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ABSTRACT 

The formation of close, doubly compact binary systems from close massive binaries is con- 
sidered. Massive X-ray binaries are shown to be possible progenitors of these systems. The 
recent observation of the binary pulsar indicates that doubly compact binary systems may exist. 
Reasonable scenarios can be developed in which at least one of the compact stars, in many cases, 
is a black hole. In general, these objects have evolved to separations less than 10 R0> an(i thus 
their orbits decay (within 1010 yr) via the emission of gravitational radiation. Black-hole- 
neutron-star collisions may therefore be possible in these systems. A model for the tidal disruption 
of a neutron star by the black hole in these systems is constructed, and shows that mass ejection 
to infinity from 1.3 M0 neutron stars (a reasonable value suggested by evolutionary calculations) 
spiraling into black holes with masses less than 8-17 M0 is possible, this range depending upon 
the neutron star equation of state. For much larger black hole masses, the neutron star breakup 
occurs inside the Schwarzschild radius of the neutron star. A statistical estimate for the frequency 
of black-hole-neutron-star collisions is given, and possible implications for nucleosynthesis and 
antineutrino emission are discussed. 
Subject headings: stars: binaries — black holes — stars: neutron 

I. INTRODUCTION 

The existence of binary X-ray sources can be 
satisfactorily explained in terms of compact, close 
binary systems (see Blumenthal and Tucker 1974 for a 
review). These sources are thought to be the result of 
the evolution of massive close binaries: the more 
massive star evolves first and “dies” in a supernovae 
explosion. Stellar evolutionary calculations as well as 
observational considerations (Arnett and Schramm 
1973; Schramm and Arnett 1975; Tinsley 1975) imply 
that this supernova will produce a compact star 
(neutron star or black hole). (In fact, the massive 
X-ray binary Cyg X-l is thought to contain a compact 
star with a mass greater than 10 MQ [Paczynski 1974], 
which thus may be a black hole.) The X-ray source is 
then presumably powered by accretion of matter onto 
the compact star. If this supposition is correct, it 
implies that in at least some systems the supernova 
explosion leading to the formation of the compact 
star did not destroy the companion star or disrupt the 
binary. One may naturally inquire as to the subsequent 
fate of these systems. The discovery of the binary 
pulsar PSR 1913 + 16 (Hulse and Taylor 1975) has 
provided some impetus for such an investigation. 
Since the binary pulsar seems to consist of a neutron 
star together with a dwarf star or a compact star, 
evolutionary considerations (Flannery and van den 
Heuvel 1975) suggest that it may have originated from 

a massive X-ray binary. If, indeed, this system contains 
two compact stars, it is evidence that two supernovae 
may occur in a binary system without disrupting it. 

This paper considers the probability and implica- 
tion of the formation of doubly compact binary 
systems. If these binaries are formed with small enough 
separations, the emission of gravitational radiation 
will cause the orbit to completely decay, and the colli- 
sion of the two components will result. There exist 
the following possible cases: (1) double black hole 
binary, (2) double neutron star binary, and (3) black- 
hole-neutron-star binary. In the first case the only 
observational consequence would be a prodigious 
emission of gravitational radiation (Smarr 1974), and 
this case is not considered further. The second is also 
not discussed in detail; however, some interesting 
possibilities exist, and they will be commented on. The 
third case has been considered by Lattimer and 
Schramm (1974) (hereafter referred to as LS). They 
conclude that the tidal forces exerted by the black hole 
are sufficiently strong to disrupt the neutron star before 
the two components actually collide (the “tube-of- 
toothpaste” mechanism—see Wheeler 1971). Further- 
more, the breakup of the neutron star appeared to be 
violent enough to eject some neutron star matter 
completely out of the system. An estimate of the 
number of these events throughout the Galaxy 
indicated that perhaps a significant fraction of the 
neutron-rich nuclei in the Galaxy may be formed in 
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this manner. The ejection of neutron-rich nuclei into 
the interstellar medium could have drastic conse- 
quences. For example, if a large amount of deuterium 
were formed, the current hypothesis that most deu- 
terium is primordial in origin, and thus that the present 
density of matter is too low to close the Universe, 
might be in jeopardy (Epstein, Lattimer, and Schramm 
1976). These interesting results warrant a more accurate 
investigation of this problem. 

In § II, the formation of close doubly compact 
binaries is discussed. It is pointed out that mass 
transfer may greatly reduce the separations in these 
systems. Their orbits can then completely decay because 
of gravitational radiation in a time less than the age of 
the Universe, and the collision of the components will 
result. In § III, a model for a black-hole-neutron-star 
collision is constructed. First, the trajectory followed 
by the neutron star is analyzed. Then, the equations 
of hydrodynamics describing the neutron star in an 
inertial frame following this trajectory are developed. 
The tidal force exerted by the black hole is incorporated 
into these equations. The results of this model are 
discussed in §IV. The amount of mass ejected from 
the neutron star in the collision is determined, and the 
possible shortcomings of this model are reviewed. In 
§ V the observational implications of black-hole- 
neutron-star colhsions—nucleosynthesis, antineutrino 
radiation, and y-ray bursts—are dealt with. 

II. THE FORMATION OF BINARIES 
CONTAINING TWO COMPACT STARS 

The initial stages of evolution of massive close 
binaries have been studied by several authors (e.g., 
Kippenhahn and Weigert 1967 ; Plavec 1968 ; Paczynski 
1971). The present paper will be concerned only with 
binaries with initial separations less than a few AU, 
so that mass transfer is important. The more massive 
star (A) evolves faster; when its radius exceeds the 
mean radius Rn of the critical Roche surface, mass 
flows across the inner Lagrangian point onto its com- 
panion (B). Mass transfer causes A to lose its thermal 
equilibrium, but Morton (1960) has shown that re- 
adjustment to thermal equilibrium does not result in 
a decrease of the star’s radius until the mass exchange 
becomes very large. Furthermore, if mass and angular 
momentum are conserved (reasonable assumptions 
since the mass flow occurs at velocities much less than 
escape velocities from either star), it is simple to show 
that, at least initially, the separation of the two stars 
must decrease. Since Rr is approximately given by 
Paczynski (1971) as 

Rr = [0.38 + 0.2 log (MA/MB)]a (20 > MA/MB > 1) 

a) 
(where MA and MB are the masses of A and B, and a is 
the separation in the system), the size of the Roche 
surface also decreases, implying that further mass 
transfer is inevitable. The result is that nearly the 
entire envelope of A (about 70-80yo of its mass) is 
generally transferred to B, and A becomes a helium 
star. 

It can be shown (Lattimer 1976) that only a negli- 
gibly small fraction of all binaries have masses MA 
and Mb similar enough to allow the secondary, B, 
to evolve significantly during either the mass transfer 
state or the further presupernova lifetime of A. It is 
generally known (see, e.g., Arnett and Schramm 1973) 
that helium stars more massive than about 4 M© do 
not expand enormously in their later stages of evolu- 
tion. Hence, if the original mass of A is greater than 
about 15 Mq, the helium star left after the initial 
phase of mass exchange probably does not exceed its 
Roche surface in its future evolution; no further mass 
transfer from A is expected. 

The models of massive stars of Arnett and Schramm 
(1973) indicate that stars in the range 6 ^ M/Mq ^ 70 
evolve to a similar presupernova configuration—a 
1.4 Mq (approximately the Chandrasekhar mass) core 
with the rest of the mass contained in the mantle and 
envelope. Depending on the fraction of the mantle 
which falls on the core, a neutron star or black hole 
can be formed in a subsequent supernova explosion. 
(It may also be that a black hole could be formed with 
no associated supernova.) The effects of rotation and 
magnetic fields have been neglected in these calcula- 
tions; it seems likely, though, that the general con- 
clusion that a neutron star or black hole is formed is 
not altered. This consequence is supported observa- 
tionally in the case of single stars, since (1) no white 
dwarfs are observed in open clusters with turnoff 
masses much greater than 6 MQ, (2) the observed 
numbers of pulsars (presumably neutron stars) is 
consistent with the formation rate (and therefore the 
supernova rate) of single stars more massive than 
~ 6 Mq, and (3) the supernova rate in galaxies is also 
consistent with this formation rate (Tinsley 1975). 

In the case of binaries, the situation is more com- 
plicated. Mixing because of binary effects could lead 
to larger core masses and hence directly to black hole 
remnants. Such a possibility is suggested in the case of 
the massive X-ray binary Cyg X-l, where the collapsed 
component apparently has a mass greater than 
~ 10 Me. This binary, being one of the three massive 
X-ray sources within 3 kpc, therefore may indicate 
that black hole formation (with or without an accom- 
panying supernova) in a binary system is not a rare 
event. (It is unlikely that the [presumed] black hole 
was formed by accretion onto a neutron star, since 
the companion has not yet evolved to its Roche lobe 
overflow stage.) The scenario outlined here may 
therefore lead to the formation of a collapsed star from 
the helium star A. 

The existence of binary X-ray sources themselves 
suggests strongly that one supernova can occur in a 
close binary without disrupting it. Since B is now the 
more massive star, the mass ejected from A in the 
supernova shell (if there indeed was a supernova) does 
not necessarily destroy B (Cheng 1974; Wheeler, 
McKee, and Lecar 1974) as only a small fraction of 
B (^0.01 Mb) apparently is stripped off. This small 
amount of lost mass, however, reduces considerably 
the cross sectional area of B and is important in keep- 
ing the binary intact. Note the importance of the initial 
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stage of mass transfer in keeping these binaries bound 
after the supernova explosion. Massive close binaries 
in this stage of evolution bear a strong resemblance 
to the models (see, e.g., Flannery and van den Heuvel 
1975) of massive X-ray binaries. The X-rays may be 
powered by the accretion, onto the new compact star 
A, of the stellar wind emitted by its massive companion 
B. The theoretical considerations discussed above lead 
one to expect that these systems are likely to further 
evolve into (bound or unbound) doubly compact 
binaries. Two major evolutionary stages can be 
envisaged: First, the new primary (B), presumably a 
“normal” upper-main-sequence star, evolves and 
expands, entering a second Roche lobe overflow stage. 
Second, B may eventually become a supernova since 
its mass should exceed 6 M0 as a result of mass transfer 
from A. 

