihalas’s flux models, and that they behave as blackbodies. The 
method used employs the ratio of the sum of the nebular forbidden-line fluxes to the flux of Hß 
(Stoy’s method), with modification for the observed electron temperature and helium content. 
The present analysis is restricted to nebulae with very weak or absent He n emission, which are 
therefore expected to be optically thick. Both sets of temperatures correlate very well with 
measured 02+/0+ ratios. The temperatures calculated from the flux models are systematically 
lower than those calculated under the blackbody assumption, the discrepancy increasing with 
increasing T. The onset of He n emission is about 46,000 K for the models, and 60,000 K for the 
blackbodies. The latter is consistent with the predicted He n Lyman continuum emission at 
228 Â, whereas the former is not, and it is concluded that the blackbody assumption is superior 
to that of the set of flux models. 

The method provides an independent calibration of effective ultraviolet temperatures on the 
upper main sequence, in that Teii for 61 Ori C (an 06 star) is found to be 37,000 K. Peimbert’s 
finding of a low mass for the planetary in the globular cluster Ml 5 is confirmed. Finally, in 
accord with earlier studies, it appears likely that cooler planetary nebula nuclei {T < 70,000 K) 
are as a class less luminous than the maximum luminosity found for the hotter stars. 
Subject headings: nebulae: planetary — stars: atmospheres — stars: early-type 

I. INTRODUCTION 

The first measurements of the temperatures of the exciting stars of gaseous nebulae were made by Zanstra 
(1931). The method has been extended by Harman and Seaton (1964) to nebulae which are optically thin in the 
hydrogen Lyman continuum (for which Zanstra temperatures are lower limits), by using He n line fluxes to find 
the photon flux shortward of A228 Â, where the nebula should be thick. The Zanstra temperature rests upon the 
observed ratio of nebular to stellar flux. Stoy (1933), however, developed a method whereby the stellar temperature 
could be derived from the nebular emission alone. The original method assumes that all the cooling of nebular 
electrons takes place by the excitation of forbidden lines (a very good approximation—see Fig. 3 in Burbidge, 
Gould, and Pottasch 1963). Since the cooling rate equals the heating rate, the total forbidden-line flux gives a 
measure of the rate at which the star heats the nebula, i.e., the energy emitted by the star shortward of the Lyman 
limit. The flux in the Balmer lines, following Zanstra’s (1927) original argument, gives us the stellar photon flux 
shortward of the Lyman limit. The ratio of energy flux to photon flux is a function of stellar temperature, which 
we can then measure. In deriving his temperatures, Stoy assumed that the star radiates like a blackbody and took 
into account the fact that energy is extracted from the starlight in the ionization of hydrogen. 

Some important modifications of Stoy’s original method are necessary. First, not all of the original energy of 
the free electrons is available for the excitation of forbidden lines, as the electrons recombine with nonzero energy. 
This principal modification was first developed by Aller (1956), who also derived a number of values of temperature 
(Ts) based upon it. In this paper a further modification will be made to take into account the fact that the mean 
energy of recombination of electrons is less than their mean total energy, since slow electrons are more likely to 
recombine (see Osterbrock 1974, p. 42). 

Second, not all of the forbidden-line radiation is observable. A significant fraction ( ~ 10-207o) of nebular cooling 
takes place in the excitation of the fine-structure states in the ground terms of ions such as Ne+ and 02+ (see again 
Fig. 3 in Burbidge, Gould, and Pottasch 1963). With rare exceptions the resulting emission is not observable, and 
the emission rates must be calculated. 

Third, about 10 percent of the nebula consists of helium, which has a higher ionization potential than does 
hydrogen. Consequently, more of the stellar energy must be used in ionization than would be used for a pure hydro- 
gen nebula, and less is available for forbidden-line excitation. Also, recombinations to helium can result in photo- 
ionization of hydrogen, and this interlocking effect must be included. The above modifications act to increase the 
calculated temperatures above what would have been calculated by the original method. 
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Finally, we must consider the fact that the stars do not really radiate like blackbodies. Surface-flux models 
have been calculated for a grid of stars (Hummer and Mihalas 1970), and the calculations must incorporate these 
as well as the blackbody assumption. 

