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ABSTRACT 

A procedure for estimating the ranges of parameters that describe the spectra of X-rays from 
clusters of galaxies is presented. The applicability of the method is proved by statistical simulations 
of cluster spectra; such a proof is necessary because of the nonlinearity of the spectral functions. 
Implications for the spectra of the Perseus, Coma, and Virgo clusters are discussed. The procedure 
can be applied in more general problems of parameter estimation. 
Subject headings: galaxies : clusters of — X-rays 

I. INTRODUCTION 

The problem of estimating the ranges of parameters 
that describe the X-ray spectra of clusters of galaxies 
has been a subject of extensive debate during the last 
year. The basic issue is whether or not these spectra 
have a low-energy cutoff (Kellogg 1973; Bahcall 1975 
and references quoted therein). But the discussions in 
the literature have evolved into the general problem of 
finding confidence limits in nonlinear multiparameter 
fits (Kellogg, Baldwin, and Koch 1975; Margon et ai 
1975; Kellogg 1975; Lampton, Margon, and Bowyer 
1976). It has become evident that there is no general 
agreement on the value of the increment A^2 that has 
to be added to x2min in order to find confidence limits 
for the parameters when the “best values” are 
calculated by minimizing x2. 

In this paper we present the correct “minimum x2” 
method to calculate confidence limits for any number 
of parameters. The elements of the method can be 
found in various references in statistics. (See the 
Appendix.) The value of Ax2 depends on the number 
of parameters that are estimated simultaneously, and 
not on the total number of parameters in the fitting 
function. The procedure is exact for linear fits. For any 
particular nonlinear fitting problem (the degree of 
nonlinearity being determined both by the functional 
form and by the dispersion of the measurements), the 
applicability of the method can be tested by simulation, 
as we have done for the analysis of cluster spectra. 

Based on the above-mentioned statistical analysis 
we find that Uhuru observations, when analyzed in 
terms of simple spectral functions, yield a formally 
significant low-energy cutoff for the Coma cluster, but 
not for the Virgo or Perseus clusters. We argue that no 
firm conclusion can be reached with the available 
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sources — X-rays : spectra 

Uhuru data since any such cutoff is outside the 
dynamic range in energy of the Uhuru detectors and 
since the spectral functions used are oversimplified. 

We present the procedure for finding confidence 
limits in § II. The statistical simulations that we have 
performed for the problem of cluster spectra are 
described in § III. We apply the technique to Uhuru 
observations of cluster spectra in § IV. A summary of 
our results is given in § V. Some formal aspects of the 
estimation procedure are given in the Appendix, with 
references to the statistical literature. 

II. FINDING CONFIDENCE LIMITS 

Consider a set of observed quantities Oh i = \,n 
(e.g., the counts of photons per channel in the n = 1 
Uhuru energy bins), that are measured with an accuracy 
given by the rms dispersions The observations are 
to be described by a functional form Cf(0) = 
Ci(0i, ..., 0P) with p parameters (e.g., a power-law 
spectrum with = 3 parameters: low-energy cutoff, 
power-law index, and normalization). Suppose that 
for some specific application one needs to estimate 
simultaneously the values of the parameters 6l9 ..9q, 
which we shall call the “interesting parameters,” and 
is not concerned at all with the values of 0g+1, ..., 0P, 
which we shall call the “uninteresting parameters.” In 
other words, we split the vector 0 into two com- 
ponents, 0 = (®, T), where O = (0l9 ..., 0g) and 
T = (0g+1, ..., 0P), and we are interested in esti- 
mating O (e.g., we want to estimate the low-energy 
cutoff in a cluster spectrum and do not care about the 
power-law index or normalization). 

The point-estimator (“best value”) for O is obtained 
by the usual “minimum x2” method. One minimizes 
the function 

S(d>, T) = 2 [Ot - T)]2M2 (1) 
i = l 

with respect to <E> and T, and picks the value of O 
(which we denote by 4>) that yields Smin. 