In the first of these processes, for the reasons cited 
previously, most of the envelope of B is transferred in 
perhaps 105 yr. However, since A is a compact star, 
it may not be able to accept most of this matter. 
Simply speaking, only if the accretion rate can exceed 
the rate permitted by the Eddington limit (~ 10~8 M0 
yr-1) by several orders of magnitude will all the 
transferred matter be accepted. Otherwise much of 
the matter may be lost from the system or perhaps a 
“double-core” star (Paczynski 1975) is formed. The 
Eddington limit refers to spherically symmetric 
accretion; in reality, the formation of an accretion 
disk (see, e.g., Shakura and Sunyaev 1973) and aniso- 
tropic accretion due to magnetic fields could raise the 
limit by perhaps two orders of magnitude. Neutrino 
cooling (Zel’dovich, Ivanova, and Nedezin 1972) 
could permit accretion rates as large as lO-1 MQ yr-1, 
but recent calculations (Zytkov and Thorne 1974) 
imply that this is improbable. There is also the 
possibility that the unaccreted matter is not lost from 
the system, but is accreted gradually, long after the 
original mass transfer has stopped. The difficulty in 
ridding the accreting material of its angular momen- 
tum, however, makes accretion at rates much greater 
than 10“6 Afoyr-1 seem physically unrealistic. Since 
the duration of mass transfer is ^ 105 yr, a compact 
star will be unable to accrete enough matter to form 
a black hole unless the Eddington limit is greatly 
exceeded or unless mass is accreted after the mass 
transfer has ended. 

The second process occurs when B, now a helium 
star, becomes a supernova (or directly forms a black 
hole). The system is likely to be disrupted only if the 
mass loss AM from the supernova B is less than 
^(MA + Mb), assuming circular orbits, where now 
Ma and Mb refer to the presupernova masses. There 
are essentially two cases: (1) MA is large because A 
formed a black hole either directly as a result of its 
evolution or because of high accretion rates or long 
time scales; (2) AM is small, because MB is small or 
because B forms a black hole remnant with little mass 
ejection. The impact of the ejected supernova shell 
onto the compact star A with its correspondingly 
small cross section is probably not able, in itself, to 
disrupt the binary. Thus, systems in which at least one 

black hole is formed may be less likely to become dis- 
rupted. The existence of the binary pulsar (Hulse and 
Taylor 1975) is relevant here, since likely scenarios for 
its origin (Flannery and van den Heuvel 1975) suggest 
that this system has undergone at least one supernova, 
which has not caused the system’s disruption. This 
system may be of rather small mass (see, e.g., Roberts, 
Masters, and Arnett 1976), perhaps only a few solar 
masses. It seems reasonable to suppose that more 
massive binaries may also remain bound. 

A massive compact binary with a main-sequence 
primary (here, B) that has a mass in the range 
2 ^ Mb/M0 ^15 may not be observable as an X-ray 
source (van den Heuvel 1975). Therefore, the number 
of observed massive X-ray binaries is a lower limit to 
the potential number of systems that may evolve into 
black-hole-neutron-star pairs. Massive X-ray binaries 
appear to be powered by the accretion of the stellar 
wind produced by B. This strong stellar wind 
persists only after core hydrogen burning has termi- 
nated and before Roche lobe overflow occurs. Thus 
de Loore et ah (1974) have estimated the lifetime of 
massive X-ray sources as (2-5) x 104 yr. Therefore 
3/(7t[3 kpc]2 x 5 x 104 yr) Ä 2 x 10"12pc"2 yr-1 is a 
lower limit to the birthrate (in the galactic plane) of 
progenitors of doubly compact binaries, since there are 
observed to be three massive X-ray binaries within 
3 kpc. 

It has been argued that double compact binaries are 
likely to be formed by the further evolution of massive 
X-ray binaries. The speculative nature of the arguments 
does not permit one to estimate very well the number 
of bound black-hole-neutron-star binaries that may 
result. The fact that one of the three massive X-ray 
binaries within 3 kpc, CygX-1, is currently thought 
to contain a black hole is evidence that the first 
supernova explosion in this system produced the black 
hole, as the second phase of mass exchange has not yet 
begun. If Cyg X-l is any indication, doubly compact 
binaries with at least one component a black hole may 
be relatively common; it may be that the second super- 
nova explosion does not disrupt these systems because 
of the mass in the collapsed component. Observa- 
tionally, one expects these systems to be difficult to 
detect: unless one of the compact stars is a pulsar, or 
accretion is occurring, these binaries will be completely 
“dark.” Van den Heuvel (1975) has argued that if all 
massive X-ray binaries evolved into systems containing 
a pulsar as a result of a second supernova explosion, 
there would be f x (pulsar lifetime)/(X-ray lifetime) ^ 
60 observable binary pulsars within 3 kpc, if one-fifth 
(due to beaming) of pulsars are observable, and if a 
pulsar lifetime is about 4 x 106 yr. Because Cyg X-l 
may contain a black hole, a smaller, but presumably 
nonzero, number of pulsars formed with black hole 
companions might be expected. 

A pulsar created in a system with a companion star 
which is not massive might resemble the binary pulsar 
PSR 1913 + 16. This type of system may, however, 
be formed unbound in many instances, leading to the 
observed deficiency of these binaries. The observed 
lack of pulsars in systems containing a massive 
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collapsed object, on the other hand, may be due to the 
disruption of the system by the second supernova 
explosion. Or, the pulsing mechanism of the new 
supernova remnant may be masked or destroyed by 
the presence of the black hole. The latter cause might 
be compared with what happens if a neutron star is 
formed in a system containing a massive main- 
sequence star: the pulsar may be converted into an 
X-ray source. The disruption of binary pulsars by 
supernova explosions is not inconsistent with the 
observed numbers of single pulsars or their velocity 
distributions. However, the typical pulsar velocity 
observed, which is of the order of a few hundred 
kms-1, could instead be explained by a slightly 
asymmetric supernova explosion in single stars. 

Black-hole-neutron-star binaries, if they are formed, 
would be of great interest because of their initial 
proximity. The various processes of mass transfer 
and mass loss in close binaries appear to lead to a 
significant reduction in the separation of the com- 
ponents. The most important stage in this considera- 
tion is the second phase of mass transfer, from B to 
the collapsed star A. If all the accreted matter is 
accepted, so that mass and orbital angular momentum 
are conserved, the initial (subscript 0) and final 
(subscript /) separations are related by 

For example, if MB0 = 20 M0, MA0 = 1 M0, and 
MB/ £ 5 M0, then MA/ = 16 M© and afla0 æ 1/16. 
If, instead, mass was lost from the system, assuming 
the orbital energy to be conserved and MB0 » MA0, 
one has af = (MBf/MBp)a0. Once again a large reduc- 
tion in the separation is implied. In the latter case, a 
more realistic assumption is that part of the dynamical 
energy of the binary is required to expel the mass 
from the system. The reduction is then even larger 
(van den Heuvel and de Loore 1973), varying exponen- 
tially with MBf — Mbo. Compared with these factors, 
expansion of the orbit in the supernova processes is 
negligible. 

The emission of gravitational radiation will cause 
the black-hole-neutron-star pair to slowly spiral 
together. If the separation with which they are formed 
satisfies (see, e.g., Misner, Thorne, and Wheeler 1973) 

a < 2.8[Mm(M + m)]1/4R0 , (3) 

where M and m are the black hole and neutron star 
masses in solar units, the orbit will completely decay 
within the age of the Universe (~1010yr). Choosing 
as typical values M = 10 and m = 1, equation (3) 
gives a < 9 RQ. This implies that the initial orbit must 
be less than 100-200 RQ in order for the separation to 
decrease to the required value by the time the doubly 
compact binary is formed. Massive X-ray binaries 
apparently have separations less than these values. 

In conclusion, massive close binaries may evolve 
into black-hole-neutron-star or other doubly compact 
systems. It seems reasonable that the massive X-ray 

binaries are one stage in this evolution and therefore 
can be used to estimate the potential number of close 
systems containing two collapsed stars. The second 
stage of mass transfer may be generally capable of 
reducing the separations in these systems enough to 
allow gravitational radiation to become important. 
Hence, a black-hole-neutron-star collision appears 
probable. In § III, we construct a detailed model for 
this interaction. 