Stoy’s method has some distinct advantages over the Zanstra method. It makes use only of nebular radiation; 
central star magnitudes do not need to be measured. Consequently, temperatures of the exciting stars of small, “ stel- 
lar” nebulae, for which the star itself can be nearly unobservable, can be measured. Also, the method makes use 
only of relative line intensities; absolute fluxes are unnecessary. More importantly, the method is independent of 
the degree to which the nebula surrounds the star. Both the Stoy and Zanstra methods require that that part of 
the nebula which does surround the star be optically thick in the Lyman continuum. If the nebula is in fact thin, 
a lower limit to the true temperature will be derived. For an optically thin nebula, however, an optical depth 
factor will enter into both the numerator and denominator of the ratio of energy flux to photon flux so that the 
Stoy method should give a closer limit than the Zanstra method, if the latter is based only upon hydrogen lines. 

The completeness of absorption, however, is a difficult quantity to estimate. The problem can be avoided in 
the Zanstra method by using He i or He n lines, for whose Lyman continua the nebulae may be presumed to be 
thick. The Stoy method cannot be treated so simply, and one must know the actual optical depth at the Lyman limit. 
Consequently, this application of Stoy’s method is restricted to optically thick objects. Presumably, if a star is 
cool enough that He n lines are absent in the nebular spectrum, the nebula will be optically thick in the Lyman 
continuum, or very nearly so. This contention is supported by the consistency in the simultaneous solutions for 
H and He i shown by Harman and Seaton’s (1966) Figures 2 and 3, by the fact that these nebulae are generally 
small and have radii below or near the optically thick-thin dividing line set by Cahn and Kaler (1971), and that 
they have relatively high densities. Further evidence from the consistency of the temperatures that the nebulae 
are indeed thick will be given in a later section. The remainder of this paper will then deal only with nebulae for 
which the He n lines are either weak or absent. 

The major drawback of this method is that the nebula’s spectrum must be rather completely observed. We must 
have a good accounting of all the important forbidden lines. A large number of objects meet this criterion, how- 
ever. For these objects for which the data are not as complete as one would like, reasonable estimates of the 
strengths of the unobserved lines can be made. 

II. DEVELOPMENT OF THE METHOD 

We begin with an equation similar to that presented by Aller (1956, p. 221, eq. [24]) for a pure hydrogen nebula. 
The term p(Tp Te) is the ratio of the energy available for forbidden-line production to the number of ionizing 
photons multiplied by v(HjS) = vß, or 

P(TS, Te) 
jriTOA»-*eH)<fr 

^(v)vB/hv 
ILf . 
J,LBvB/hvB 

(1) 

Here, vx is the frequency of the Lyman limit, Ts and Te are the stellar and electron temperatures, respectively; 
Lf and Lb are the fluxes in the forbidden and Balmer lines, respectively. The right-hand side of equation (1) can 
clearly be written in terms of relative intensities IF and IB, and the denominator can be expressed in terms of /(Hß) 
alone as 

BhvB Aa(HjS) ’ W 

where afî(H) and a(Hj8) are, respectively, the total recombination coefficient for hydrogen (Seaton 1960) and the 
effective recombination coefficient for Hß (Brocklehurst 1971). Equation (1) is expressed in terms of the more 
general stellar flux ^(v), rather than in terms of the blackbody adopted by Aller. The quantity Ave

H represents the 
mean energy of recombining electrons, E. In Aller’s development A(ve

H -* i^) = (3l2)kTe. In fact, E is less than 
(3/2)kTe because lower energy electrons are more likely to recombme. From the tables of the recombination cooling 
coefficient presented by Osterbrock (1974) and Seaton (1960), EI(3/2)kTe = 0.44 at Te = 10,000 K, with only a 
very small dependence upon Te. 

Actually, to the numerator on the right-hand side of equation (1) should be added the total free-free flux radiated 
by the nebula. The rate of nebular cooling by free-free processes is, however, very small compared to that pro- 
duced by forbidden-line excitation. Let H+ and Ne represent the ion and electron densities, respectively. From 
Osterbrock (1974) we find that the free-free cooling rate cm-3 is about \ of the energy difference H+Aeaß(3/2)kre — 

NeaBE. Thus to a very good approximation, we can conveniently absorb the free-free radiation into the left- 
hand side of equation (1) by redefining hv^ as a fictitious mean electron energy, or 

hv* = hVl + E + ^kTe - E) = hv1 + 0J2(%kTe). (3) 

The next step is to add the effect of absorption of photons by neutral helium. We break the Lyman continuum 
into three frequency regimes where v2 and v3 are the neutral and ionized helium ionization limits, respectively. 
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Between ^ and v2 hydrogen is the sole absorber. Between v2 and v3, hydrogen and helium compete in absorbing 
photons. The relative number absorbed by each will depend upon the ratios of neutral H and He and upon the 
absorption coefficients. From v3 to infinity, a photon can ionize H, He, and He +. Photons with v > v3 are negligible 
even at the highest temperatures considered in this study, and this frequency regime will be ignored. 

