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ABSTRACT 
The abundance anomalies generated by diffusion in the envelope of main-sequence stars are 

studied. It is shown that in low-mass stars (M ^1.2 M0) diffusion leads to underabundances 
while in more massive stars (M ^ 1.3 AfG) diffusion leads to overabundances of at least some 
elements. In general the overabundance and underabundance factors generated (up to 107) are 
larger than the observed anomalies in stars of the main sequence (rarely up to 106). It is established 
that diffusion can lead to the largest anomalies observed. For particular elements (Sr, Eu, ...), it 
is shown where more accurate calculations are needed. Approximate formulae are developed for 
radiative accelerations. They allow the reader to carry out calculations for cases of special interest 
to him and also to evaluate the uncertainty of the calculations. 
Subject headings: stars: abundances — stars: interiors — stars: metallic-line — stars: peculiar A 

I. INTRODUCTION 

Many of the slowly rotating stars of the upper main 
sequence [Te > 7000 K; T(K) = 104r4 in what fol- 
lows] show abundance anomalies. In a few of the 
stars with 1.0 < TU < 1.5 some elements can be up to 
106 times overabundant (Preston 1974, Fig. 7). The 
cooler stars show smaller anomalies (Smith 1973; 
Preston 1974). 

A comparison of gravitational (g) and radiative 
(gß) accelerations in the atmospheres of the hotter 
anomalous stars, and below the hydrogen convective 
zones for the cooler ones, shows that those elements 
which are pushed upward by the radiative force (gÄ > 
g) are overabundant, whereas those which settle down 
are underabundant. Most observed abundance ano- 
malies can thus be explained in this zeroth-order 
model (Michaud 1970; Watson 1970, 1971a; Smith 
1971 ; Michaud and Vauclair 1972; Vauclair, Michaud, 
and Charland 1974; Smith 1974; Michaud 1975). 

However, the zeroth-order model only says that 
some elements will be overabundant and others under- 
abundant. Can elements be pushed from deep 
enough in the interior of stars for overabundances of 
up to 106 to be generated? Why should the over- 
abundance factors decrease as effective temperatures 
decrease below Te4 — 1 ? Should there perhaps be 
smaller abundance anomalies in stars with Te4 = 0.6? 
We shall here try to answer these questions. But this 
is only part of the problem. The generation of observ- 
able abundance anomalies depends on many factors 

* Partially supported by grants from Le Conseil National 
de Recherches du Canada and Le Ministère de l’Education du 
Québec. 

(see Michaud 1975 for a discussion): the state of the 
outer atmosphere (or outer boundary condition) 
(Michaud 1973 ; Michaud, Reeves, and Charland 1974), 
the turbulence in the zone where lines are formed and 
below, meridional circulation, the radiation forces 
in the atmosphere, and the migration of elements from 
the interior to the line-forming region. In this paper, 
we will concentrate on the last point, assuming no 
turbulence or meridional circulation, and always 
assuming that if elements are pushed to the atmosphere 
by radiation forces they will stay there and not leave 
the star. However, convection zones are taken into 
account. We obtain possible abundance anomalies in 
nonrotating stars. Any of the neglected aspects of the 
problem will tend to lower the abundance anomalies. 
In forthcoming papers we will study the effect of 
turbulence and meridional circulation, and we will do 
detailed radiation force calculations on a few elements 
of special interest (e.g., Li, Be, and B). 

To carry out calculations throughout the stellar 
envelopes of main-sequence stars, we will develop 
(in § II) approximate formulae for radiation forces. 
We will apply them to the envelopes of 12 main- 
sequence stars. The formulae we present allow one to 
calculate approximate radiation forces rapidly for 
any element at any point where diffusion can be 
important in main-sequence stars (see Appendix B). 
Previously such radiation forces had been calculated 
for Am stars just below the convection zone by Watson 
(1971a) and over part of the envelope, for a few ele- 
ments, by Kobayashi and Osaki (1973). 

In § III we calculate the time evolution of abundance 
anomalies that diffusion produces on the surface of 
nonrotating stars of the main sequence. We determine 
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how this varies along the main sequence for a large 
number of elements. For stars with M < 1.5 Af© we 
determine the size of anomalies and whether they 
materialize or not. For stars with M > 1.6 M© we 
determine the size of anomalies; but, as discussed 
below, some may not materialize. Calculations of the 
time evolution of abundance anomalies have been 
carried out for Hg by Watson (1971&) and by Cowley 
and Day (1976). However, it is impossible from what 
Watson published to extend his calculations to other 
stars or elements and Cowley and Day’s calculations 
appear very approximate, depending on only one point 
in the stellar envelope. In solar-type stars, Aller and 
Chapman (1960) determined time scales for diffusion 
but neglected radiation forces. 

II. RADIATION FORCES 

In this paper, we are interested in obtaining general 
formulae which allow one to calculate approximate 
radiation forces for most elements of interest. First, 
the stellar envelopes used will be described, and then 
approximate radiation forces will be calculated, with 
complications added one by one which will make the 
results more accurate. The contribution of unsaturated 
lines will first be studied. For temperatures larger than 
4 x 104 K, elements generally will be shown to have 
their lines close to the maximum of the radiation flux 
except when they are in a rare gas configuration. How- 
ever, elements of the iron peak or lighter are abundant 
enough for at least their resonance lines to be satura- 
ted. In §IIô, we will investigate the effect of line 
saturation. The radiation force will then be drastically 
reduced. In § lie we will study the effect of the con- 
tinuum. In § \ld we apply the calculations of radiation 
forces to determine whether diffusion leads to over- 
abundances in stars of the main sequence. 

In a forthcoming paper, we will show that depending 

on turbulence or laminar meridional circulation either 
He completely disappears, through gravitational 
settling, from the surface before most of the diffusion 
takes place or He remains on the surface for the whole 
life of the star while the diffusion of heavy elements 
goes on. In this paper we will study in detail the case 
when turbulence and meridional circulation are 
negligible. Helium then disappears rapidly, and the 
only convection zone that may exist is due to the ioni- 
zation of hydrogen. Some diffusion of heavy elements 
will have occurred before the disappearance of the He 
convection zone; but because diffusion goes on much 
more rapidly below the hydrogen than below the He n 
convection zone, one may usually neglect the diffusion 
of heavy elements that occurred before the disappear- 
ance of He. Further, since the results of Vauclair, 
Vauclair, and Pamjatnikh (1974) have shown that the 
T{p) relationship is not appreciably affected by the 
diffusion of He, the radiation forces calculated in this 
paper may be used even if He is present. What will be 
changed by the presence of helium is the size of the 
mixed zone, which will include the He n convection 
zone, and so the surface abundances will be modified. 
The anomalies will generally be smaller. 