III. MODEL FOR BLACK-HOLE-NEUTRON-STAR COLLISIONS 

In order to make the problem tractable it will be 
assumed that the neutron star mass m is much smaller 
than the black hole mass M. The black hole is assumed 
to be nonrotating. (For the extension to the case of a 
rotating hole, see Lattimer 1976.) The trajectory of the 
neutron star is then determined by the background 
Schwarzschild geometry (geometric units c = G = 1 
are used throughout) 

where X = l — 2M/R, R is the radial coordinate, r is 
the proper time, y is the energy per unit rest mass at 
infinity of the neutron star, and / is the orbital angular 
momentum per unit rest mass of the neutron star. The 
orbit is assumed to be nearly circular at radial infinity, 
but the emission of gravitational radiation causes the 
trajectory (initially) to be slowly spiraling. The weak- 
field approximation (Landau and Lifshitz 1971) gives 
the orbital energy loss rate to a good approximation 
(Lattimer 1976) outside of R = 6 M. For circular orbits 
this rate is 

dy 
dr 

-6.4 M2m(M + m) R~5 . (5) 

In general, the orbital angular momentum loss rate 
will be given by the “universal energy-angular 
momentum-relation” (e.g.. Page and Thorne 1974), 

_dyn 
dr ~ dr 

1 (6) 

where the orbital frequency Ü is IXy~1R~2 for circular 
orbits. By differentiating equation (4) twice with 
respect to the proper time, one finds (after making use 
of eq. [6]) 

d3R 2y dy.. ~,r,ns 3 ^7?,, 
dT3~RXdT^ mlR) R3 dT í

1 4M¡R) 

* y ^ ^t2 (1 3M/R) + ’ C^) 

The energy y may be eliminated from equation (7) by 
differentiating equation (4) and using equation (6): 

Y2 = (^)2 + *(* + *^)(l - 3M/R)-\ (8) 

To solve equation (7), one requires initial conditions 
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for R, dR/dr, and d2RldT2. For consistency in evaluat- 
ing the initial conditions for dR/dr, d2Rldr2 and 
d3R/dr3 are assumed for some large R to be given by 
twice and thrice differentiating the Schwarzschild 
relation 

y = X(l — 3M/R)~112 (9) 

and using equation (5) for dyldr. Then the cubic 
equation derived from equation (7) for dR/dr is 
solved; it is found that this initial value for dR/dr is 
extremely close to that given by differentiating once 
equation (9) and using equation (5) for dyldr. Having 
initial values for R, dR/dr, and d2Rldr2

9 one may now 
integrate equation (7). 

This method of calculating the spiral trajectories 
differs from that used by LS; they used the simpler 
Newtonian relation y = 1 — M/2R to calculate 
dR/dr from equation (5). Thus 

= - 12.8Mm(M + m) R'a . (10) 

Figure 1 shows the rates dRjdr predicted by these two 
methods. 

It is clear that formula (10) severely underestimates 
these rates for R ^ 10M—this has effects on the 
results, to be discussed later. 

Equation (7) for the neutron star’s trajectory will be 
only as valid as the approximation that (m/M) « 1. 

Fig. 1.—The radial velocity of the center of mass of the 
neutron star as it spirals toward the black hole. Velocity is in 
units of c; the radial coordinate R is in units of the black hole 
mass M. The quantity (dRldr)hS> is the radial velocity used by 
Lattimer and Schramm (1974) (eq. [10]); the curve representing 
the integration of eq. (7) is denoted by (dRldr)13. 

In order that the neutron star’s spin not affect its 
trajectory, Corinaldesi and Papapetrou (1951) show 
that 

Mr2 D“1 

R R2 co“1 « 1 ai) 

is required, where r is the radius of the neutron star 
and œ its rotational frequency. Even if the neutron star 
is rotating near breakup velocity, that is, when 
a> ~ (mr~3)112, this inequality reads 

where the approximate formula O ~ (MR~3)112 has 
been used. For R ~ 6 M ~ 6 r and m/M ~ 0.1 (which 
will be seen to be typical values), this is a good 
approximation. 

In order to study the neutron star as it is deformed 
in the tidal field of the black hole, a frame of reference 
is needed. In general relativity the closest analog to an 
inertial frame is a Fermi-Walker transported tetrad 
frame (Misner, Thorne, and Wheeler 1973). This 
Fermi frame consists of an orthonormal tetrad of basis 
vectors e(li) (indices referring to the Fermi frame will be 
enclosed in parentheses; ¿a, v = 0, 1, 2, 3; and i9j = 
1,2,3) such that e(ß) = d/dX^ and • e(v) = Thus, 
the components ev

(u) of these vectors form the trans- 
formation correct to order (X(ß)/ Xß) between the 
Schwarzschild (Xv = (T 9 R9 0, O)) and the Fermi 
(X(ß)) frames : 

dXv 

e <tf) dX^ 
(12) 

Since the Fermi frame is parallelly transported along 
the orbit, one has 

^ , (13) 

where the r%v are the Christoffel symbols in the 
Schwarzschild frame and ü(£ö)

(v) is the infinitesimal 
generator of Lorentz transformations; see Misner, 
Thorne, and Wheeler (1973) for details. Choose 

IdT dR de d<!>\ 
^(0) \dr dr’ dr dr ) 

(14) 

and assume the orbit to lie in the plane 0 = tt/I so 
that e(2) = (0,0, R“1,0). The general solution of 
equation (13) can be written as 

ea) = (A cos </> + D sin <f>9B cos <£ + £ sin <£, 0, Fsin <f>)9 

(15) 

6(3) = (D cos <f> + A sin (f>9 E cos <£ + i? sin <f>9 0, Feos <f>). 

(16) 
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The solution of equation (13) in the case of geodesic 
motion (Q(co)

(v) = 0) in the Schwarzschild metric gives 
(Matzner and Nutku 1974), using A = (1 + /2/i^2)1/2, 

A ^ {^)/NX; B = y/Ar; D = VllXRN’ 

E={^IIRN- F=N/R, (17) 

and 
dt/dr = -yl/(R2N2) . (18) 

In the case to be considered, the acceleration by the 
emission of gravitational radiation causes the trajectory 
of the neutron star to deviate from a geodesic. One 
can show that a nonzero 0(£ö)

(v) leads to a modified 
equation for 

g--y/[l+i(a«g/r-^)]/W, (19) 

where the acceleration aa is given by 

a“ = 
d2Xa _a dX* dXv 

dr2 + (‘v dr dr ' (20) 

Since the weak field approximation for the decay 
of the orbit via gravitational radiation gives dy/dr ~ 
(M/R)5 and (for Newtonian circular orbits) dR/dr ~ 
{MjRf and d2Rldr2 ~ (M/R)7, the additional term 
in equation (19) is of order (M/R)6 (note that a0 = 
(dyldr)IX and a1 ~ d2Rldr2). This term is negligible 
since, for the Fermi frame analysis to be valid, the 
inequality M/R « 1 (see eq. [36] with X(i) - M) must 
hold. 

The Fermi tetrad can be viewed, at least locally, as 
a Newtonian inertial frame. Insofar as the neutron 
star material is nonrelativistic and the fluid velocities 
are much less than c, one may then approximate the 
equations of hydrodynamics in this frame by the 
standard Euler equations: 

P 
d2Xx = 3R &U_ 
dr2 ~ dX{ 

+ p dXt 
$0 

+ ^’ <21> 

0. (22) 

For simplicity the Fermi coordinates have been written 
as X00 = (r, Xi); and P, p, and U are, respectively, the . 
pressure, density, and the self-gravitational potential 
of the material under consideration. Summation over 
repeated indices is implied. O is an external tidal 
potential acting on the material and will be specified 
later. The effects of viscosity have been neglected. 

The usual method of solution of the Euler equations 
(in the absence of tidal forces) for a constant-density 
perfect fluid constrained to an ellipsoidal shape is 
outlined in Chandrasekhar (1969). The calculations 
are done with respect to the rest frame of the ellipsoid. 
The results of LS were obtained using this model to 

represent the neutron star, but included tidal forces. 
However, when dealing with configurations under the 
influence of tidal forces or viscosity in which the two 
moments of inertia perpendicular to the rotation axis 
can be equal, singularities in the solutions appear (see 
the Appendix). One way to avoid this difficulty is to 
begin the integration close enough to the black hole 
that the ellipsoid is deformed sufficiently to ensure 
that the two moments of inertia perpendicular to the 
rotation axis never become equal. This procedure, 
however, may influence the results obtained. Therefore, 
a method of solving these equations in the inertial 
frame is developed here which eliminates these 
singularities. 

The first approximation to be introduced is the 
standard assumption that the internal velocities are a 
linear function of the coordinates: 

^=Qij(r)Xj. (23) 

Equation (21) becomes, after substituting (23), 
multiplying by Xj9 and integrating over the volume V 
occupied by the fluid, 

^ - QiuQuilii + nsy + Bu - RtJ. (24) 

Here, using /0 = m/5 with m the mass of the ellipsoid, 

hi = Í pWV/Io , (25) 
J v 

nsw = -j^Xt^dV/Io, (26) 

Bil=^pXj^dVII0, (27) 

and 

Rii= -^P^^dV/Io. (28) 

Bu is more easily calculated in the rest frame, rather 
than the inertial frame of the ellipsoid. One can then 
obtain its inertial frame value by a transformation 
applied to its value in the rest frame (denoted by 
primes): 

Bu = THB'lkTkj. (29) 

is the usual rotation matrix (assuming the rotation 
to lie only in the “1-3” plane): 

(cos 6 0 sin 0\ 

0 1 0 , (30) 

— sin 0 0 cos 0/ 

with — dd/dr = Q, the angular velocity (assumed to lie 
in the “2” direction). This transformation is valid for 
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any matrix. By definition /'w is diagonal, and 6 can be 
determined from /'13 = 0; from (29) and (30) one has 

‘-‘“-‘[/Ärl <31> 

Equation (25) leads to the identity 

^ = QiJv + Qjkhi, (32) 

which will later prove to be useful. contains two 
nonzero off-diagonal elements, Q1q and Q31. One of 
these can be eliminated as follows: Define the circula- 
tion C around a closed path / as 

C=j^-dl, (33) 

so that 

C = Lv (V X = 770103(031 - 013> ’ (34) 

where dS is an element of the surface dV and is 
the area of the ellipsoid projected onto the equatorial 
plane. In the absence of viscosity, equation (24) can 
be manipulated to show that C is conserved. Thus, 
either Q13 or Q31 may be eliminated. 