Further complication is introduced by the fact that recombination of electrons with He+ ions produces radiation 
that can photoionize hydrogen. This process will make more energy available for forbidden-line production, 
and will partly offset the absorbing effects of neutral helium. The actual amount of this interlocking is difficult 
if not impossible to calculate accurately. The subsequent discussion follows Osterbrock (1974). Of the electrons 
recombining to helium, about one-quarter go to the singlets, and about three-quarters to the triplets. Of those 
that go to the singlets, one-third (or ~ 8% of the total) go to 2 1S and two-thirds (~ 17%) go to 2 ^ The electrons 
on 2 ^ go directly to 1 1S with emission of a photon at À584. When this photon, with frequency v584, ionizes a 
hydrogen atom, the resulting free electron will have an energy in excess of h(ve

H - i^), so that energy A(v584 — 
ve

H) is added back to the electron gas. 
The electrons in 2 ^ will decay to 1 ^ by emission of two photons. Each electron which arrives in 2 1S will 

produce 0.56 photons capable of photoionizing hydrogen. Consequently, 0.56 x 8 percent # 5 percent of all 
helium recombinations produce such ionizing photons. The mean energy of the hydrogen electrons ejected as a 
result of the helium two-photon process is A(v2p — i^) so that fi(v2p — ^eH) is added to the energy of the electron 
gas. The ratio ~ 1.2 as calculated from the data provided by Hummer and Seaton (1964), where it is assumed 
that the neutral helium two-photon process behaves the same way as the hydrogen and ionized helium counter- 
parts. 

All the electrons which recombine to triplet states ultimately go to 2 3*S' which is highly metastable. The electrons 
can, however, go to 1 15 by a forbidden transition with emission of a photon at 626 Â, or they can go to 2 15' by 
collision, which is followed by two-photon emission. The probability of these transitions occurring is very uncertain, 
however, since there is strong evidence that 2 3S can be depopulated by hydrogen La photons (see Osterbrock 
1964), which will greatly reduce the interlocking between hydrogen photoionizations and the helium triplets. Since 
there is no firm evidence on the amount of helium triplet interlocking, a limiting case will be assumed in which the 
helium triplets are ignored. 

Equation (2) gives a measure of the number of photons released by the star for a pure hydrogen nebula. If the 
nebula contains helium, however, it will absorb a fraction of the star’s ultraviolet photons. From the preceding 
assumption that 22 percent of the He recombinations produce hydrogen photoionizations, only 78 percent of the 
helium recombinations need be counted, so that the denominator of equation (1) should read 

aB(H)I(Hß) 
a(Hß)h [l + 0.78 

ciB(He) He] 
«ß(H) hJ ’ 

where aB(He) is the total case B recombination coefficient for helium, and He/H is the helium to hydrogen ratio 
by number. This term has only a small dependence on Te. 

For a given photon of frequency v2 < v < v3, we let M(v) be the probability that it will be absorbed by H, 
where 0 < M(v) < 1. We can now include the effects of helium into equation (1) by rewriting it as follows: 

P(TS, Te, He/H) 

= {/;; [^toA'X*' - + j;2
3 ^ [i - 

x [0.17(v — ve
He + v584 - ve

H) + 0.05(v - ye
Be + V2p - ve

H) + 0.78(y - ve
Be)]dvj-/ 

f J v- 
(v) ^ dv = 2 If 

,Vi . (ctB(H)/a(H/}))/(H/J)[l + 0.78(c£B(He)/aB(H))He/H] " 

In the left-hand side of equation (4), hve
n is as defined in equation (3), and /;re

He is similarly defined as 

(4) 

hv** = hv2 + 0.72(jkTe) . (5) 

The fraction of photons of frequency v absorbed by H is 

A/M = HX(H°) = flv(H°) _ y j H0<3v(H°) + He0av(He°) av(H°) + av(He0)He°/H0 ’ w 

where H° and He0 are the densities of neutral H and He, respectively, and the av’s are absorption coefficients. The 
av(H°) are calculated from the formula given by Seaton (1960) and the bound-free Gaunt factors of Karzas and 
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Latter (1961). The av(He°) are taken from the work of Huang (1948), which are sufficiently close to the improved 
values calculated by Bell and Kingston (1967). The ratio He°/H0 is found by formulating the balance equations 