The stellar envelopes used were calculated using a 
computer program (Martel 1974) based on the model 
of Paczynski (1969). The parameters of our models are 
listed in Table 1, in which a is the ratio of mixing 
length to the pressure scale height. We used the opaci- 
ties of Cox and Stewart (1970). In the envelopes, the 
helium abundance was assumed equal to zero. By 
comparing with the stellar atmospheres of Mihalas 
(1965) it was also found that the model envelopes gave, 
within 20 percent, the real r(p), M(p), and T(j) 
relationships up to t400o ^ 1* Of course, the radiation 
fluxes as a function of frequency are not properly 
calculated that far up 

The differential radiation pressure gradient trans- 
mitted to an element of atomic mass A, is, in the interior 

TABLE 1 
Parameters of Stellar Models 

M/M© reff(104K) ¿r(104cms-2) A Me (g cm - 2) t 

5.0   
3.3  
3.3   
2.6.    
2.0   
1.55  
1.4   
1.20    
1.07   
1.0 (a = 1.0). 
1.0 (« = 1.5). 
1.0 (a = 0.7). 

1.62 
1.35 
1.35 
1.072 
0.870 
0.692 
0.660 
0.631 
0.584 
0.580 
0.580 
0.580 

1.14 
1.00 
1.90 
1.51 
1.51 
1.28 
1.51 
1.90 
2.03 
2.74 
2.74 
2.74 

1.32 
1.62 
3.67 
5.54 

18.0 
60.3 
93.2 

187 
37.0 

6.3§ 
8.5§ 

11.9§ 
21.4 
31.0 
46.2 
63.1 
35.8 
25.1 
25.1 
21.6 
40.0 

4.74-2 
3.36- 2 
2.33-2 
1.35-1 
6.37- 1 
1.62+1 
1.58 + 2 
3.42 + 4 
9.39 + 6 
4.70 + 7 
7.97 + 8 
8.82 + 5 

* At the bottom of the convection zone. 
t Rosseland mean opacity at the bottom of the convective zone. 
% Mass (per cm2) in the convective zone or above an optical depth of 0.1. 
§ At T4 = 3.0. 
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of stars when rv » 1 at all frequencies, 

FM)dv = 
tt-T;4 k* R2 KV(A) K 4 

2c3 h* r2 X(A) Kv 
U en (_ 1)2 ¿U 

How do Kv/Kand P(u) vary in stellar interiors? On 
Figure 1 are plotted the ratios Kv/K for three different 
temperatures: r4 = 3, 6 and 20. At = 20 and 6, 
taking KJK = 1 leads in the interval 

K ^ 

P{u) = u‘ 

(1) 

(la) 

1.4 < u < 9.3 (3) 

to an error of less than a factor of 3. At r4 = 50 (not 
shown) it would be a factor of 2. At 3, there is no 
problem between 

where Fy(A)dv is the force transmitted through the 
differential radiation pressure in the interval dv to 
1 gram of element A (in cm s-2). K is the Rosseland 
mean opacity, Kv is the total opacity at frequency v, and 
KV(A) the contribution of element A to Kv. R is the 
star radius, and r is the distance from the center of the 
star. X(A) is the mass fraction of element A, re4 is 
the effective temperature of the star in units of 104 K, 
and 

u = \A6hv¡T^ , (2) 

where (hv) is in eV. Equation (1) was obtained from 
equation (4) of Vauclair, Michaud, and Charland 
(1974) from the radiation transfer equation and from 
the definition of the effective temperature. The correc- 
tion [1 — exp ( —/jv/W)] for induced emission should 
be included in KV{A) and Kv wherever appropriate. 
Equation (1) has the advantage of presenting ratios 
of opacities explicitly, thereby allowing a partial 
factoring out of approximations. 

1.7 < u < 5.2, (3a) 

but above 5.2 the error is more like an order of magni- 
tude. In our calculations of radiation forces, at 7^ > 4 
or 5, using K¡KV = 1 will not lead to errors larger 
than a factor of 3 but may lead to a factor of 10 over- 
estimate of the radiation force at r4 ~ 3. It may, 
however, be noted that in the calculations of time 
scales the more important portion of the star lies at the 
larger temperatures. 

The function P(u) is also plotted on Figure 1. Its 
maximum is close to the maximum of K¡KV. In the 
interval 

1.5 < w < 8.0 (4) 

it varies by a factor of 2.0 from its average value of 3. 
It is the value used in most of our calculations. This 
will be described below in more detail. On a first 
reading, some may prefer to skip to the paragraph 
following equation (22). 

Fig. 1.—The function P{u) as a function of u — hv/kT, and 
the ratios Kv/K for three different temperatures. The opacities 
at T = 3, 6, and 20 x 104 K (respectively densities of 1.35 x 
10~8, 6.25 x 10"8, 4 x 10-6gcm"3) were kindly calculated 
for us by Dr. A. N. Cox. The lines in his calculations were 
eye-averaged for this figure. 

d) Line Absorption 

The radiation force transferred through bound- 
bound transitions is first obtained for unabundant 
elements. To this end, lines are assumed unsaturated. 
Then, KV{A) oc X(T), and the ratio XV(T)/X(T) (it is 
proportional to \¡A but independent of v) disappears 
from equation (1). From all states of ionization and 
excitation the sum of the /-values to all upper levels 
in the frequency range 1.5 < w < 8.0 is assumed equal 
to 1, i.e., 

2/nm = l, . (5) 
m 

where the sum is to be taken over all transitions from 
the level of interest «, to the upper levels m. Note that 
only the upper levels within the range of equation (4) 
are important. (See Appendix A for a discussion of/- 
values.) Also take Xv = K, to obtain, after some 
manipulations, 

T 4 J?2 

gB = 1.7 x 108 ^r2 cm s~2 , (6) 

where A is the atomic mass number of the element of 
interest. The 7,

4
_1 dependence appears because as the 

temperature increases, the flux spreads over a larger 
energy interval and each line sees a smaller fraction of 
the total flux. 
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i) Gravitational and Thermal Diffusion ii) Line Position versus Radiative Flux Maximum 