The confidence limit for O that corresponds to a 
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given confidence level a (0 < a < 1) is obtained in the 
following way: first, calculate a number A(#, a) so that 

Probability (x2(q degrees of freedom) < A) = a ; (2) 

i.e., A(#, a) is the x2 value that one finds from the 
table of a x2 distribution with q degrees of freedom. 
Then the confidence region R/ is the set of all the 
values of <E> such that 

5(0, minimized over T) — 5min < A(#, a). (3) 

In other words, A(q, a) is the required increment of 
“x

2,” its value is determined by the number of 
interesting parameters, and “x2” must be minimized 
with respect to the uninteresting parameters for each 
point in the ^-dimensional subspace of the interesting 
parameters. 

The region Rq
a is a region in the ^-dimensional space 

of the interesting parameters. It is a statistic, namely, 
a result of the observed values 0*. It has the property 
that when the observation as a whole is repeated a 
large number of times, the region Rq

a will contain the 
true value 0° a fraction a of the times. For an outline 
of the proof of this property see the Appendix. This 
procedure is exact for linear fitting functions. 

A practical numerical technique to find Rq
a is by 

using x2-maPs °f the ^-dimensional space of all 
parameters. One then finds the region R such that 
inside it 5(0) — 5min < A(q, a), and then projects R 
on the ^-dimensional subspace of the vector ®. 

A list of values A(#, a) for some useful values of q 
and a is given in Table 1. As one can see from this 
table, the appropriate increment for estimating one 
interesting parameter (e.g., a low-energy cutoff) at the 
68 percent confidence level is 1, independent of the 
total number of parameters {p) in the fitting function. 

III. SIMULATIONS OF CLUSTER SPECTRA 

We have used Monte Carlo simulations of X-ray 
spectra in order to test the validity of the general 
technique presented in § II for the specific case of 
cluster spectra. The results of the simulations are 
summarized in Table 2, and they show that the method 
works very well. 

In the first simulation we mimicked the Uhuru 
observation of the Perseus cluster (Kellogg, Baldwin, 
and Koch 1975). For ease of computation we used a 
spectrum of the form 

I{E) = aE~c exp ( —è/R3) photons keV“1 (4) 

TABLE 1 
Constants for Calculating Confidence Regions 

q (No. of Interesting Parameters) 

(%) 1 2 3 

68  1.00 2.30 3.50 
90  2.71 4.61 6.25 
99   6.63 9.21 11.30 

to describe the number of counts accumulated during 
an observation. The energy E is measured in keV. The 
power-law index cQ was taken as 2.1; the low-energy 
cutoff parameter bQ was taken as 1.2 keV ; the normal- 
ization constant aQ was chosen as 15,000 in order to 
yield the same statistical accuracy as in the actual 
Uhuru experiment. We used seven energy bins with 
flat response functions. The central energies of the 
bins (2.09, 2.89, 3.94, 5.10, 6.40, 7.84, and 9.28 keV) 
and their widths (0.8, 0.85, 1.1, 1.2, 1.3, 1.4, and 
1.4 keV) were chosen to correspond as closely as 
possible to the Uhuru bins. Using the input spectrum 
we calculated the expected counts in each of the seven 
bins. We then perturbed these numbers using Poisson 
statistics, and obtained a simulated observation. This 
observation was then analyzed using a minimum x2 

fitting program as described in the previous section, 
and the whole procedure was repeated 50 times. 

We tested the procedure for constructing confidence 
regions for three different values of q, the number of 
interesting parameters. Let us associate ^ = b, 92 = c, 
d3 = a. If one is interested in knowing simultaneously 
the values of all the three parameters, then q = 3( = p 
in this case). For each simulated spectrum we con- 
structed the quantity 

S3 = S{b0, c0, do) — 5min . (5) 