It still remains to specify the tidal potential O. The 
equation of geodesic deviation (Misner, Thorne, and 
Wheeler 1973) details how the perturbing field of the 
black hole affects the motion of particles lying near the 
center of the Fermi frame. In the case of the Fermi 
frame being transported along a geodesic, O is, to first 
order (Pirani 1956), 

$ = , (35) 
where R(ccxßxnxv) lists the components of the Riemann 
tensor in Fermi coordinates, evaluated at the center 
of the Fermi frame. Thus, 

R(iX0XfX0) — eU(.i)eV(0)eCO(j)^(0)\RA llV(0 9 
where R\vco is the Riemann tensor in Schwarzschild 
coordinates. Equation (35) is valid only when the 
coordinates X(i) satisfy 

X(i) « [average value of Riemann tensor| ”1/2, (36) 

and when dX{l)ldr « 1. If the latter condition is not 
satisfied, equation (35) can be written in the form of a 
power series in dX^/dr (Mashhoon 1975): 

O - - -i- 2R dX(k) 
f -K(iX0XJX0) ~r ¿JíüXJcXjXO) 

^ dX^dX™ 
+ ^(OXTOXO) -fa- + îRaxkxm) 

and hence is negligible until the breakup of the neutron 
star is well underway. Similarly, the effect of accelera- 
tions caused by pressure and binding forces within the 
neutron star and the orbital accelerations due to the 
emission of gravitational radiation enter as the time 
derivative of the acceleration (Mashhoon 1975) and 
are negligible. The largest error in assuming equation 
(35) is that the Fermi frame extends over a finite 
extent: equation (35) should therefore be viewed as 
the leading term in a power series in X(i) for O. A 
second order correction to (35) would not contribute 
to Ru (eq. [28]) since odd powers of X(i) integrated 
over the mass of an ellipsoid are zero; higher order 
terms are neglected. 

If it is assumed that <D is given by equation (35), a 
simple calculation gives for equation (28) 

Rij — R(iX0XkX0)Ikj • (38) 

Most of the mass of a moderately sized neutron star 
is at roughly the same density. A simple first approxi- 
mation to a neutron star is a constant-density fluid 
constrained to an ellipsoidal shape. Equation (22) 
implies, for p = constant, that Q is traceless. For this 
case, Chandrasekhar (1969), for example, gives as 

B'ij = —lirp^ijAidi2 , (39) 

where the ^ are the semiaxes of the ellipsoid as viewed 
in the rest frame and the Ai are functions of only the 
cii and are described in Chandrasekhar (1969), pp. 41- 
43. The cii can be found from the /'i; : 

I'ij — &ijdi2 . (40) 

The fu are found from by equation (29). Since the 
fluid is incompressible, the volume of the ellipsoid is 
constant, so the product = constant—see 
also equation (A23). Thus II can be eliminated from 
(24). Equations (24), (32), (6)-(8), and (19), together 
with the constraints of incompressibility and con- 
servation of circulation (eq. [34]), provide a complete 
description of the evolution of the system. 

Though this model is useful for the delineation of 
the major aspects of black-hole-neutron-star collisions, 
a more realistic neutron star model is also considered. 
A large fraction of the neutron star’s volume is at lower 
densities than the bulk of its mass. The less dense 
portions of the neutron star, being less bound, are more 
apt to be ejected in the neutron star breakup. In a 
more realistic model, the assumption that the fluid is 
incompressible may be removed by providing an 
equation of state of the form 

P(X, r) = ^(X, r) , (41) 
with 

p(X, r) = pc(r)(l - p*)*™ , (42) 

x 
dx^ dx<in 
dr dr J 

(37) 

Since, for the Schwarzschild geometry, R(i)(fc)0)(0) = 0, 
the correction enters only to second order in dX^jdr, 

where pc{r) is the central density, and «, r¡ and F are 
to be determined. It is assumed that the ellipsoid is 
made up of shells, each interior shell having the same 
ratios of semiaxes (pd1:pd2:pd3) as the surface 
(a1:a2:03). Here p2 = 2i X2¡d2 is a constant on the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

21
0.

 .
54

 9
L 

556 LATTIMER AND SCHRAMM Yol. 210 

surface of each shell and represents a normalized 
“radial” coordinate. The mass contained within each 
shell is therefore constant; no mass may flow from 
shell to shell. The requirement that p be a constant 
imphes 

dp = dp dXj dp = 

rfr dr dr BXi (43) 

Denoting the ath shell as bounded by and pa, 
define 

Gain) = r (1 - p2)«**ydp . (52) 
* Po - 1 

Then, assuming for simplicity that r¡ and T are constant 
within each shell, 

Thus (summation over i and j implied) 

Xfa - sdajdr = - 2dXi¡dr = X& ~ 2 Q^X,. (44) 

Equation (22) now gives 

^Tc¿ + 2«Pc(l - QuXiXa2} 

II = /0 ■q{pa)pcY^c>Ga(.nT) . (53) 
<7 

Note that the mass of the elhpsoid can be written as 

m = 5I0 = lirpcd^aQ Í Fn{p2)dp , (54) 
Jo 

+ « 1" « - P*)(g + il; ^ + ^ ? e» - °- 
(45) 

Evaluating (45) at Zj = Z2 = Z3 = 0, one finds 

^r + Pc2ô« = 0. (46) 

Substituting (44) and (46) into (45) yields 

Thus n = n(p) may be chosen initially to fit equation 
(42) to a tabulated model; thereafter, it remains 
constant. To simplify the model more, without loss of 
generality one may choose y and T to be functions of 
p; they too are selected initially to fit equation (41) 
to a tabulated model. In what follows, the notation 
v(p) means the value of n(p) in the pth shell where the 
mean density is p. 

Roberts (1962) has shown that in terms of the func- 
tion 

Fn(p2) = Í (1 - P2)n(p)dp2 , (48) 
Jp2 

the functions /'iy and can be written as 

I'u = 2ttpcI0 ~ 1a1a2a^ijü
2 Í p2Fn(p

2)dp (49) 
Jo 

and 

B'ij = 7T2p2I0-
1a1a2a3Aihijai

2 f [Fn(p
2)fdp. (50) 

Jo 

If the pressure vanishes on the surface of the neutron 
star, equation (26) may be written as 

n = i f pdv 
*0 J y 

= 47ra1a2a3I0 -1 Í r)(p)pc
r^\l - p2)nw™p2dp. (51) 

showing that pedias = constant since dp/dr = 
dnjdT = 0. 

The neutron star models were computed from the 
tabulated models of Arnett and Bowers (1974). The 
function n{p) calculated for spherical stars from 
equation (42) remains valid for arbitrary ellipticity 
if dnjdr — dp/dr = 0, as has been assumed. The 
model star is divided into 25 concentric shells; the 
shells are chosen to contain equal mass: the results 
are not sensitive to this choice. From the equations of 
state tabulated in Arnett and Bowers (1974), the 
functions r)(p) and F(p) are determined. The functions 
Fn(p

2) and Ga(n) can be computed from equations (48) 
and (52) once and for all. For nonspherical stars, rj(p) 
and T(p) are calculated by finding the value of the 
average density p corresponding to the pth. shell; it is 
assumed that and T are then given by the original 
equation of state through equation (41). 

In what is to come, a technique is required for deter- 
mining whether or not the infalling neutron star is 
deformed rapidly enough to enable part of it to be 
ejected. Certainly when deviations from sphericity are 
pronounced, the constraint that the neutron star 
material have an ellipsoidal shape will be in error. 
Also, these deviations from sphericity happen (for 
reasonable black hole masses and neutron star densi- 
ties) only when the neutron star is relatively close to 
the black hole, beyond which point the inertial frame 
used violates the assumptions used in its construction— 
namely, that it be small. Therefore, one may consider 
that the behavior of the ellipsoid model gives only a 
rough idea of the velocities of the neutron star 
material. The only reasonably simple approximation is 
to treat this material as being “free” after some point 
in the infall is reached. By “free,” it is meant that the 
material follows geodesics in the background Schwarz- 
schild metric; that is, further acceleration due to the 
rest of the neutron star matter, hydrodynamics, 
magnetic fields, nuclear reactions, tidal forces, etc., 
are neglected. Although each of the neglected forces 
may be significant in itself, each works at cross 
purposes. On the one hand, the material tends to slow 
down (if initially it is being ejected) because of the 
gravitational field of the rest of the neutron star 
material behind it. This field, of order m(a1a2a¿)-11*. 
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is generally smaller than the field due to the black hole, 
of order MjR, but certainly not negligible. On the 
other hand, the material, which had to be pushed by 
hydrodynamical boosts caused by the tidal forces in 
order to be initially outgoing, is still being forced 
outward by these same forces. Furthermore, upon 
being removed from the gravitational potential well 
of the neutron star, the matter is undergoing decom- 
pression and heating (see below), thereby increasing 
its rate of expansion. If the material is ejected with 
greater than the neutron star’s escape velocity, there 
would not appear to be any problem with expecting 
that the hydrodynamic boosts will enable the initial 
velocities of the material to be maintained. However, 
one may question the validity of the models integrated 
far enough for this to occur. 

An important factor which has been overlooked 
so far is the rotation of the neutron star relative to the 
Fermi frame. According to the model results, the 
neutron star is tidally locked in orbit; the star tends 
to become extended with one bulge pointing toward the 
black hole. This is to be expected, of course, on the 
basis of classical analyses. Therefore, relative to the 
Fermi (inertial) frame, the neutron star rotates with an 
angular velocity approximately equal to the orbital 
angular velocity, which for Schwarzschild circular 
orbits is Ü = (MR“3)1/2, or, for R = 6M, Q = 
4 x 10-7(Mo/M) cm-1. A neutron star of density 
P ~ 1015 g cm-3 has a breakup velocity w ~ (^p)1/2 ~ 
5 x 10"7 cm-1. Thus the neutron star is rotating with 
an appreciable fraction of its breakup velocity— 
thereby lowering its self-gravitational potential. This 
may increase the validity of the approximation scheme 
discussed above. 