The radiative acceleration, gÄ, is to be compared 
with 

1.5 x 104 R2/**2 cm s”2 > (7) 

the acceleration due to gravity in main-sequence 
stars, and to a thermal diffusion term. To obtain the 
thermal diffusion contribution, use the diffusion 
equation (Montmerle and Michaud 1976), replacing 
the temperature gradient term as done above to ob- 
tain equation (1). The acceleration due to gravity may 
then be replaced by an effective acceleration 

Sgt — áf 1 
3 3.45Z2 - 0.8Z 
8 (2A - Z - l)g 

Te^KaT^36 

that takes thermal diffusion into account. The diffusion 
equation used is appropriate to trace elements diffus- 
ing in hydrogen (Aller and Chapman 1960; Burgers 
1960; Montmerle and Michaud 1976). The only 
approximation made was in using equation (9) for pe. 
The thermal diffusion term depends on Z, the degree 
of ionization, and will vary from element to element 
at a given position in the star and, for the same ele- 
ment, will depend on the distance from the star center. 
The acceleration needed to counter gravity and thermal 
diffusion (gG-r) is shown on Figure 2 for Mn in the 
envelope of a 2.0 MQ star. The ionization potentials 
were taken from Allen (1963) or, when not available 
there, from Carlson et al. (1970) or Kelly and Harrison 
(1971). At high temperature Figure 2 shows that ther- 
mal diffusion is more important than that due to 
gravity. This will be especially important for the Sun 
(see § lid). 

When is it reasonable to assume equation (6), and 
when is it clearly an overestimate even for trace ele- 
ments, i.e., even when there is no saturation of lines? 
The main assumption in obtaining equation (6) is then 
that the element of interest has lines with large /- 
values in the interval where P(u) # 3, i.e., in the 
frequency range of the flux maximum. We will show 
that for the temperatures where the Lyman jump is 
weak (r4 ^ 4) this condition is also met. The value of 
u at which an element generally ionizes is first deter- 
mined using an approximate relation between the 
temperature and the electron pressure in the star. 
From our model envelope calculations 

pe = aT^3e (9) 

and 

AM 
M 

= cT/ (10) 

were obtained. The quantities a, c, and d are given in 
Table 2 as a function of the stellar mass. Equations 
(9) and (10) are accurate to a factor of 1.35 for the 
electron pressure for rRossel > 10 for the M = 5.0, 
3.3, and 2.6 M0 models and below the convection 
zones for the other models. The equations are valid 
down to r4 ~ 140. Then using Saha’s equation, it is 
easy to show that 

^ = Hi -i = 22.62 - 2.3026 (log10 ^ ^ a) 

Fig. 2.—The acceleration, £Gt, needed to counter gravity 
and thermal diffusion on Mn in a 2 M© stellar envelope. 
AM/M is the fraction of the mass of the star above the point of 
interest. 

- 4.283 log10 r4 , (11) 

where BI-1 and i?/ are the partition functions. Now 
let us define 

6, = (12) 
X/-i 

as the ratio of two successive ionization potentials. A 
survey of ionization potential tables (Allen 1963 or. 

TABLE 2 
Parameters for pe and &M¡M (eqs. [9] and [10]) 

M/Mq a cd 

5.0   1.00 x 102 1.67 x IO”12 4.16 
3.3 (log£ = 4)... 1.33 x 102 2.70 x 10-12 4.16 
3.3   1.90 x 102 1.27 x IO"12 4.16 
2.6   2.4 x 102 2.77 x lO'12 4.16 
2.0   4.0 x 102 4.14 x 10-12 4.16 
1.55   5.3 x 102 6.84 x 10"12 4.16 
1.4   7.75 x 102 6.07 x 10-12 4.16 
1.2   9.7 x 102 5.0 x 10-11 3.6 
1.07   1.25 x 103 3.2 x 10"10 3.3 
1.00*  1.55 x 103 2.6 x IO'10 3.3 

* a = 1. 
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when not available there, Carlson et al 1970 or Kelly 
and Harrison 1971) shows 

bj ~ 2 (13) 

for Xi-i ^ 30 eV or when xi has a closed shell con- 
figuration. In the other cases, 

bj x 1.3 . (14) 

Further, a survey of the position of first excited levels 
in Moore’s tables shows that, for ionized elements, they 
are generally at less than 30 percent of the ionization 
potential except for closed shell configurations or 
configurations with one electron less than a closed 
shell. Then for ionized elements, with xi > 50 eV 
ixi-i > 30 eV) but not in a rare gas configuration, the 
first excited level will be at 

03xilkT = 0.4 %_! 

= 3-6.6 . (15) 

To obtain equation (15), equations (11) and (12) were 
used with BI-1 = Bj and NI-1 = Nj for ionization of 
half of the elements at T± > 2.2. But from Figure 1 
this is the range of the maximum of P(u). For most 
cases then there are excited levels positioned within the 
maximum of P(u) which will lead to lines from the 
ground state. The exceptions are for xi-i ^ 30 eV, 
and for rare gas configurations. Elements with ioniza- 
tion potentials of 30 eY, however, generally ionize at 
r4 ^ 2.4. The most stringent conditions for the 
accuracy of these calculations is then that the Lyman 
jump be small, or ^ 4 as determined below 
equation (3). 

iii) Rare Gas Configuration 

The effect of rare gas configurations requires further 
study. Let Ej be the ratio of the energy of the first 
excited level to the ionization potential of the rare 
gas; then the first line will have 

Fig. 3.—Minimum energy of the first excited level of a rare 
gas for a factor of 10 and a factor of 100 reduction in the 
radiative acceleration, in units of the ionization potential of 
the preceding element. 

tion force can be for rare gas configurations. Before 
proceeding to calculations of radiation forces, one 
additional effect must be described. 

iv) Radiative Acceleration for Unabundant Elements1 

Where many states of ionization are simultaneously 
present for a given element, some care has to be taken 
in the redistribution of the radiation force. The effect 
is especially important in stellar atmospheres or upper 
stellar envelopes because of the large difference 
between the diffusion coefficient of the first few ioniza- 
tion states. We have included this effect in our calcula- 
tions using for the average radiation force (Montmerle 
and Michaud 1976) 

= _L y D ßcou gR D/r 1 n(a) ßionI + ßcolI 
Sri 

wlstline — bjEjUj-i . (16) 

On Figure 3, bjEj is given for two cases. For a factor 
of 10 reduction, the radiation force to state / must be 
reduced by a factor of 10 when state 7—1 is 90 
percent ionized. That is, 

Pifilst line) =0.3 , (17) 

or Uj-x = 10.1/bjEj. To determine blEI, use equation 
(11) with Nj = 10NI_1 and take into account that for 
rare gases, Bj ^ oJi?/.! and BI+1 ^ 10^7. A survey 
of Moore (1949, 1952, 1958) shows this to hold within 
approximately a factor of 1.3. We so obtained Figure 3 
for bjEj as a function of temperature for a 2 M0 star. 
For other reduction factors, one may similarly return to 
equation (11). 