The correctness of the estimation procedure is 
equivalent to (and actually follows from) the fact that 
S3 is distributed like x2 with three degrees of freedom. 
(See Appendix. In the special case of q = p this is the 
well-known decomposition theorem.) Thus one test is 
to compare the value of the average 53 that we find 
from the simulation to its expected value, and the 
agreement is good : the simulation gives a value of 2.88, 
whereas the expected value is 3 ± 0.35 (1 a). For a 
more direct test we chose two popular values of a: 
90 percent and 68 percent, and counted the number of 
times that the three-dimensional regions R3

a contained 
the point (b0, c0, a0), i.e., the “number of successes.” 
This is the number of times that S3 < A(3, a) which 
we denote by J3(a). From Table 2 one sees that the 
values found for J3(a) agree well with those expected 
(90% confidence: 45 found, 45 + 2.1 expected. 68% 
confidence: 35 found, 34 ± 3.3 expected). 

If, however, one is interested in estimating simul- 
taneously the values of b0 and c0, and does not care 
about the value of the normalization constant, then 
the proper value of q is 2. For each simulated spectrum 
we constructed the quantity 

52 = S(b0, c0, minimized over ß0) — Smin . (6) 

The quantity 52 should be distributed like x2 with two 
degrees of freedom, and, as seen from Table 2, 52 
which we find agrees with the expected value. The 
number of times that the two-dimensional region R/ 
contains the point (b0, Cq), i.e., the “number of 
successes” for this estimation problem is denoted by 
/2(a). Again the agreement is good. 

Finally, if one just wants to estimate the value of the 
low-energy cutoff parameter b0, and does not care 
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TABLE 2 
Results of Simulations 

Vol. 210 

Parameters 

Simulation No. 

a0     
bo.       
c0. .        
No. of Spectra Generated. 

-VJ 
Expected...    
Found     

^3 (90%) : 
Expected    
Found.   

•^3 (68%) : 
Expected  
Found.   

q 1?: 
Expected  
Found    

Jz (907o): 
Expected. . .     
Found  

Jz (68%) : 
Expected  
Found   

q 5xV 
Expected    
Found    

/i(90%): 
Expected  
Found.    

Ji (68%) : 
Expected  
Found  

15,000 
1.2 
2.1 
50 

3 ± 0.35 
2.88 

45 ± 2.1 
45 

34 ± 3.3 
35 

2 ± 0.28 
2.15 

45 ± 2.1 
44 

34 ± 3.3 
34 

1 ± 0.20 
1.08 

45 ± 2.1 
45 

34 ± 3.3 
34 

15,000 
0 
2.1 

102 

3 ± 0.24 
3.03 

91.8 ± 3.0 
94 

69.4 ± 4.7 
67 

2 ± 0.20 
2.03 

91.8 ± 3.0 
93 

69.4 ± 4.7 
66 

1 ± 0.14 
1.05 

91.8 ± 3.0 
88 

69.4 ± 4.7 
68 

50,000 
4.6 
1.5 
53 

3 ± 0.34 
2.88 

47.7 ± 2.2 
48 

36.0 ± 3.4 
34 

2 ± 0.27 
1.85 

47.7 ± 2.2 
49 

36.0 ± 3.4 
35 

1 ± 0.19 
1.01 

47.7 ± 2.2 
46 

36.0 ± 3.4 
37 

Note.—The ± statistical uncertainties correspond to 1 a. 

about the values of the other parameters, the correct 
value of q to use is 1. For each simulated spectrum we 
calculated 

Si = S(b0, minimized over c0 and a¿) — Smln . (7) 

Si is distributed like_x2 with one degree of freedom, and 
the comparison of Si that we find from the simulation 
to the expected value is good. The number of times 
that the one-dimensional interval contains the 
value b0, which we denote by /i(a), again shows good 
agreement between expectation and the results of the 
simulation. 

The type of simulations described above test directly 
the basic property of confidence regions: the proba- 
bility that in a given experiment the confidence con- 
tours enclose the true value of the parameter. Such 
simulations were conducted also by Lampton, 
Margon, and Bowyer (1976) [and also by Avni and 
Bahcall (1976) for a different problem]. 