One computes the mass fraction ejected by consider- 
ing many points (typically more than 100) located 
throughout the neutron star. Using the transformation 
equation 

X* = Xlo + e^oX™ 

+ (55) 

where the notation |0 means “evaluated at the center 
of the Fermi frame,” the positions in the Schwarzschild 
frame are computed. The velocities are obtained by 
differentiating equation (55). Then assuming that all 
forces except the attraction due to the black hole 
cancel each other, one may compute an orbit for each 
mass point. If the particle’s energy at infinity per unit 
mass is greater than 1, and if its angular momentum 
per unit mass is greater than that needed for capture 
by the black hole, the mass point is assumed to 
“escape.” 

IV. RESULTS 

The initial scenario to be considered is that of an 
undeformed neutron star located far from the black 
hole on a nearly circular slowly spiraling trajectory. 

It is computationally impractical to choose the initial 
radius of the orbit, R, very large. On the other hand, 
if the integration of the equations of motion is started 
at too small an initial radius, dependence of the results 
on the initial conditións becomes large. It is reasonable 
to expect, at least for large R, that the tidal forces 
produce a small deformation on the neutron star 
which tends to be constantly oriented toward the 
black hole: the neutron star should be tidally locked 
in orbit. This has been verified by introducing a small 
viscosity (see the Appendix) and integrating the 
neutron star’s equations of motion, using initial 
conditions appropriate to an undeformed neutron star 
for very large R. Thus, the equilibrium deformation 
of the neutron star as a function of R and pM2, where 
P is the average density in the neutron star, can be 
determined from the equations of motion in the rest 
frame (see the Appendix) by setting all time derivatives 
in equations (A2)-(A6) to zero, putting Ü (= —dd/dr) 
equal to d^ldr (eq. [19]) and the vorticity parameter 
A = 0, and solving. The results are illustrated in 
Figure 2. (Note that for each value of the parameter 
pM2, there exists a radius below which no stable 
equilibrium figures are possible. Fishbone [1972] has 
determined the relation between this radius and pM2 

in the case of exactly circularly orbiting bodies [see 
Fig. 1 of LS]. The calculation shown in Fig. 2 takes 
into account the nongeodesic nature of the orbit, as 
well as the rotation of the neutron star caused by the 
tidal locking to the black hole.) 

One may therefore remove from the results any 

Fig. 2.—The equilibrium shapes of constant density ß 
ellipsoids located a distance i? (in units of the black hole mass 
M) from the black hole. The semiaxes and a3 are in units 
of the neutron star radius at infinity, (a^as)113- The ellipsoids 
have zero vorticity A (see Appendix) and an angular velocity 
D appropriate to a tidally locked configuration (cf. eq. [16]). 
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Fig. 3.—The semiaxes ai and a3 of neutron stars of mean density p spiraling into black holes of mass M, according to the 
incompressible fluid model. 

dependence on initial conditions, and still start the 
integration at a practical value of R, by choosing for 
the initial shape of the neutron star the equilibrium 
figure for the appropriate R and pM2. Figure 3 shows 
the results of integrating the equations of motion (7), 
(19), (24), and (32) for an incompressible fluid ellipsoid. 
The axes a± (pointing toward the black hole) and a3 are 
displayed for 1 Me neutron stars of densities p = 1014, 
5 x 1014, and 1015 gem-3 falling into black holes of 
masses M = 5 and 10 Me. It is found that the initial 
behavior of the neutron star is to follow closely the 
series of equilibrium figures shown in Figure 2, 
bearing out the statement that the integrations are 
now free from dependence on initial conditions. As 
the tidal forces of the black hole grow, the deforma- 
tions rapidly increase, and apparently result in the 
disruption of the neutron star. 

Using the simple model described in §111 for 
establishing if mass is ejected from the neutron star to 
infinity, the mass fraction ejected is plotted in Figure 4 
as a function of the value of R at which the ejection 
is assumed to take place. The onset of mass ejection 
is seen to be correlated with the rapid increase in the 
a± semiaxis. This is roughly where the velocity of 
expansion of exceeds the infalling orbital velocity 
of the center of mass of the neutron star. The expansion 
of the neutron star is seen to be monotonie. Mass 
ejection is predicted for pM2 ^ 1017 g M0

2 cm-3, at 
which point the models tend to become invalid. 

The behavior of the ellipsoidal shell model discussed 
in § III is now examined. Three different equations of 
state have been employed, corresponding to a rela- 
tively soft, an intermediate, and a hard relationship, 
respectively. They are interpolated from the models 
B, D, and I of Arnett and Bowers (1974). In each case, 
the central density pc was chosen to give a neutron 

star mass m near 1 M©: pCtB = 2 x 1015gcm~3, 
mB = 0.97 M0; />CjD = 1015 gem-3, = 1.06 M0; 
Pc,i = 5 x 1014gcm-3, m! = 1.2 M0; the subscripts 
refer to the Arnett and Bowers (1974) tabulated 
model. The equilibrium figures are found by setting 
Q = dQ/dr = 0 in equation (24), and employing (29), 
(38), (49), (50), and (53) to determine the initial values 
of the cii. The equations of motion (7), (19), (24), and 
(32) have been integrated as before, where now 
equations (49) and (50) are used in place of (40) and 

Fig. 4.—The mass fraction AM ejected for the models 
parametrized by pM2 illustrated in Fig. 3. The ejected mass 
fraction is plotted against the value of the radial coordinate R 
at which the neutron star matter is assumed to follow free 
particle trajectories. The region in which this model becomes 
invalid lies to the right of the dashed line, which corresponds 
to (M/R3)1/2fli > 0.2, with (0ia2a3)

1/3 - M. 
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Fig. 5.—Same as Fig. 3, but for shelled ellipsoid models that fit the tabulated models B, D, and I of Arnett and Bowers (1974). 
The curves for cases (I, M = 10 M©) and (B, M = 5 M0) are nearly the same. 

(39) ; instead of eliminating II from equation (24), one 
now employs equation (53). The infall is again con- 
sidered for black hole masses of 5 and 10 M©. 

Figure 5 illustrates the behavior of the axes a± and 
aQ as the neutron star spirals into the black hole. Note 
that pM2 of each configuration is the determining 
factor in the location of the neutron star breakup 
radius. The precise form of the equation of state has 
been found to be unimportant in these results for 
models with equal densities. However, the equation of 
state has a major effect when comparing models of 
neutron stars containing equal mass. Current thinking 
favors stiff equations of state since the observed mass 
of the compact star (presumably a neutron star) in 
Her X-l is ~1.5 M© (see, e.g., Milgrom and Salpeter 
1975). Only stiff equations of state can account for 
such a large mass. However, since soft equations of 
state cannot yet be entirely ruled out, model B has 
been included to make our discussion more complete. 
The average density p of these configurations is 
generally about one-half of the corresponding central 
densities: pB = 1.2 x 1015, pD = 6.7 x 1014, and 
Px — 3.1 x 1014 gem-3. It is important to note from 
Figures 2 and 5 that a shelled model with p = p0 
behaves similarly to a constant density model with 
P = Po- 

The fraction of mass ejected is displayed in Figure 6 
for each of these six cases. Generally, it is seen that 
the breakup point lies at a larger R than in the constant- 
density case for the same average density. Also, the 
mass fraction ejected is slightly smaller because there is 
less mass in the outer portions of the neutron star 
(the region that is ejected). Mass ejection is again seen 
to occur, within the limits of validity of these models, 
for pM2 < 1017 g M©2 cm-3. 

This brings one to a discussion of the validity of 

these models. When the quantities denoting the levels 
of the approximations used—namely, (m/M) and 
(MR~3)ll2r, where r is the extent of the neutron star— 
exceed 0.1-0.2, these models are probably invalid: 
their reliability as first guesses is questionable. Thus 
one may not consider cases for which m/M > 0.2. 
Similarly, since the radius r of a 1 Mö neutron star is 
approximately equal to M for a 10 M© black hole, the 
calculations become unreliable for R < 3 M, if 
the extent of the neutron star is r. If, however, the 
neutron star is deformed to 2r ~ 2M, then the calcula- 
tions are unreliable for R < 4.6M. For a 5 M© black 
hole, the calculations become unreliable for R < 
4.6M or 7.4M if the extent of the neutron star is 
r ~ 2M or 2r ~ 4M, respectively. 

The simplicity of the mass ejection model introduces 
more uncertainty into these calculations. For pM2 ^ 
5 x 1016 g Mq2 cm-3, the breakup of the neutron star 
is accompanied by surface velocities in the inertial 
frame characteristically greater than 0.1c. For 
pM2 > 5 x 1016 g Mq

2 cm-3, ejection velocities may 
not reach 0.1c until the model has become invalid 
because the condition (MR~3)112 r« 1 is violated. 
Escape velocities are near 0.1c for a 1 M© neutron star. 
Lower-density stars have greater deformations and 
larger radii; hence, the escape velocity also tends to be 
lower. The model used to describe mass ejection 
would seem more reasonable if escape velocities from 
the neutron star itself can be reached. This apparently 
happens, within the limits imposed by our approxi- 
mations, only for pM2 < 5 x 1016 g M©2 cm-3. As 
pointed out before, however, instantaneous escape 
velocities need not be reached if hydrodynamic (due to 
decompression and heating) and tidal forces accelerate 
the ejecta further. It is interesting to note here that 
this model for mass ejection does not require that the 
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Fig. 6.—Same as Fig. 4, but for shelled ellipsoid models that 
fit the tabulated models B, D, and I of Arnett and Bowers 
(1974). The boundary of the invalid region is determined by 
(M/ü3)1/2ûi = 0.2, for the cases M — 5 M© and M = 10 M©. 

radial velocity dR/dr with respect to the black hole 
be positive in order for free particles to escape to 
infinity. This is a result of the large angular velocities 
that the neutron star has since it is tidally locked in 
orbit. Matter near the surface along the a± axis point- 
ing away from the black hole is boosted in the direction 
of the orbital motion, making escape from the black 
hole easier. Generally, though, the mass ejection is 
more prodigious when the material is ejected only 
along the «i axis sufficiently to overcome the net 
infalling motion of the neutron star. 