477WH0 av(H)dv + 0.22He+iVcaB(He) = H+iVeaB(H) , (7a) 

47rWHe° J"' av(He)dv = He+iVeaB(He) , (7b) 

where W is the dilution factor. If we divide equation (7b) by (7a) and solve for He0/H°, we obtain 

He0 _ as(He)He/H /Jr [^(v)lhv]av(ñ)dv 

H° aß(H) - 0.22«B(He)He/H ¿3 tjr(l,)/Al,K(He)^ ' (8) 

The recombination coefficients afí(H) and aß(He) are taken from Seaton (1960) and Osterbrock (1974). Equation 
(8) is an approximation to the true He0/H°, wherein we assume the nebula to be a geometrically thin shell sur- 
rounding the star. The true He0/H0 is a function of distance from the star, and must take into account that W is in 
fact a function of v, and may not be taken out of the integrals. The results, however, are quite insensitive to He0/H0, 
so that this approximation is adequate. 

The ratio p(Ts, Te, He/H) was calculated from equation (4) by numerical integration for a grid of Ts, Te, and He/H 
under both the assumptions that the stars radiate like blackbodies [^(y) = B{v)] and that ^(v) is as given by the 
flux models of Hummer and Mihalas (1970). Hummer and Mihalas present surface fluxes for a grid of Ts, com- 
position, and log g. The calculations of p were made by generally adopting the 300 series of chemical composition 
and log g = 4.5, although some other models had to be used for interpolation. The variation in p produced by 
variation in composition and log g is not very large, however—generally less than ± 10 percent from the adopted 
values. 

A sampling of the calculations is presented in Figure 1. The quantity p(Ts) is shown for Te = 10,000 K and 
He/H = 0.10 both for the blackbody assumption and for the flux models. In order to show the dependence of p 
on Te and He/H, p{Ts) is presented for the blackbody assumption for Te = 10,000, 14,000, and 18,000 K and 
He/H = 0.10 and 0.15, and for Te = 10,000 K, He/H = 0. The dependence of p{T^) on Te and He/H is the same 

Fig. 1.—The ratio of p(Ts, Te, He/H) plotted against 10-3rs. The dot-dash line represents an assumption of Hummer and Mihalas’s 
(1970) models for He/H = 0.1, Te = 10,000 K. The other curves are for a blackbody assumption for Te = 10,000, 14,000, and 
18,000. Solid lines, He/H = 0.1; dashed lines, He/H = 0.15; dotted line, He/H = 0. 
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for the model assumption as for the blackbody assumption. The difference exhibited between the two assumptions 
will be discussed in the next section. 

Note the effect of the inclusion of helium in the calculations. At higher stellar temperatures, its neglect can 
cause an error of 10,000 K or more in the temperature of the exciting star. At low Ts the effect becomes smaller 
since more of the stellar radiation is between and v2 where He has no effect. 

III. CALCULATION OF STELLAR TEMPERATURES 
In order now to measure the temperature of the exciting star of a nebula, Ts, we must adopt values of Te and 

He/H, and then determine the ratio on the right-hand side of equation (4). Interpolation in the grid of p(Ts, Tey 
He/H) then will determine Ts for each assumption. The denominator of the ratio is simple to compute with the 
references already given, once He/H is determined. 

The numerator of the ratio presents more of a problem because we must allow for unobservable fine-structure 
forbidden lines, after correction for interstellar extinction. The corrected intensities were taken from Kaler’s 
(1976a) catalog, which also gives the appropriate references. The observations of the nebulae are not at all uniform. 
For some new nebulae all of the optically available spectrum has been observed. For others, estimates had to be 
made for unobserved lines. For example, if the [N n] lines were not observed, 7[N n] was set equal to /[O n]. Also 
included in the sum was 7(A10830) of He i which is collisionally excited (see Osterbrock 1974) ; an estimate is made 
when it is not observed. 

Second, we must estimate the degree of fine-structure cooling for these nebulae. The intensities of the fine-struc- 
ture lines were calculated relative to observable forbidden lines by solving the usual balance equations (see, for 
example, Aller 1956, pp. 192, 193). The collision cross sections were taken from Saraph, Seaton, and Shemming 
(1969) and Krueger and Czyzak (1970), and the transition probabilities were taken from the compilation by 
Garstang (1968). 