Merely by looking at tables of ionization potentials 
and excitation levels, one can immediately determine 
for any element how large the reduction of the radia- 

where 

Y N^A) ßion! 
+ 4 A(^) (ßionI +ßcou)gRI ’ 

(18) 

D =2 Ni(A)D¡/N(A) , 
I 

ß - kT 
ßc°u-^’ 

and ßionI was calculated using the hydrogenic approxi- 
mation (Spitzer 1968; Michaud 1970). Here m is the 
mass of particle A, and gRI was taken from equation 
(6) for all states of ionization except those that are 
either in the rare gas state or have one electron less 

1 By unabundant elements we will mean those whose radia- 
tive forces are unaffected by the saturation of the radiative 
flux. 
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AM/M AM/M 

AM/M 
Fig. 4.—Radiative acceleration as a function of the fraction of the stellar mass above the point of interest. No saturation of the 

radiation flux occurs for these elements. From parts (a), (c), (d), and (e) it appears that whereas heavy elements are clearly pushed 
upward in the more massive stars, they may or may not be pushed upward in a 1.4 M0 star and they are certainly not pushed up- 
ward in the Sun. The vertical arrows on part (e) indicate the bottom of convection zones for a = 0.7, 1.0, and 1.5. The dips in the 
Eu iv, Gd v and U curves assume rare-gas configurations for the IVth configuration of Eu and the Vth configurations of Gd and U. 
On part (b) note the different behavior of Sr, Y, and Zr. It probably explains variations in the abundances of these elements from 
star to star. Depending on whether diffusion occurs below the hydrogen convection zone (indicated by an arrow) or throughout the 
atmosphere (the weak convection could be stabilized by a magnetic field), strontium is either underabundant or overabundant. 
Finally, on part (/) is shown the effect of assuming that all the states of ionization of Eu have a rare-gas-like configuration. 
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AM/M AM/M 
Fig. 4.—Continued 

than a closed shell. For rare gases, gRI was taken as 

gB; = 1.7 x (19) 

where 
urg = blElUi-1 = . (20) 

The function P(u) was defined after equation (1). 
Using equation (20) is equivalent to assuming that for 
rare gases, the lines start appearing at around 0.5x/. A 
survey of Moore (1949, 1952, 1958) indicates that this 
probably leads, on the average, to a slight underesti- 
mate of the radiation forces for rare gases. For states 
of ionization with one electron less than a rare gas, 
equation (19) with equation (20) replaced by 

w = Q.5XilkT (21) 

was used. Finally the uncertainty in the assumed 
averaged radiation flux was estimated by carrying out 
calculations using equations (19) and (20) for all 
states of ionization. The results for this calculation 
are shown with dashed lines on Figure 4/. It appears 
that for > 10 (AM/M = 10 "8) the effect is rela- 
tively small. At T± = 5, it is a factor of 5. 

These calculations will be most accurate for T± ^ 4. 
Then the Lyman jump is smaller, and elements with 
Xi-i = 50 eV are half-ionized, so that one can assume 
bj < 1.3 except for rare gases. For most elements, 
equation (19) may then be expected to be within a 
factor of 2 of an upper limit and a factor of 5 of a lower 
limit. The lower limit could be that low if, from the 
various levels 

2/n-n = 0.2 (22) 

instead of equation (5). All this applies to unabundant 
elements whose lines are unsaturated. 

A few of the calculated radiation forces are shown on 
Figure 4. First note that in the more massive stars, 
there is no doubt that the unabundant heavy elements 
will be pushed upward. The radiative accelerations 
are larger than the gravitational and thermal accelera- 
tions by many orders of magnitude. Second, note the 
strong dips that occur for certain elements. They are 
due to rare-gas configurations and to the jump in 
ionization potentials that occur for rare gases. Note 
the two curves for europium in a 2.63 M0 star 
(Fig. Ac). That merely labeled europium was calcula- 
ted assuming that europium was in the configuration of 
a rare gas (xenon) when it had lost nine electrons. No 
dip occurs because the difference in ionization poten- 
tials is too small there (Carlson al. 1970). However, 
the curve labeled europium iv was calculated assuming 
that when europium has lost three electrons it is in a 
rare-gas configuration. This causes a deep dip (at 
T± ~ ~ 2.7 x 10~10) in the radiative acceler- 
ation because of the relatively large jump in ionization 
potential (from 22 to 54 eV). The calculations of 
Carlson et al. (1970) indicate that, for rare earths, the 
large jumps in ionization potential occur not in the 
xenon configuration, but much earlier. The atomic 
physics of rare earths appears too poorly known for us 
to know whether such configurations resemble rare 
gases with their lack of low energy levels. Until this is 
cleared up, the diffusion calculations for rare earths 
will be very uncertain. It may well be that variations in 
abundance anomalies from one rare earth to the next 
will be explained by the atmoic physics of the con- 
figuration for which the jump in ionization potential 
occurs. Until the states of ionization important at 
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T± ~ 3 are well studied, it will be impossible to deter- 
mine the detailed abundances of rare earths in the 
atmosphere. However, at higher temperatures, deeper 
in the star, this eifect does not come in since the ratio 
of successive ionization potentials is too close to 1. 
For most heavy elements then, radiation pressure 
will cause overabundances in stars of 1.55 M0 or 
more ; however, a few elements will not be pushed as 
far as the atmospheres because of their atomic struc- 
ture at r4 ~ 3. It is a region that must be studied in 
detail in future studies. 