The second set of simulations was identical to the 
first except that we used the value of b0 = 0.0 for the 
low-energy cutoff parameter; i.e., an input spectrum 
without a low-energy cutoff. From Table 2 one can see 
that again in all the tests that we performed the agree- 

ment between the results of the simulation and 
expectation is very good. The purpose of this simula- 
tion was to show that the estimation procedure works 
equally well for input spectra without a low-energy 
cutoff as for input spectra with a low-energy cutoff. 
Therefore, the probability that a spectrum without a 
cutoff will show up in the results of an observation as 
if it did have a cutoff is correctly described by the 
confidence limits assigned by the estimation technique. 

The third set of simulations is identical to simulation 
A of Lampton, Margon, and Bowyer (1976). We used 
their values of a0, b0, c0, and also their energy bins 
(central energies: 1, 2, 3, 4, 5, 6, 7 keV; width: 1 keV). 
Again the results summarized in Table 2 show 
excellent agreement between expectation and simula- 
tion, for all values of q. Our results are, therefore, 
entirely consistent with those of Lampton, Margon, 
and Bowyer (1976) for the special case studied by 
them when all the parameters appearing in the fitting 
function are estimated simultaneously (i.e., ^ = /? = 3). 

We conclude that the technique discussed above is 
adequate to estimate any subset of parameters in the 
study of cluster spectra as measured by the Uhuru 
satellite. In particular, if the scientific issue is the 
value of the cutoff parameter, then g = 1, and the 
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appropriate values of A^2 are 1 for 68 percent confidence 
and 2.7 for 90 percent confidence. 

IV. APPLICATIONS TO CLUSTER SPECTRA 

We now apply these results to the Uhuru observa- 
tions of the Perseus, Virgo, and Coma Clusters. By 
projecting the A^2 = 1 contours, given by Kellogg, 
Baldwin, and Koch (1975) for the Perseus cluster, on 
the low-energy cutoff axis we find that there is 
statistically significant evidence (more than 90%) for 
a cutoff if a power-law spectrum is used, but there is no 
evidence for a cutoff if a thermal spectrum is used. 
The overall quality of the two fits (as measured by 
X2min) is similar. This results from the fact that any 
such cutoff is small, ~ 1 keV, and is therefore outside 
the range in energy of the Uhuru detectors. In fact, 
data at lower energies, as summarized by Kellogg, 
Baldwin, and Koch (1975), show a soft excess relative 
to the two spectral forms used (indicating that the 
actual spectrum is more complex) and definitely do not 
have a low-energy cutoff as large as 1 keV. 

The situation for the Virgo cluster is similar. From 
the errors quoted by Kellogg, Baldwin, and Koch 
(1975) on the value of the low-energy cutoff when the 
power-law spectrum is used, and by projecting the 
Ax2 contours given by Kellogg (1975) for the thermal 
fit onto the cutoff axis, we find significant evidence 
(more than 90%) for the existence of a cutoff in the 
first case; no evidence in the latter case. Observations 
at energies below 1 keV, summarized by Kellogg, 
Baldwin, and Koch (1975), show again indications of 
an excess soft flux, but the data are much more meager 
than for the Perseus cluster. 

The Uhuru observations of the Coma cluster give a 
somewhat different picture. From the errors quoted 
by Kellogg, Baldwin, and Koch (1975) for the value 
of the low-energy cutoff when a power-law spectrum 
is used, one finds significant evidence for a cutoff 
(more than 90%), as in the previous two clusters. By 
projecting the Ax2 contours given by Kellogg (1975) 
for the thermal fit onto the cutoff axis, we also find for 
this spectrum significant evidence (just above 90% : 
the 90% confidence interval for b just fails to include 
zero) for a low-energy cutoff, unlike the other two 
clusters. Thus on the basis of Uhuru observations 
alone, and using the above simple spectral forms, one 
might conclude that there is a low-energy cutoff in the 
spectrum of the Coma cluster. We believe, however, 

that such a conclusion is premature because of the 
reasons discussed above : the low-energy cutoff being 
outside the dynamic range of the observation and the 
complexity of the actual spectrum. Observations 
below 1 keV, summarized by Kellogg, Baldwin, and 
Koch (1975), show a very slight indication for an 
excess soft flux, so the situation may perhaps be similar 
to that of the Perseus cluster. Surely, if the actual 
spectrum is more complex than the spectral form used 
in the fit, then even with much better counting 
statistics no firm conclusion can be made on the 
behavior of the spectrum outside the range where it 
was actually observed. 