A number of ions were examined, and it was found that only 02+, Ne2+, and Ne+ added a significant amount 
to the sum 2 Ip- The intensities of the fine-structure lines of 02+ and Ne2+ are readily calculated in terms of the 
nebular line intensities of these ions. Singly ionized neon has no readily observable lines, so we must estimate an 
ionic abundance. Since all these nebulae have absent or very weak He n lines, Ne3+ will not be present, and the 
total Ne density is simply Ne+ + Ne2 + . Kaler (1973) found that Ne/O = 0.41 for planetary nebulae in general. 
Then Ne+/G = 0.41 — Ne2+/0. The latter ratio was calculated for each nebula from the [Ne m], [O n], and 
[O m] forbidden lines, so that Ne+/0 could be computed. The strength of the Ne+ line can then be calculated 
readily in terms of the [O m] or [Ne m] forbidden lines. Generally the fine-structure lines constitute about 10- 
20 percent of 2 Ip- Unobserved forbidden lines in the ultraviolet are ignored, as most of these arise from highly 
ionized atoms which do not exist in these nebulae with cooler central stars (see Flower 1968). 

For the above calculations, and for interpolation in the grids, we must adopt electron temperatures Te, electron 
densities Ne, and values of He/H. For planetaries, Te was taken from the compilation by Cahn (1976) or from 
Kaler, Aller, and Czyzak (1976), and Ne was calculated from forbidden-line ratios given by the above reference, 
Kaler’s (1976a) catalog, or Aller and Epps (1976), or else was taken from Kaler (1970). If Te was unmeasured, 10,000 
K was adopted, except for Hb 12 (14,000 K). For the diffuse nebulae, the data are from Kaler (1970). Generally, 
He/H was taken as 0.1, except for NGC 6803 (He/H = 0.13; Lee et al 1974), and Me 2-2 (He/H = 0.15; Kaler 
1974). 

The results of the calculations are given in Tables la (planetaries) and \b (diffuse nebulae). Table la presents 
the nebula’s common name, the Perek-Kohoutek (1967) number (PK), values of lO“3^ for the assumptions of 
Hummer and Mihalas’s (1970) models and the blackbody approximation (BB), and an estimate of the quality of 
the results where A is highest and C lowest. A denotes nebulae for which the spectrum is well observed, and all 
important lines measured. For nebulae denoted by B some estimates (e.g., [N n] lines in the infrared) had to be 
made. C means that fairly large estimates had to be made, that the spectrum is not well observed, or that the 
observàtions are anomalous. Table \b gives the same information, except for the Perek-Kohoutek number. The 
same models were used for the stars of the diffuse nebulae as for the planetary nuclei, since the results are not very 
sensitive to logg. 

Errors in the temperatures are difficult to estimate, but the following appear realistic. For the blackbody assump- 
tion: A, +2000K; B, ±4000K; C, ± 10,000 K. For the model assumption, A, +1500K; B, ±2500 K; C, 
± 6000 K. The errors are different because of the different slopes of p(rs) for the different assumptions. 

IV. EVALUATION OF THE MODELS 
From Table 1 or Figure 1 we see that the temperatures derived from the two assumptions (models and black- 

bodies) are quite discordant at the upper end of the temperature range. The function p(Ts, models) ^ p(Ts, BB) 
for low temperatures, but rises much more steeply, such that at the high end of the range T^BB) is over 15,000 K 
greater than T^model) for a given value of p. The reason for this behavior is that in the upper temperature range 
the photon flux between v2 and ^3, relative to that between ^ and v2i is greater for the models than for the black- 
bodies. In addition, the slope of ÍF(v) between v2 and v3 is such that there are more high-energy photons near v3 
(relative to those near v2) for the models than for the blackbodies, all of which results in a greater production of 
forbidden lines. 
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The question is: Which of these two assumptions results in the better set of temperatures? One would almost 
automatically assume that the set derived from the flux models would be better than that derived from the black- 
body assumption, but that does not seem to be the case. Leaving aside for the moment the question of the validity 
of the Stoy method itself, let us look at the nebular ionization level associated with the stars in Table 1. The 
nebulae which show the presence of He n A4686 are denoted by an asterisk. There is a clear critical temperature 
for the onset of nebular He n radiation. For the blackbody assumption, Ts ^ 60,000 K; whereas for the models, 
Ts ^ 46,000 K. The nebulae just above the critical temperature have values of /(A4686) from one to five percent of 
/(Hj8). From Seaton’s (1960) total recombination coefficients for H + and He2+ and Brocklehurst’s (1971) effective 
recombination coefficients for Hß and He n Pa, we find that the recombination rate for He2+ is ^ 5 x 10”3 that 
for H+ for these nebulae. If the nebula is optically thick, we can relate the former to the rate of stellar photon 
production 