Note also the importance of the dip on the radiative 
acceleration of strontium. In the 2.6 M0 model depend- 
ing on whether diffusion occurs below the hydrogen 
convection zone (indicated by an arrow on Fig. Ab) or 
whether the hydrogen convection zone is stabilized by 
a magnetic field, strontium will be underabundant or 
only slightly overabundant. 

b) The Effect of Saturation 

If in equation (1) 

UA)~Kv (23) 

for some lines, those lines are saturated and the above 
estimates are large overestimates. This occurs for 
iron-peak and lighter elements. For those elements, 
line profiles will have to be integrated in detail and the 
number of lines of given /-values available from each 
state in the atom will be important. We first describe 
the Doppler line profile calculations made and then 
how they change if Lorentz line profiles are used. We 
so determine a measure of the uncertainty of the 
calculations 

Even when lines are saturated, the above analysis of 
the P(u) function in equation (1) remains valid (see 
§ lia). However, the analysis of K¡KV has to be carried 
out again. Define KfA) and KV(P) : 

Kv = KfA) + KfP), (24) 

where KM) is the Part °f the monochromatic co- 
efficient of opacity due to the lines of interest and KV{P) 
the opacity coefficient exclusive of the lines of interest. 
Assuming that the lines do not overlap, 

KM) ~ 
P 

= 0.0265 ^^fnmgv, (25) 
P 

where anm is the absorption cross section at the fre- 
quency of interest, for the transition of interest and 
gv is the line profile, 

gv = exp [-(v - v0)
2/AvD2]/àvDV7T, (26) 

for Doppler broadening, which is the first one discussed 

here. For unsaturated lines, KM) much smaller than 
Av(P), and the denominator of equation (1) is the same 
from all levels m to all levels n. Physically, for un- 
saturated lines, the radiation flux is the same for all 
lines. It is then possible to sum over n and m and con- 
sider only 2n Nn and 'Zmfnm, which is what was done 
(see §IIa) for unsaturated lines. Not here, however; 
depending both on fnm and on Nn, some transitions 
will be saturated and others will not. The width of the 
line will also enter through gv. The force transferred 
through each line has to be calculated before the 
summation can be done over n and m. Each level and 
each line must be considered separately. 

To determine the occupancy of levels, An, for 
Doppler line calculations, we used the Mn i-v 
configurations. The excitation energy and statistical 
weight of each level (Moore 1949) were used to deter- 
mine the number of levels important in the radiation 
force calculations. We stopped at configuration v, 
since the atomic data were becoming too incomplete. 
From each level, the transitions used were those deter- 
mined in Appendix A. Equation (1) was integrated 
numerically over the Doppler line profile for each 
value of fnm and for every level of Mn i to Mn v. The 
summations were then carried out over n and m to 
obtain the saturated radiation forces. The calculations 
were carried out for all temperatures within 

1.5 < r4 < 5 (28) 

in the 3.3 M0 envelope, and for 

IO“13 < X{Mn) < 10"3. (29) 

The results were then fitted to the formulae : 

BKT±3I2A112 

Sbis — gmE 

with 

and 

BKTé
3l2A112 + 7.1 x \02XM)IXo 

r XMM)] 
— 1 i- Xf'33 

XM) = NM)X{A)IN{A). 

(30) 

(31) 

I designates the state of ionization. X0 and E are listed 
in Table 3 for the different approximations of Appen- 
dix A. It is described in Appendix C how one can 
arrive at equation (30). The quantity gRI is the one 

TABLE 3 
Parameter of Saturated Forces (eqs. [30] and [31]) 

Zo E 

Middle  3 x 10“7 1.0 
High  1.5 x 10"6 2.0 
Low   1.5 x 10"6 0.2 
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No. 2, 1976 DIFFUSION IN MAIN-SEQUENCE STARS 455 

Fig. 5.—Radiative acceleration of abundant elements, as a function of the fraction of the stellar mass above the point of interest. 
Saturation of the radiative flux occurs for Mn and Ca, for which radiative accelerations were calculated both for a natural and 10 
times a natural abundance (labeled x 10). On part (a) is shown the effect of saturation on two elements near iron. On parts (b) and 
(c) it appears that part of the different behavior of Sr and Ca is due to saturation. The two elements have very similar ionization 
potentials, but calcium has a much larger natural abundance which leads to saturation of the radiation flux. Compare Sr, Y, and Ba. 
In one star a given element may be overabundant, whereas in another star it is the other element which is overabundant. On part 
(d) of the figure are compared the radiation forces on oxygen calculated with our average formula (eq. [30]) and with Lorentz 
profiles. See the text. The two upper curves are for negligible abundances of oxygen whereas the two lower curves are for “natural” 
abundances. 

determined for unsaturated lines (equation [6] or 
[19]). 

The calculated radiation forces are shown on Figure 
5 for a few cases of saturated radiative fluxes. Take, for 
instance, the case of manganese in a 3.3 MQ star 

(Fig. 5a). The radiative accelerations for a “natural”2 

and 10 times above a natural abundance are shown. 
2 For the “natural” abundances we used those determined 

by Cameron (1973) except that his boron abundance was 
reduced by a factor of 10. 
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Saturation is most important close to the surface. It 
has less effect when temperature increases. The deep 
dips in the radiative acceleration at AM/M = 10“7 

and 10"4 are due to rare-gas configurations. Radiative 
acceleration pushes manganese upward from as deep 
as AM/M = 10" 4 (since there gR ~ gGT). If manganese 
were 100 times overabundant (which is about the 
natural abundance of iron), the upward and down- 
ward accelerations would be about equal. On Figures 
5b, 5c, and 5d are shown the behavior of Ca, Sr, and 
Ba in a few stellar masses of interest. Part of the 
different behavior of those elements in peculiar stars 
is certainly due to saturation effects: calcium is more 
abundant to start with. However, the cancellation of 
the upward and downward acceleration is very close 
in some areas of the star, and more detailed calcula- 
tions are needed (Praderie and Michaud, in prepara- 
tion). 