It is possible that the low-density outer portions of 
the neutron star may be stripped off before the core is 
disrupted by the combination of tidal forces and the 
rotation of the neutron star; this behavior was noted 
for earlier two-component shelled models. However, 
the ejection velocity is probably too small for any of 
this material to escape the system. It is also possible 
that a continuous “ stripping off ” process could result 
in the neutron star losing an appreciable fraction of its 
mass; expanding, as a result, it could reach its 
“Roche limit” by lowering its density. It is not clear, 
however, that the loss of the outer layers could be 
achieved fast enough (i.e., on an orbital time scale of 
about 0.01 s) for this to occur. 

There is one last feature of the mass ejection worth 
mentioning. The ejected mass comes from a narrow 
cone around a1? the semiaxis of the neutron star pointed 
away from the black hole. It is possible that a jet is 
forming; but it is impossible, without a more accurate 
picture of mass ejection, to verify this. 

The models of massive stars of Arnett and Schramm 
(1973) indicate that stars more massive than 6 M0 tend 
to evolve into presupernova configurations of a 
collapsing 1.4 Mg core. However, about 0.1 M0 of 
the core is presumably ejected in a supernova 
(Hainebach, Norman, and Schramm 1976). Thus the 
collapsing neutron star presumably has a mass of 
~ 1.3 M0. Arnett and Bowers (1974) models B, D, and 
I give, for 1.3 M0 neutron stars, the average densities 
Pb,i.3 = 1-9 x 1015, Pd,1.3 =: 7*9 x 1014 and Pxti.3 = 

3.5 x 1014 g cm-3. In the case of a 5 M0 black hole. 

all three values of pM2 are less than 5 x 1016 g M©2 

cm""3: the models then imply that mass ejection is 
possible before they become invalid. However, the 
approximation m/M« 1 is becoming severely strained. 
For M ~ 10 M©, mass ejection can be predicted only 
for models D and I; model B may also eject matter, 
but this model may not be extrapolated that far. 
Black hole masses larger than 7, 11, or 17 M© make 
it impossible for the models to say anything significant 
about mass ejection for the equations of state B, D, 
or I, respectively (since, for these cases, pM2 > 
1017 g M©2 cm“3). Therefore, it may be concluded 
that it is not implausible for some neutron star matter 
to be ejected in a black-hole-neutron-star collision 
for a wide range of black hole masses and neutron 
star equations of state. 

These calculations may be generalized to include 
rotating black holes (Lattimer 1976). It is found that 
the equilibrium breakup points for incompressible 
fluids lie only slightly closer to the black hole than in 
the nonrotating hole case (Fig. 2), even for maximally 
rotating Kerr holes (see also Fishbone 1973). It seems, 
therefore, that the results of this paper may also apply 
to Kerr black holes. This problem is being further 
investigated. 

V. IMPLICATIONS AND DISCUSSION 

The discussion in § II illustrates that black-hole- 
neutron-star pairs may not be rare. The fact that the 
X-ray star in the Cyg X-l system is apparently more 
massive than 10 M© suggests that black holes can be 
formed in close binaries. Section II also shows that 
most doubly compact binaries with one member a 
black hole can, in many cases, be formed with the 
members close enough to decay completely within the 
age of the Universe because of gravitational radiation. 
The observations and theoretical models seem to 
indicate that most neutron stars may be relatively 
massive ( ~ 1.3 M©). Coupled with the inferred moments 
of inertia of observed pulsars (Arnett and Bowers 
1974), only relatively stiff equations of state are 
allowed; it may be that model B can even be ruled 
out. From the results presented in § IV, only models 
for which pM2 is less than (5-10) x 1016 g M©2 cm-3 

can be said to probably eject matter to infinity without 
the model becoming completely unreliable. One may 
not, however, rule out the possibilities that no mass is 
ejected from a neutron star of any density, or that mass 
is ejected from high-density neutron stars. If one uses 
an intermediate equation of state (say model D), then 
our models indicate that black holes less massive than 
about 8-11 M© would be capable of ejecting significant 
mass from a 1.3 M© neutron star. For pM2 much 
greater than 2 x 1017 g M©2 cm“3, the breakup of 
the neutron star will probably lie inside the Schwarz- 
schild radius of the black hole. No ejected mass can 
be obtained in such a case. 

Because of the inaccuracies of these models, and 
because both the mass and the proper equation of 
state of a neutron star in these systems are unclear, 
it is not possible at this time to accurately estimate 
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the fraction of black-hole-neutron-star binaries that 
will eventually eject matter. An upper limit to the 
importance of these systems which is not inconsistent 
with these models can be obtained by setting this 
fraction equal to unity. If mass ejection occurs, these 
models show, in agreement with LS, that a reasonable 
upper limit for the fraction of the neutron star ejected 
is ~ 5 percent, so ~ 0.05 MQ may be used as the amount 
of mass ejected per collision. 

In § II we arrived at an estimate for the birthrate 
of possible progenitors of black-hole-neutron-star 
binaries, based on the numbers of massive X-ray 
binaries within 3 kpc. Note that this birthrate, 
(2-5) x 10"12pc“2yr-1, is consistent with the number 
of close binaries (separations less than a few AU) 
formed by stars greater than ~ 15 M0. The birthrate 
of stars greater than 15M© is given in Ostriker, 
Richstone,andThuan(1974)as ~3 x 10""12pc"'2yr_1. 
The binary statistics of Heintz (1969) indicate that 
about one-third of all binaries have a smaller separa- 
tion than 3 AU, and that there is at least one double 
star system per 4 total stars. These statistics hold in 
particular for massive stars. Therefore, the birthrate 
of binaries with a massive O-B star that may lead to 
massive X-ray binaries is ~5 x 10-13 pc“2 yr-1, in 
reasonable agreement with observations. The fraction 
of these binaries that form black-hole-neutron-star 
systems is difficult to estimate; but since one of the 
three systems within 3 kpc may have a black hole in 
it, a fraction of about 10 percent may be reasonable. 
Since virtually all black-hole-neutron-star systems 
formed via these close binaries should eventually 
lead to neutron star breakups, one sees that the death 
rate of these binaries is 2 x 10“13 pc“2 yr“1. Finally, 
since the rate of star formation T was higher in the 
past, a correction <T’>/T/*P, where <?¥} is the average 
of T* over the age of the Galaxy and is the present 
value of T, should be applied to this number, along 
with the age of the Galaxy (~ 1010 yr), to arrive at the 
total number of black-hole-neutron-star collisions 
that have occurred per square parsec in the plane of the 
galaxy. The correction (x¥}/'¥p is, conservatively, 10 
(see, e.g., Ostriker, Richstone, and Thuan 1974). If 
0.05 M0 of former neutron star material is ejected in 
each collision, then one sees that 10“3Mopc“2 of 
ejected neutron star material has enriched the inter- 
stellar medium. Oort (1963) gives the average density 
in the solar neighborhood as 75 MQ pc“2, so this leads 
to a maximum ejected mass fraction of 1.3 x 10“5. 
Comparing this number with the observed abundances 
of r-process nuclei, (1.5-1.8) x 10“6 (Burbidge et al. 
1957), and deuterium, 1.2 x 10“5 (Rogerson and 
York 1974), one sees that these events could have 
considerable influence upon the nucleosynthesis in 
the Galaxy. 

What sort of nuclei might one expect to be formed 
in the breakup of a neutron star? To estimate an 
answer, consider the structure of a pre-breakup, 
ground-state neutron star. Basically, the mass of a 
neutron star lies in three regimes (Baym and Pethick 
1975). The outer layers, comprising a negligibly small 
fraction (typically less than 0.0170) of the total mass, 

lie at densities less than about 4 x 1011 gem“3 and 
can be ignored. The intermediate region, composed 
of neutron-rich nuclei immersed in a sea of free 
(“dripped”) neutrons, is at densities between 4 x 1011 

and 3 x 1014 gem“3 (nuclear density). The third region 
is the center of the neutron star, and is composed 
mainly of neutrons, hyperons, and a few percent of 
protons and electrons. During the breakup, the density 
decreases on a (free-fall) time scale ~446f>“1/2s. 
Because nuclear time scales are so much shorter, 
matter at densities greater than nuclear densities 
expands in equilibrium; when the density falls below 
nuclear densities, the matter quickly achieves a struc- 
ture similar to equilibrium matter of densities just 
below 3 x 1014 gem“3. Thus one need only consider 
the nonequilibrium behavior of matter in the inter- 
mediate region. 

The nuclei in this region, being surrounded by a 
free neutron gas, are extremely neutron-rich. As the 
matter expands, there is a tendency for these nuclei 
to become smaller, that is, for neutrons to be pulled 
out of the nuclei. Also, the matter will cease to be in 
^-equilibrium, since 

A = EFe - EFn + EFp (56) 

becomes nonzero, where EFe9 EFn, and EFp are the 
Fermi energies of the neutrons, protons, and electrons, 
respectively. A is the maximum energy available to the 
antineutrino. To estimate how the ß-decay rate depends 
on A, one may treat the decay like the decay of an 
“ordinary” nucleus. Then the mean lifetime rß is 
given by (assuming the electrons to be degenerate) 

- Ä ! (ï-£pe2A4 + EFeA
5 + ¿A6) , (57) Tß Jt 

where d is the density of states in the daughter nucleus 
and the “/¿’’-value for allowed ß-decays is in the range 
104-106 s-MeV5. 