^T(He+) = r^v/hi^dr, 
•1V3 

and the latter to 

^T(H) + ^T(He) = r[Sr(y)/hv]dv, 
Jvi 

and thus we would expect that R — ^r(He+)/[c^(H) + ^T(He)] also should be ~5 x 10”3 or greater. Hummer 
and Mihalas (1970) tabulate ^T(H), ^T(He), and Jr(HQ+) for all the models and for blackbodies. The models, for 
the critical temperature of 46,000 K, show that R < 10 "5, more than two orders of magnitude too small. For the 
blackbodies at 60,000 K, however, RæSxlO-3, which is consistent with the required value. We could bring the 
critical temperature of 46,000 K for the models into agreement with the stellar photon production ratio R, if we 
assume that the nebula is optically thin for vx < v < v3, and that the rate of nebular absorption in this frequency 
region is ~ 10"3[c^(H) + Jr(He)]. This assumption, however, is not at all justified by the Zanstra temperatures 
(Tz) for these stars (see Harman and Seaton 1966), as the smooth transition between Tz from H for stars of nebulae 
without He ii and Tz from He n for the higher temperature stars indicates that the nebulae of Table 1 are in fact 
optically thick. In order to have consistency in the Zanstra temperatures, the number of photons between vx and 
r3 absorbed can be no less than ~ 10”1 of those produced. 

The Zanstra temperatures computed by Harman and Seaton (1966) provide another, though related, argument. 
Their values of Tz, based upon blackbodies, also show that the critical temperature for He n line production is 
60,000 K, consistent with that found from the Stoy method for blackbodies. Now if we assume the models, we 
find that for the nebulae with He n lines, the critical stellar temperature would have to be ~ 85,000-90,000 K, 
whereas from the Stoy method the critical temperature is 46,000 K. The blackbody assumption gives a smooth 
transition between the nebulae with He n and those without, whereas the model assumption shows a strong dis- 
continuity. In addition, if we correct Harman and Seaton’s Tz for nebulae without He n to what they would be 
for the models, many nebulae without He n lie above the model-critical temperature of 46,000 K. 

A large number of values of Tz have been recalculated by using the improved magnitudes of Shao and Liller 
(1976) and Kaler (1976Z?). The above general conclusions are supported by the newer work, which will be discussed 
at a later time. 

One other possibility must be considered, that the method itself is in error. The interlocking between H and He 
is already set to give the maximum temperature, so that the only room for error would be in 21™ the sum of the 
observed forbidden-line intensities. In order to bring the model-critical temperature for He n production up to 
60,000 K, we would have to increase 2 In by 60 percent. This figure seems much too high in view of the detailed 
observations that have been made of nebulae; there is no indication as to where in the spectrum the missing radia- 
tion might be found. In order to increase p by 60 percent we would have to increase the fine-structure flux by a 
factor of between 5 and 10, which cannot be justified with present data. 

The conclusion is that the blackbody assumption gives more realistic temperatures than do Hummer and 
Mihalas’s (1970) models. The Stoy method is sensitive to the shape of the flux curve ^(v); and line blanketing, 
suggested by Hummer and Mihalas, might be important. 

v. DISCUSSION 

The temperatures presented in Table 1 can be used to discuss a number of interesting points. Following the 
discussion in § IV above, the values of Ts derived under the blackbody assumption will be adopted. 

The calculations provide an independent calibration of the effective ultraviolet temperature of the upper main 
sequence, i.e., 37,000 K for the 06 star 01 Ori C, which excites the Orion Nebula NGC 1976. This figure is fairly 
close to the value of 40,000 K suggested by Morton (1969) for an 06 star, as derived from the Zanstra method. Note 
here the high temperature of 42,000 K of the exciting star of the 30 Doradus Nebula: it must be one of the hottest 
on the main sequence. 
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Fig. 2.—The log of the ion ratio 02+/0+ plotted against exciting star temperature 10-3rs. The circles and boxes represent 
planetary and diffuse nebulae, respectively. The filled circles indicate the nebulae which show He n lines. The point representing 
Ps-1 has a dot in the circle. 