To obtain an estimate of the uncertainty, other cal- 
culations were carried out, but for the configurations 
i to v of oxygen, and with Lorentz profiles instead of 
Doppler profiles. The full line width at half-maximum 
was taken from Griem (1960): 

Avl = 8 x 1015(>zn
4 + nm*)p/(Z + l)2 s"1, (32) 

where nn and nm are the principal quantum number of 
the lower and upper levels, respectively, p is the density 
(g cm-3), and Z the degree of ionization of the element 
of interest. The principal quantum numbers were 
raised to the fourth instead of the fifth power since the 
number of levels considered is here larger than in 
hydrogenic configurations (see also Cox 1965). The 
constant appearing on the right-hand side of equation 
(32) is not that determined by Griem (1960) but was 
obtained by requiring that, on the average, our expres- 
sion for Avl give the same width as the 38 widths 
calculated by Chapelle and Sahal-Bréchot (1970) and 
by Sahal-Bréchot and Segre (1971). The approximate 
expression for AvL was so normalized to their more 
exact calculations. The fnm values were again taken 
from Appendix A. However, P(u) was not assumed 
equal to 3 but was explicitly calculated for each line 
at each point in the star. The needed energy differences 
between levels n and m were taken from Moore 
(1949); and after a survey through Wiese, Smith and 
Miles (1969), it was decided to give the largest fnm 
value to the transition with the smallest Avnm which was 
allowed in Russell-Saunders coupling (see, e.g., 
Herzberg 1944). The other fnm values were allocated to 
higher levels, /,jm decreasing as the energy increased. 
The only transitions included were those allowed in 
Russel-Saunders coupling. The forces calculated in 
this way are compared with our fitting formula (eq. [30] 
on Fig. 5d). Both at negligible abundances (Z0 = 
10"14) and at the “natural” abundance of oxygen our 
fitting formula gives systematically larger radiative 
accelerations than the pressure-broadened calculations 
by approximately a factor of 3. It is mainly due to two 
factors: the lighter elements, like oxygen, do not have 
quite so many energy levels as manganese does; and 
the levels of oxygen do not, on the average, lead to 

Yol. 210 

lines so well placed in the spectrum as assumed in 
obtaining equation (30). This will be true, in general, 
for the lighter elements, and we probably overestimate 
somewhat the radiative acceleration of the abundant 
light elements like C, O, Ne, ..., but not of iron-peak 
or heavier elements. Part of the disagreement is, how- 
ever, related to our using only Doppler widths, and 
Doppler profiles, for equation (30), and only pressure 
broadening, and Lorentz profiles, for the comparison 
calculation. Equation (32) gives widths 100 times 
smaller than Doppler widths. Using Voigt profiles 
instead of Lorentz profiles would have somewhat 
reduced the disagreement of radiative accelerations. 
At the same time, however, our using only Doppler 
widths and profiles is implicitly justified. 

c) The Contribution of the Continuum 

In the interior of stars, the radiation force trans- 
mitted through the continuum is always relatively 
small except for helium or other very light elements. 
It can be estimated by using equation (1) and the 
hydrogenic approximation, the Saha equation, and 
equation (9) for pe. Further, usually the radiation 
force transmitted through ionization of the Zth state is 
maximum when the element is^mainly in the (Z + l)th 
state of ionization. Then, if K — Kv: 

Scon :=: ^j* Fv{A)dv 

= 5.57 x 10-VTkW86 75 cm s'2, 

(33) 

where w7 = XifeT. The element must be mainly in the 
state 7+1. The quantity a is given in Table 2, and n 
is the principal quantum number of the level from 
which ionization occurs. 

Use as a rough approximation: Uj z, 10, ß ~ 5 x 
102, n = 3; the Té and Z terms nearly cancel for many 
heavy elements: 

gcon = 8.4 x \03Te^R2l(Ar2) cm s"2 , (34) 

so that only for relatively small A (He for instance) 
and high re4 could the continuum be of any import- 
ance. Compare with equation (6) : the force through 
the continuum is much smaller than the force through 
unsaturated lines. We will neglect the contribution of 
the continuum in what follows. 

d) Abundance Anomalies 

The calculated radiation forces will now be used to 
determine what abundance anomalies are to be expec- 
ted in stars on the main sequence. The reader wishing 
to carry out such calculations may refer to Appendix 
B. The time scales will be discussed in the next section. 
Results for 1 M0 stars will first be presented: it is the 
simplest case. As the stellar mass increases, the analysis 
will become more and more complicated; diffusion 
proceeds closer and closer to the surface and then, at 
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No. 2, 1976 457 DIFFUSION IN MAIN-SEQUENCE STARS 

lower temperatures, the radiation forces are more 
sensitive to the details of the flux and to the details of 
the atomic physics of each element. We specify models 
by their mass. However, the most important aspect of 
the envelope models is the temperature at the bottom 
of the convection zone. In turn, that temperature 
depends directly not on the mass of the star but on its 
effective temperature. In a 1.2 M0 star, model enve- 
lopes for Te4 = 0.631 and 0.651 show that increasing 
the effective temperature by 3 percent decreases the 
temperature at the bottom of the convection zone by a 
factor of 2. When relating our results to observations 
one should then do it through the effective tempera- 
tures given in Table 1, for every model. Note that a 
3 percent change in effective temperature will then com- 
pletely change the anomalies through the factor- 
of-2 change in the temperature at the bottom of the 
convection zone. 

By unabundant elements we will mean those whose 
radiative foces are unaffected by saturation of the 
radiative flux. For all the stars considered, Lithium, 
beryllium, boron, scandium, and elements heavier than 
zinc in “natural” abundance are not affected by satura- 
tion, V, Cu, and Zn are marginally affected. Elements 

heavier than Zr must be some 100 times overabundant 
in the reservoir before they are affected by saturation. 