V. SUMMARY 
We have described a method, the elements of which 

can be found in statistical references (see Appendix), 
to calculate confidence limits for any number of 
parameters. The increment Ax2 for a given confidence 
level depends on the number of parameters being 
estimated simultaneously, which in turn depends on 
the nature of the scientific question being asked, and 
not on the total number of parameters in the fitting 
function. We have shown by Monte Carlo simulations 
that this method (which is precise for linear fits) works 
well for the specific problem of studying the X-ray 
spectrum from clusters of galaxies. The scientific 
issue here is whether or not these spectra have a low- 
energy cutoff. Therefore the statistical problem is to 
estimate the value of the cutoff parameter; the 
appropriate values of Ax2 are 1 for 68 percent confi- 
dence or 2.71 for 90 percent confidence. In using these 
increments Ax2, one has to minimize x2 with respect to 
the rest of the parameters (rather than keeping them 
fixed at the values which yield the overall x2min)- 

By applying this technique to Uhuru observations 
of the Perseus, Virgo, and Coma clusters, we find 
marginal formal evidence for the existence of a small 
low-energy cutoff in the spectrum of Coma. As such 
cutoff is outside the range in energy of the detectors, 
no firm conclusion can be reached since the actual 
spectrum may be more complex than the spectral 
forms used in the fitting procedure. 

It is a real pleasure to thank P. Joss for a stimulating 
discussion and persistent criticism. I wish also to 
thank E. Kellogg and B. Margon for sending me pre- 
prints of their work prior to publication and for useful 
comments. 

APPENDIX 

In this Appendix we describe in outline form the formal aspects of the estimation technique. The minimum x2 

/^-dimensional estimator 0 in linear fits and for large samples has a multivariate normal distribution around the 
true value 0° with a x /? covariance matrix V given asymptotically by (Martin 1971 ; Bevington 1969) 

(F-1),,* = MUk 
1 d2s 
2 ddfidj, ’ 1 <j\k<p, (Al) 

where *5 is given by equation (1), and the second derivative can be evaluated at 0 = 0 in the above limit. The 
distribution of the ^-dimensional subvector O is therefore also a multivariate normal distribution, with a. q x q 
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covariance matrix ^ which is obtained from F by deleting the last p — q rows and columns. Defining now m = 
it follows that r(&°), where r(O) is the bilinear form 

T(0) = (O - é)Tm(0 - ô), (A2) 

is distributed like x2 with q degrees of freedom. It is then obvious that a confidence region Rq
a can be defined as the 

set of all values of ® for which r(O) < A(a, q), with A given by equation (2). It can now be shown using purely 
algebraic matrix manipulations (Arndt and MacGregor 1966) that 

W = [(<D - 4>, T - - Ô, T - minimized over Y • (A3) 

Using now the relation (Al) between M and S, and the fact that by definition dSjd® = 0 at 0 = 0, we find 

7X0) = 5(0, minimized over T) — 5min 5 (A4) 

which yields the expression (3) for Rq
a. 

The same arguments should also apply for nonlinear fits if the sample size is large enough. For large samples 
the dispersion of 0 around 0° becomes small, and therefore C(0) can be replaced by its linear approximation in 
the vicinity of 0°. Under these conditions, 0 is distributed normally, 5 can be approximated by its expansion to 
second order, and all the rest of the arguments follow as before. The formal proof probably exists in the statistical 
literature. As these considerations apply only asymptotically, the applicability of the estimation procedure in any 
specific nonlinear problem with finite statistics should be checked by numerical simulations. 
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