We would expect that the ionization level in a nebula would be dependent upon the temperature of the exciting 
star. As an ionization index, the 02+/0+ ratio was calculated for those nebulae in Table 1 for which electron densi- 
ties can be determined reliably from forbidden lines. The calculations were made by employing the references given 
in § III of this paper. The values of log (02+/0+) are plotted against 10-3rs in Figure 2. The planetaries are 
represented by circles (those with nebular He n emission are filled); the diffuse nebulae, by boxes. The correlation 
between the two quantities is very good. Starting at Ts # 30,000 K, 02+/0+ rises rapidly by a factor of ~100 
until a temperature of about 43,000 K is reached, at which point the rise proceeds at a much slower rate. At 
temperatures below 43,000 K, the 02+/0+ ratio would in fact provide a good index of stellar temperature. The 
existence of such a good correlation suggests that the assumptions on which this method is based, particularly 
that the nebulae are optically thick, are good. 

The one significantly discrepant point in Figure 2 (indicated by a dot in the circle) is the planetary Ps-1 = K648, 
the nebula in the globular cluster M15. Ts is extremely low, only 23,000 K, while the 02+/0+ ratio is rather high, 
more in line with what would be expected at Ts = 35,000 K. The nebula is reasonably well observed (Peimbert 
1973; O’Dell, Peimbert, and Kinman 1964), and Ts and 02+/0+ should be reliable. Peimbert (1973) shows that 
the ionized mass of Ps-1 is considerably less than that of galactic planetaries in general, only 0.018 Me. Either 
Ps-1 is surrounded by a large neutral shell, or the mass is indeed low. The data presented here suggest that the 
latter is the case. If the mass is very low, the nebula will be optically thin, Ts will be a lower limit, and 02+/0+ 

would be expected to be large for the temperature of the star, as the 0+ shell will be truncated. The low mass is 
supported by Peimbert’s (1973) value of He/H = 0.09 which is consistent with the lack of a neutral shell (that is, 
there is probably no neutral helium present). Evidently the planetary in Ml5 is a truly low mass object and is 
different from the typical galactic planetary. 

Harman and Seaton (1964) (see also Seaton 1966) have suggested that in the early course of their evolution the 
nuclei of planetary nebulae increase in luminosity as the temperature increases. This apparent increase has been 
supported by the work of O’Dell (1968) and Webster (1969). With the large number of optically thick planetary 
nebulae with relatively cool central stars treated in this paper it should be possible to see whether the cooler central 
stars do indeed have lower luminosities than their hotter counterparts. 

We can determine the luminosity of the central star of a planetary nebula, from the Hß flux, ^(Hß), since from 
Zanstra’s original argument the number of Balmer photons equals the number of stellar ultraviolet photons. 
(The final numbers are so crude because of poor distances that the effects of helium are generally ignored.) Thus we 
can write that 

(9) 

where D is the distance of the nebula, £ is the fraction of the sky covered by the nebula as seen from the star (taken 
from Harman and Seaton 1966), and the other quantities are defined above. 

The calculation of luminosities would be simple were it not for the problem of distances to these nebulae. There 
simply is no straightforward method which gives reliable individual distances. The one planetary whose distance 
is reasonably well known, Ps-1 (Ml5) appears to be different from the typical galactic planetary and must be 
excluded from this study. The commonly used constant-mass, or photometric, method (see, for example, Seaton 
1966) will not work for the optically thick objects considered here, as the ionized mass is less than the true mass, 
and the distances and stellar luminosities will be overestimated. 
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A variety of distance methods have been applied to the nebulae of Table 1. First, distances were taken from 
Cudworth (1974). These distances assume that the nebulae all have the same absolute magnitude, which was found 
by the method of statistical parallaxes. Clearly all that can be derived here is a mean luminosity. 

Second, Harman and Seaton (1964) and Seaton (1966) used the electron density derived from the [O n] lines 
and the Hß flux (corrected for extinction) to determine distance. Distances and luminosities áre derived here by 
using both [O n] and [Cl m] to find the electron density. We have that 

A>0 
= 7.60 x (10) 

where Ne is the true electron density found from forbidden lines, 6" is the angular radius in seconds of arc, ^(Hß) 
is the corrected Hß flux, e is the filling factor, the fraction of the spherical volume defined by the mean radius of the 
nebula that is actually filled with radiating matter, and He/H is assumed to be 0.1. In calculating the distances the 
[O ii] and [Cl m] line data were taken from Kaler’s (1976^) catalog, or Aller and Epps (1976), and Ne was derived 
from the tables of Saraph and Seaton (1970) and Krueger, Aller, and Czyzak (1970). The observed ^(Hß) were 
taken from Cahn and Kaler (1971), Perek (1971), or Kaler (1976Ô), the extinction corrections from Cahn (1976) 
or Kaler (1976a), and the radii 6" from Cahn and Kaler (1971). 