In solar mass stars, diffusion leads to underabun- 
dances of all elements. All elements except fluorine 
have a radiation force more than 10 times smaller than 
the downward term, gGT (see Fig. Ae at the middle 
arrow). The underabundance then appears well 
established. However, this conclusion is based on 
using a = 1.0 for our calculations of the envelope, 
where a is the ratio of mixing length to the pressure 
scale height. If a = 1.5, the underabundances are even 
more strongly established (arrow to the right on Fig. 
Ae), However, we also carried calculations at a = 0.7 
(arrow to the left on Fig. Ae). The radiative accelera- 
tions are still smaller than gGT for all elements. How- 
ever, for B the two are nearly equal; and for Be, Na, 
Al, P, arid K they are within a factor of 5. Unless a 
were appreciably smaller than currently believed, 
diffusion would lead to underabundances of all elements 
in solar-type stars. The main uncertainty is due to our 
poor understanding of the hydrodynamics. Note that 
for a = 1.0, 

gGT ^ 3g, 

Fig. 6.—Ratio of upward (radiative) acceleration to downward acceleration (gravitational modified by the temperature gradient) 
for all elements in main-sequence stars. In this figure, Z is the nuclear charge. The uncertainty of these calculations being a factor 
of 5, it is clear that in stars of 1.5 M© or more, most heavy (A > 60) elements are pushed upward. Note that in the 2.6 and 3.0 M© 
stars, the calculations were made at T± = 3.0, and not at the bottom of the convection zone or in the atmosphere. Diffusion between 
TV = 3.0 and the surface will modify these results and will depend sensitively on the detailed atomic structure of each of the first 
few stages of ionization of each element. 
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458 MICHAUD, CHARLAND, VAUCLAIR, AND VAUCLAIR Vol. 210 

since most of the downward diffusion is due to thermal 
diffusion. The time scales for the development of 
underabundances will be discussed in the next section. 

For the 1.07 M0 star, the radiative acceleration is 
still lower than gGT for all elements; however, they are 
within a factor of 5 of each other for some of the less 
abundant elements below the iron peak even for 
a = 1.0. As can easily be verified using equations (6) 
and (8), even the unsaturated forces are, for iron-peak 
elements, more than 5 times smaller than the accelera- 
tions needed to counter gravity and thermal diffusion. 
If affected by diffusion, iron-peak elements will be 
underabundant in such stars. 

In the 1.2 M0 star (see Fig. 6; the gR/gGT ratios 
were calculated at the bottom of the H i convection 
zone for the 1.2, 1.4, 1.55, and 2 MQ stars) the upward 
and downward accelerations are nearly equal for those 
of the iron-peak elements that are unabundant. C, N, 
O, S, and Ar are underabundant both because of 
saturation and because of ionization effects. Chlorine 
is underabundant because of ionization effects. Ele- 
ments heavier than iron will generally be underabund- 
ant. A few of the unabundant light elements will 
probably be overabundant. 

In the 1.4 Me star, the unsaturated radiation forces 
become large enough to push even the heaviest ele- 
ments upward (see Fig. 6). If an unabundant element 
is not in the configuration of a rare gas at the bottom 
of the convection zone, it will be pushed upward and 
will be overabundant. Further, if ^4 ^ 60, the radiative 
acceleration will be more than 5 times the downward 
acceleration. It is the case for Li, B, F, Cl, K, Sc, V, 
and Co. These elements should be overabundant. 
Another group of elements will certainly by under- 
abundant: He, C, O, Mg, and Al. The radiation forces 
on Be, Mg, and Al are strongly influenced by the weak- 
ness of the radiation forces in rare gas configurations. 
For the other elements the upward and downward 
accelerations are within a factor of 5 of each other, 
and it is somewhat uncertain which will win. 

All unabundant elements, in particular all elements 
heavier than iron, will be pushed upward in the 1.55 MQ 
and heavier stars unless they are in a rare gas configura- 
tion or affected by the Lyman jump at the bottom of 
the convection zones. In a 1.55 Af0 star, above the 
iron peak, only La and Y are strongly affected by rare 
gas configurations and are underabundant. For the 
more abundant iron-peak elements, Cr, Mn, Fe, and 
Ni, the upward diffusion is affected by saturation of 
the radiation field and is within a factor of 5 of down- 
ward diffusion. Most of them should, however, be 
overabundant. V and Ti will be overabundant while 
Mg, Ca, and Sc are strongly affected by rare gas 
configurations and will be underabundant. So also are 
Li and Be. Oxygen will be underabundant because of 
saturation of the lines. The other unabundant light 
elements, B, P, Cl, and K, will be overabundant. For 
the other light elements, upward and downward 
diffusion will be within a factor of 5 of each other. 

These calculations neglect the effect of the Lyman 
jump. It is likely to be important for some elements in 
1.55 Mq or heavier stars. The size of the effect may be 

determined from Figure 1. In these calculations we 
assume KIKV = 1, but it is more like 0.1 beyond 
13.6 eV at r4 = 3. However, at r4 = 6, the effect is 
small. Since for the 1.4 M0 the bottom of the convec- 
tion zone is at r4 = 5.5, the Lyman jump will have 
little effect. However, in a 1.55 M0 star, the bottom of 
the convection zone is at TV = 3.6. Elements which 
have lines beyond 13.6 eV only, will see their radiation 
force reduced by a factor of approximately 0.15. 
When, in a star, the stable zone extends to T± ~ 3, the 
details of the atomic structure of each element will be 
important. It is outside the scope of this paper to 
discuss this in detail, however, see the end of § lia for 
a discussion of the effect of rare gas configuration on 
rare earth abundances. 

The Lyman jump will be even more important for the 
2.0 M0 star in which the bottom of the convection 
zone is at TV = 1.6. We will, however, indicate which 
elements should be overabundant if we neglect the 
Lyman jump. We must remember that a few elements 
which we say here should be overabundant, actually 
will not be because of the Lyman jump. Generally all 
unabundant elements should be overabundant unless 
affected by rare gas configurations. Because of rare gas 
configurations, Li, Na, Ar, K, Ca, Sr, and probably Ba 
will be underabundant. Helium and O will be under- 
abundant because of saturation effects. 

For the 2.6 and 3.3 M0 stars we give on Figure 6 
results at TV = 3 since there is essentially no convec- 
tion zone in those stars. The results for the 5 M0 star 
would be larger by a factor of 2 than those for the 
3.3 Mq star. The radiation force on all unabundant 
elements is here so large that, unless there are very 
strong ionization or Lyman jump effects, they will all 
be overabundant. Only those elements with large 
Xilxi-i (such as Eu, Gd, and U) can possibly see their 
radiation force reduced by more than one order of 
magnitude. All iron-peak elements except iron are 
strongly pushed upward. 

III. TIME SCALES FOR THE DEVELOPMENT OF ABUNDANCE 
ANOMALIES 

We now show that, for most elements, the anomalies 
observed on Am or Ap stars pose no time scale prob- 
lem. This result is firmly established. Indeed, in the 
lifetime of Am and Ap stars much larger anomalies 
than observed can be supplied by diffusion from the 
envelope of the star. 