Calculations (Lattimer et ah 1975) are in progress 
to analyze the expanding nuclear matter. During the 
initial stages of the expansion, no ß-decays occur 
because the time scale involved is long compared with 
the expansion time scale, since EFe ~ 100 MeV, 
d ~ 10 MeV“1, and A ~ a few MeV. Preliminary 
results suggest that when ~ 1011 g cm“3, A ~ 
10 MeV and EFe ~ 20 MeV, so that the two time 
scales are comparable and ß-decays begin. The mass 
of the nucleus now begins to increase; the increase in 
the proton number causes the neutron number to 
increase also. As a result the nuclei now appear to 
follow a path parallel to the so-called r-process path 
in the Z-N plane toward the region of superheavy 
elements. This path, however, lies somewhat to the 
neutron-rich side of the r-process path. Eventually, 
the path of these nuclei enters into regimes unstable 
to fission. An average ß-decay releases the energy 
A ~ 10 MeV. Fissions release even more energy. Thus 
the matter can no longer be cold; temperatures near 
1010 K are reached. This is high enough to cause the 
matter to approach nuclear statistical equilibrium. 
There are still large numbers of free neutrons outside 
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the nuclei; these are rapidly absorbed as the expansion 
continues. An r-process-like cycling of the nuclei is 
set up. At present, it is unclear whether an r-process- 
like distribution of heavy elements results, although 
it seems safe to conclude that neutron-rich heavy 
elements themselves do result. 

Because of the extremely fast neutron capture rates 
of these nuclei one can show that essentially no free 
neutrons can be ejected in the breakup of a neutron 
star. Assume that the neutron-capture cross section 
of the nuclei v times the average neutron thermal 
velocity Vn is ~ 1 mb x K^cms-1, a conservative 
estimate (Blake and Schramm 1973). The lifetime rn 
of a nucleus against capturing a neutron is 

1/Tn - naVn, (58) 

where n is the free-neutron number density. From the 
models of Lattimer et ah (1975), the free-neutron 
density vanishes when the mass density of the nuclei 
is near 1011 g cm " 3. Assume that at this density there is 
one free neutron per nucleus (average mass A ~ 300). 
Thus n — 1011 gem’3 x Aa/300 ~ 2 x 1032cm"3, 
where NA = Avogadro’s number. As a result, rn ~ 
5 x 10~14 s, about 10 orders of magnitude faster than 
the expansion time scale. Because the neutron capture 
rate is tied to the expansion rate, no free neutrons can 
escape. Since virtually no free neutrons survive, one 
may rule out the formation of deuterium by this 
mechanism. 

That a large number of jS-decays occur in the break- 
up of a neutron star is clear. An antineutrino is emitted 
for each such ß-decay. However, the v spectrum emitted 
by a black-hole-neutron-star collision does not seem 
to agree with the recently observed antineutrino burst 
(Lande et al. 1974). First of all, the energies available 
to the antineutrinos on the basis of the above 
picture are about 10 MeV or so, while energies in the 
range 20-100 MeV were observed. Secondly, causality 
would prohibit a source of the size ~ 106 cm from 
producing a pulse width ~ 1 /zs as observed, unless 
the source were extremely relativistic (see Bludman 
and Ruderman 1975). This is not in accordance with 
our model. Since the time scale of expansion of the 
neutron star is about a factor of 103 greater than 1 /zs, 
the expansion velocity is about 0.1 c, i.e., nonrelativistic. 
Third, the observed intensity of the event is too large 
to have been produced by weak interactions in a non- 
relativistic source of the mass of a neutron star 
(Bludman and Ruderman 1975). This is easily seen 
from the relation 

Ft 
Lt t NA 

4777*2 ^ 477r2 Tß 
(59) 

where r is the pulse time /zs), F the flux observed, 
L the luminosity, r the distance to the source, and 
N the number of baryons able to undergo ß-decay. 
Ft was observed to be 2 x 107 ergs cm-2 (Lande et al. 
1974); N ~ 6 x 1056, r* ~ 10"3 s, and A ~ 10 MeV from 
the above discussion. Therefore, r~5xl019cm < 
17 pc. The source, if extraterrestrial, must have been 
more distant because of the impossibility of masking 

the optical, X-, and y-ray photons that would certainly 
be emitted. It would therefore seem that the anti- 
neutrino burst of Lande et al. (1974) was probably 
not created in this manner. 

However, as neutrino detection apparatus begins 
to probe lower energies, it may be possible to observe 
an antineutrino burst from a black-hole-neutron-star 
collision. The frequency of these events will be pro- 
hibitively low unless much smaller burst intensities 
can be recorded. A source 3 kpc distant, for example, 
would be expected to give rise to a burst of duration 
t ~ 1 ms containing the energy (Ft) given by equation 
(59), or ~8 x 106 ergs cm"2. Even if all the massive 
X-ray binaries within 3 kpc give rise to such an event, 
their frequency would be about 10"4 yr"1, or practi- 
cally unobservable. To have any chance of being 
observed in this manner, therefore, all of the sources 
within the Galaxy would have to be observable and 
the required sensitivity of an antineutrino detector 
would have to be ^105 ergs cm"2 near energies of 
10 MeV. 

Whether or not mass ejection takes place in these 
events, prodigious amounts of electromagnetic radia- 
tion are undoubtedly emitted. This radiation will occur 
either from the breakup of the neutron star itself, or 
the subsequent accretion of some of the dispersed 
material. Again, to be observable with a reasonable 
frequency, all black-hole-neutron-star collisions occur- 
ring within the Galaxy must be visible. The maximum 
frequency of these events is then 0.01 yr"1, which is 
far too low to explain y-ray bursts. Because of the low 
frequency of these events, their most important ob- 
servational consequence may be nucleosynthesis. 

In the Introduction, it was suggested that double 
neutron star binaries may exist. The binary pulsar may 
be an example of such a system; furthermore, equation 
(3) predicts that the components should collide within 
the age of the Universe. The ellipsoidal models of 
§ III cannot be applied to these systems since m/M ~ 1. 
One may speculate, however, that some neutron star 
matter might be ejected, providing an additional 
source of neutron-rich nuclei. Nevertheless, to order 
of magnitude, the statistical arguments of this section 
are not affected. 

VI. SUMMARY 

Massive X-ray binaries may evolve to systems con- 
taining two compact stars. The probability that these 
systems remain bound is enhanced if at least one of the 
compact stars is a black hole. Since Cyg X-l appears 
to contain a black hole (presumably as a result of the 
supernova process), the formation of black holes in 
binaries may be commonplace. The binary pulsar 
may be evidence that doubly compact binaries exist 
and that two supernovae may occur without the 
disruption of the binary. 

If black-hole-neutron-star binaries are formed, they 
are likely to have separations small enough to result 
in a collision due to the emission of gravitational 
radiation. The tidal forces of the black hole cause the 
disruption of the neutron star before the neutron star 
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falls into the black hole for configurations which 
satisfy pM2 ^ (5-10) x 1016 g M©2 cm-3. On the 
basis of a simple model, the disruption is violent 
enough to cause the ejection of a significant fraction 
(^5 percent) of the neutron star. Note that this upper 
limit, for a 1.3 M© neutron star (suggested by evolu- 
tionary calculations), corresponds to maximum black 
hole masses in the range 8-17 M©, depending on the 
neutron star equation of state. The approximations 
used in this model break down for higher values of 
pM2 before mass is observed to be ejected. 

Although the frequency of these events is too small 
to be important as far as currently observed anti- 
neutrino, y-ray, or optical bursts are concerned, 
enough neutron star material may be ejected to be of 
nucleosynthetic importance. Rough estimates of the 
composition of the ejected nuclei indicate that heavy 
neutron-rich nuclei are produced, including, perhaps, 

the almost mythical superheavy elements. However, it 
seems almost impossible that any significant amount 
of deuterium is formed. Nevertheless, black-hole- 
neutron-star interactions may occur frequently enough 
to account for some of the presently observed r-process 
material. 
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APPENDIX 

In the classical problem of Dirichlet, a Newtonian, self-gravitating, perfect fluid of constant density is constrained 
to an ellipsoidal shape. Rotating ellipsoids having two equal semiaxes perpendicular to the rotation axis are known 
as Maclaurin spheroids. See, for example, Chandrasekhar (1969) for a thorough discussion of classical ellipsoids. 
Rossner (1967) has investigated the evolution of Maclaurin spheroids with finite initial deformations, but has not 
considered the perturbing effects of viscosity, tidal forces, etc. Some investigators have examined the behavior of 
ellipsoids including these effects, but have concentrated on other cases such as evolution from the unstable portion 
of the Maclaurin sequence to the Riemann sequence. For example, Press and Teukolsky (1973) deal with viscosity, 
while Miller (1974) studies the effects of gravitational radiation reaction. Ellipsoids oscillating about the Maclaurin 
sequence pass back and forth through a point at which two moments of inertia are degenerate. This degeneracy 
causes the orientation of the rest frame of the ellipsoid with respect to an inertial frame to become ambiguous. It is 
shown below that this ambiguity is inherent in the equations describing the evolution of the ellipsoid with respect 
to its rest frame—in the form of a coordinate singularity. This singularity is simply eliminated (see below) if no 
perturbing influences such as viscosity and tidal forces are present. If, however, additional forces are considered, 
this singularity remains in the equations, apparently causing difficulty in their solution. The purpose of this 
Appendix is to demonstrate that by rewriting the equations with respect to an inertial frame the coordinate singu- 
larity does not appear. A consistent picture of the oscillations about the perturbed Maclaurin sequence can thus be 
obtained. Moreover, analysis of the solutions obtained with the inertial frame method gives the result that the 
solutions obtained from the original (rest frame) equations are fully compatible, despite the apparent singularity. 