There are a variety of problems with this method. The filling factor e is essentially unknown for each nebula. 
There may well be clumping below the limit of resolution. Kaler (unpublished) shows that e æ 0.5 for optically 
thin nebulae near the limiting radius required for the nebula to be optically thick. It is presumed that this value 
holds for the optically thick nebulae as well. The major difficulty now is one of propagation of errors. Since 
goes as D2, D ~ c-2, Ae~

4, and 0-6, so that the luminosities are very sensitive to the exact values of these quanti- 
ties. 

A further difficulty involves the problem of density gradients. Lee et al. (1974) and Kaler al. (1976) have amply 
demonstrated that strong density gradients can exist in planetary nebulae, so that neither [O n] nor [Cl m] may 
give the appropriate “mean” density that should be used in equation (10). The [O n] densities are probably too 
small, and the resulting distances and luminosities will be too large. Aller and Epps (1976) show that the density 
derived from [O n] is generally smaller than that derived from [Cl m]. 

Finally, the method of “dust distances,” described by Cahn and Kaler (1971), was used to derive the lumi- 
nosities. The distances used here were taken from the recent work of Cahn (1976 and unpublished) which employs 
an improved dust model of the galaxy and the newest radio and optical data to derive extinction. The major 
difficulty with this procedure is that the interstellar dust distribution is so clumpy that adoption of a mean dust 
distribution will result in large errors. 

Except for Cudworth’s, the distance determinations described above yield an enormous range of luminosity, 
over several orders of magnitude, for the stars of Table 1. The distances are so crude that no evolutionary track 
is discernible if the stars are plotted on a (log J^7, log Ts)-diagram. Possibly median luminosities (j£?) may have 
some meaning, and these have been found for all the distance methods employed. The results of this study are 
summarized in Figure 3, in which log is plotted against log Ts. The crosshatched area shows the rough 
boundaries of the nuclei of optically thin nebulae which are at or near maximum luminosity. These objects exhibit 
moderate or strong He n emission. Temperatures and luminosities for these stars were derived by using the Harman- 
Seaton (1966) procedure, Cahn’s and Kaler’s (1971) distances modified for observed extinction, and Shao’s and 
Liller’s (1976) and Kaler’s (19766) central star magnitudes (see § IV). 

The correct values of Ts were used in equation (9) for the calculation of the luminosities of the stars of Table 1. 
However, for the purpose of display, they are plotted as a group in Figure 3 at the mean temperature of # 50,000 
K. The medians of the distributions of luminosities are presented for the dust, [O n] and [Cl m] distances by hori- 
zontal bars. The lengths of the vertical bars represent the spread in log for each distance method. The 
numbers in parentheses show the number of stars for which luminosities were calculated. Note that the [O n] lines 
give the highest luminosities; these values are almost certainly overestimates because of gradients. The bar 
labeled “B.D.” in Figure 3 represents the median of the “best determined” luminosities, those for which the 
[O ii] and [Cl m] lines give luminosities within an order of magnitude of one another. The B.D. and [Cl m] values are 
probably the most reliable. 

The mean value of found from Cudworth’s (1974) distances is labeled “Cud” in Figure 3. Cudworth also 
indicated that the scale factor for the constant-mass method should be increased by a factor of 1.45. If that is true, 
the crosshatched area should be increased by 0.3 in the log for proper comparison. 

The vertical spread in Figure 3 is so large due to poor distances that it is not possible to discern the intrinsic 
spread. It is not possible to draw any kind of evolutionary path through these points. About all we can say at present 
is that the mean or median luminosity of the nuclei of these low-excitation planetaries appears significantly less 
than the maximum luminosity that is found for the nuclei of the optically thin, high-excitation planetaries. 

I would like to thank the National Science Foundation for support through grants GP-22957 and MPS 73- 
05270 to the University of Illinois. Thanks also go to J. H. Cahn and W. Liller for communicating results in advance 
of publication, to J. R. Dickel and J. H. Lutz for critically reading the manuscript, and to J. Degioanni and an 
anonymous referee for helpful suggestions. 
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Fig. 3.—Luminosities of exciting stars of planetary nebulae. The crosshatched area represents the regime of high-temperature 
stars near maximum luminosity. The horizontal bars represent the median luminosities, and the vertical bars the ranges of the 
luminosities. Luminosities are found from the distance methods as indicated: [On] (  —), [Clm] ( ), dust (—), best deter- 
mined ( ). 
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