Chandrasekhar (1969) develops the rest frame equations for the ellipsoid’s evolution, including viscous dissipa- 
tion. Miller (1974) extends these equations to include gravitational radiation reaction, while Mashhoon (1972) adds 
a tidal force term. Consider the effects of including viscous dissipation and tidal forces. Assume that the tidal force 
is derivable from a potential O (eq. [35]), so that 

R'ij = R'axoxkxoJ'kj • (Al) 

R'axowxo) is symmetric and traceless; primes denote rest frame values as before. Also assume without loss of 
generality that the angular velocity Q, and vorticity of the ellipsoid lie only in the “2” direction. Then the only non- 
zero off-diagonal elements of R'ij are Rf

13 and R'31. One may then write the evolution equations for a constant- 
density, incompressible fluid ellipsoid as 

Ht2 ai(Q2 + A2) - 2a3ÙA + ÍAÍ + - - ^21 
«i ax 

2v0 dax 
ax

2 dt 

d2a2 

IF 

d2a3 

FF 

^ 22 _|_ fï R 22 2v0 d(X2 
#2 £?2 Ö2 ¿^2^ dt 

a3(Q? + A2) - 2a1O.A + + - - ^22 
«3 ö3 a3 

2vq dçh 
a3

2 dt 

da 
dt (a*2 — a3

2) L dt 
fë (a3a + a. A) - ^ (ölO + ö3A) + i(A'31 + R\3) + Av, 

(A2) 

(A3) 

(A4) 

(A5) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

21
0.

 .
54

 9
L 

564 LATTIMER AND SCHRAMM Vol. 210 

dA. 
dt w 

 \daa 
a3

2) [ dt 
(„Y + .»A) - $ feQ + 0lA) + + + ^ (|! (A6) 

= const. (A7) 

The notation follows Chandrasekhar (1969). The a^t) are the ellipsoid’s semiaxes, and A(i) is proportional to the 
vorticity. II(¿) is related to the pressure P by equation (26), and the are the rest frame versions of equation (27) 
(see eq. [39]). The quantity v0 is an effective coefficient of kinematic viscosity; see, for example, Press and Teukolsky 
(1973). 

Equations (A5) and (A6) become singular when a± = a3: this is the point at which the two moments of inertia 
perpendicular to the angular velocity are equal. This degeneracy renders ambiguous the orientation of the ellipsoid 
with respect to an inertial frame. In this way the problem bears an analogy to the three-body problem (cf. Hill 
1974). 

Consider, first, the tide- and viscosity-free equations (R'u = v0 = 0). The angular momentum L and the circula- 
tion C are defined by (Chandrasekhar 1969) 

L = /ofüfe2 + tf3
2) - (A8) 

and 
C = TrtAfo2 + 03

2) - 2^^]. (A9) 

In the absence of viscosity, C is conserved; while if there are no tidal forces (or gravitational radiation reaction), 
L is conserved. It is then easy to show from equations (A5) and (A6) that 

dL _ dC 
dt dt 

(A10) 

If the ellipsoid passes through the configurations ^ = a3, equations (A8) and (A9) imply that L = — C/o/tt. 
Equation (A 10) then shows that when ax ^ a3, Q. = —A. Substituting this into equations (A5) and (A6) gives 

or simply, by (A8), 

dQ, _ _dA _ ILjdaJdt + da3ldt) 
dt dt /o(tfi + 03)

3 

Zofe + az)2 

(All) 

(A12) 

Thus the singularity is easily removed in the case where there are no tidal or viscous forces; it is necessary to view 
the ellipsoid in a frame that rotates in such a manner as to have the vorticity contribute as much to the particle 
motion as the angular velocity (as viewed in an inertial frame). This simply corresponds to treating the rest frame 
of the ellipsoid as a frame rotating with O = —A = Q0/2. Therefore, the angular velocity of the particles com- 
prising the ellipsoid as viewed in an inertial frame is O0 = O — A. 

The singularity is not easily removable when tidal forces are introduced. Returning to equations (A5) and (A6), 
and now setting R'^ ^ 0, one finds the angular momentum to be no longer conserved: 

dft= /oCR'31 - R1Z) (A13) 

if jR'axoxyxo) is a traceless, symmetric matrix. Thus, in general — CIq/tt, and unless R'iy vanishes when ^ = a3, 
dil/dt and dAjdt apparently become infinite. It would seem impossible, therefore, to be able to integrate the evolu- 
tion equations through the point ^ = a3. In fact, this effect can be seen in the work of Mashhoon (1972). His 
Figure IV. 15 illustrates the point that equation (A5) implies—namely, that the angular velocity becomes so great 
as «i approaches a3 that it becomes impossible for a± to become less than a3. Rather, a± appears to “bounce.” 

The evolution of an initially slightly deformed ellipsoid far from the perturbing mass (so that the tidal force 
components Æaxoxyxo)act as a small constant perturbation in the inertial frame) has been computed from equations 
(A2)-(A7) and is shown in Figure 7, as an example of the effects just discussed. The initial conditions for this com- 
putation are ^ = l.Ol(01a203)1/3, a3 = 0.99(a1a2a3)

1/3
> da^dt = jRi3 = R31 = 0, Q = — A = —0.01, and 

^uxoxixo) = — 2R(2xox2xo) ^ “ 2R(3)(ox3xo) = —2 x 10"6 in the inertial frame (see eq. [29] to find the rest frame 
components of Æ'axoxjxo))- Notice that even though Q appears to become very large when ^ approaches a3, 
Q — A remains nearly constant. It would appear from Figure 7 that ax and a3 effectively change places at the 
singular point, which seems extremely nonphysical. In fact, eventually the computer calculation will become 
“ stalled ” when a value of ^ — a3 is computed small enough. It is difficult, therefore, to follow the evolution of the 
ellipsoid in this frame. 
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Fig. 7.—The evolution of the semiaxes ax and a3, the angular velocity Cl, and the vorticity parameter A of a constant density 
incompressible ellipsoid in a constant small tidal field. These are the results of integrating the rest frame ellipsoid equations. 

Since for a near-Maclaurin configuration, Cl — A gives the angular velocity of the constituent particles in the 
ellipsoid as viewed in an inertial frame, the constancy of Q — A indicates that viewing this process in the inertial 
frame can shed some light on this problem. 

Equations (21)-(32) in § III outline the development of the inertial frame equations. The effects of viscosity may 
be included, following Chandrasekhar (1969), by adding to the right-hand side of equation (21) the term 

a [T fdtfXJdt] d[dXkldt] 
sxk |Lpv\ exk dxt 

2 dldXJdt] 
3 dXi 

d 
SXk 

IpAQik + Qki ÍQlÁk}]\ ? (A14) 

where v is the coefficient of kinematic viscosity. This becomes an added term on the right-hand side of equation (24) : 

~ J + Qu ~ iQifiij) = -~mvo(Qij + Qji — iQi&j). (A15) 

For an incompressible fluid, equations (39), (40) and 

^22 = (^1^203)2(/ll^33 ~ As2)1? ôll + Ô22 + Qs3 = 0 (A16) 

are valid. 
One point deserves a comment. Equation (31), defining 6, the angle through which the rest frame has rotated 

with respect to the inertial frame, gives a principal value for 0 between — ¿tt and As In — I33 changes sign, 
0 will change abruptly by Imposing the requirement that 0 remain continuous means that whenever In — I33 
changes sign, fyr should be added to the value of 0 as determined by equation (31). That this constraint does not 
affect the evolution of is clear from equation (29), as is unchanged. 

The evolution of an initially slightly deformed ellipsoid in a small constant tidal field has again been computed. 
Because the ellipsoid is incompressible, /22 and g22 may be eliminated by equation (A 16). Assuming that vQ = 0, 
equation (34) enables one to eliminate Q31 since it is easy to show that 

dC 
~di = ^ (ôsi ~ ôis) + (Ô11 + Ô33XÔ31 = 0. (A17) 

The appropriate initial conditions are now In = «i2? hs — ci3
2, Qu — 0, Q13 = Cl(a1 + a3)/a3, Q31 = 

— 0(0! + a^jan al9 a3, and have the same values used in the rest frame computation. Equations (24) and 
(32) have been integrated to compute the remaining (1> 1), (3, 3), and (1, 3) components of /and Q. 

As is expected, In and I33 undergo simple oscillations, shown in Figure 8. Note, though, that a± and a2, deter- 
mined from the /0 by equation (29), behave exactly in the manner found from the rest frame calculations. The 
quantity au if initially larger than a3, never becomes smaller than a3; furthermore, ax and a3 appear to “bounce” 
off each other at the point of closest approach. 

This “bounce,” or apparent interchange in the identities between ax and a3, is seen to occur because of our 
demand that 0 be continuous at these transition points. This is a necessary assumption, as Figure 9 shows. The 
evolution of and d2a3/dt2, the acceleration of the surface of the ellipsoid along the “1” and “3” axes. 
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Fig. 8.—The evolution of the moments of inertia /n and 
/33 in the inertial frame, as a result of integrating the inertial 
frame ellipsoid equations. 

Fig. 9.—The rest frame accelerations d^/dt2 and d2a3ldt2 

at the surface of the ellipsoid along the ax and a3 axes, respec- 
tively, for the computations shown in Fig. A2. 

respectively, is seen to be continuous at the points of closest approach of a± and aQ. These clearly would not be 
continuous if the requirement that 6 be continuous were dropped. The fact that Ü rises to such large values is to 
ensure that 6 change by tt/2 at the transition points. The angular velocity of the constituent particles in the ellipsoid 
is Q — A, which remains nearly constant during this change as demonstrated in the rest frame calculation. 

The singularity in the rest frame calculation appeared in the equations for dQ/dt and dA/dt (eqs. [A5] and [A6]). 
By transforming to the inertial frame, Q and A can be found in terms of the tensors /iy and gi;. The solution of 
equations (24) and (32) for dQ^/dt and dl^/dt do not involve any singularities. Only by viewing the ellipsoid in the 
inertial frame can one arrive at a consistent view. Furthermore, the computer calculation proceeds much faster, 
and never becomes hung up at a singularity—demonstrating the advantages this method provides. 
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