The time scales depend mainly on the size of the 
mixed zone in the outer region of the star (which in 
turn depends mainly on the effective temperature of 
the model; see the first paragraph of § lid) and on the 
radiation force below the mixed zone. In Am stars the 
mixed zone probably extends down to the bottom of 
the hydrogen convection zone (Vauclair, Vauclair, and 
Pamjatnikh 1974, Vauclair 1974, 1976). In Ap stars 
it is possible that the visible region of the star itself is 
stable. The time scales are then sometimes only of the 
order of years. In Michaud (1970) time scales were 
determined mainly for gravitational settling. But for 
overabundances of unabundant elements (for which 
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radiation forces are large) time scales can be much 
shorter than the gravitational settling time scales. 

A major simplification is possible for the calcula- 
tions of the time evolution of abundance anomalies so 
long as equilibrium is not approached over a large 
fraction of the envelope. This is always an excellent 
approximation when turbulence is negligible as 
assumed in this paper. Then, in the diffusion equation, 
the concentration gradient is negligible and the 
diffusion velocity is independent of the local concen- 
tration (except in some cases through the radiation 
force). Consider the mass AMC (per cm2) of either 
the convection zone, in a star with an outer convection 
zone, or of the line-forming region, in a star without 
an outer convection zone. When an element of abun- 
dance X diffuses toward the center of the star, the mass 
AMC is being emptied through the bottom: 

— + Xw¡, (35) 

where w7, the diffusion velocity, is negative for down- 
ward diffusion, but constant in time since it does not 
depend on the abundance. Then we solve 

XIXQ =exp[-i/0] (36) 

with 

to the convection zone (or line-forming region) to the 
mass of the convection zone (or line-forming region). 
The accuracy of this method was checked numerically 
for Hg against a detailed solution of the diffusion and 
conservation equations, and the effect of the approxi- 
mation on all calculated time scales is less than 10 
percent. The concentration gradient term is negligible 
in the diffusion velocity equation because the logarith- 
mic pressure gradient term is multiplied by 2A, and 
the logarithmic temperature gradient term by 3.4Z2, 
so that only for extremely large abundance anomalies 
is equilibrium ever approached. The concentration 
gradient term is important when equilibrium is 
approached; but equilibrium over 1 scale height of, 
say europium, would in an Ap star correspond to 
an overabundance of approximately 101000! 

For large overabundances to materialize, elements 
must be pushed upward from regions of the star where 
the temperature and density are very different from 
those at the surface. As elements move toward the 
surface, will they accumulate somewhere on the way, 
or will they all reach the surface? First, assume no 
ionization effect and that the lines are unsaturated. 
The flux of particles (F) will be given by 

Y = XpD^cc (40) 

6 = —AMJpWj 

* +2.0 x lO^McZ
2/AT^(gGT - gR) (s) , (37) 

where gR is the radiative acceleration calculated using 
equation (18), X0 is the abundance at / = 0, and gGT is 
calculated using equation (8). Similarly for overabun- 
dances, when the concentration gradient term is 
negligible, the diffusion equation becomes a simple 
kinematic equation giving the velocity with which 
elements at a given point all move without feedback 
from the local concentration. The local concentration 
merely adjusts to keep the flow running. Instead then 
of solving the continuity and diffusion equations, it is 
much simpler, so long as the concentration gradient is 
negligible, to treat the diffusion equation as a kine- 
matic equation and to calculate the time it takes to 
bring to the atmosphere enough elements to create an 
overabundance c = X/X0: 

CTc dr 
h(c) = > (38) 

where r1 is defined by 

LM{ri) X 
AMC ~ Zo 

(39) 

X being the mass fraction of the element of interest and 
AM^i) the mass (per cm2) above jv At i =0, the star 
is assumed homogeneous with a natural abundance, 
XQ, of the element of interest. In other words, the 
overabundance at time t is the ratio of the mass of the 
zone from which elements have had time to migrate 

where equation (6) has been used and the expression 
for Dj has been taken from Aller and Chapman (1960) 
(see also Montmerle and Michaud 1976) neglecting 
the logarithmic term. Upward diffusion has been 
assumed dominant. From numerical calculations, for 
Mn, Sr, Eu, and Hg, it turns out that 

ZocTll2 + ß, (41) 

where 0 < ß < 0.15 . 

In a steady state, elements do not accumulate on their 
way to the surface, so that F is independent of r. 
Equations (40) and (41) then give 

X oc Tll2 + 2ß 

To maintain the flux when there is no saturation or 
ionization effect, the abundances decrease as T 
decreases toward the surface. 

When the radiation force is saturated or when ioni- 
zation effects are important, the situation is more 
complicated. Whenever they are important, the effects 
of accumulation of elements on the way to the surface 
are taken into account in the results presented below. 
In some cases they cause delays for elements like Mn 
and Cr. For the time evolution of the abundance of 
Mn in the atmosphere, two curves are shown on 
Figure 76. The observed behavior of Mn should be 
between the two. The upper curve was calculated using 
radiation forces calculated assuming natural abundan- 
ces of Mn at every point in the envelope ; the lower 
curve, assuming 10 times a natural abundance. At the 
dips in its radiation force (such as those in Fig. 5a), Mn 
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envelopes. In stellar lifetimes overabundances of up to seven, five, and two orders of magnitude can appear respectively in 3.3, 2.0, 
and 1.55 M© stars. Other cases are discussed in the text. On part (a) note that the time evolution is very regular except for Eu iv 
and U v whose abundances nearly stop increasing in the atmosphere after 102 years. Similarly on part (b) the abundances of Sc and 
Zr stop increasing after 104 years. This is due to the dips in the radiative acceleration described on Fig. 4 and 5. If the radiative 
acceleration is reduced below £gt by the rare-gas configuration, the abundance stops increasing; if it is reduced but remains larger 
than ^qt, the abundance nearly stops increasing when elements coming from the point where gR ~ gaT reach the surface. 

will accumulate, so that the flux can be carried. Be- 
cause the calculated drop in the difference between the 
radiative force acceleration and gGT is by a factor of 
10, a tenfold increase in the abundance is needed. This 
leads to a slowdown of the diffusion. The effect is 
maximized by calculating (lower curve) the time evolu- 

tion for 10 times a natural abundance of Mn every- 
where. Results corresponding to the lower curve are 
always quoted here. Our estimate of the size of ano- 
malies is then conservative. We now present the results, 
first for solar mass stars and then for more massive 
stars (see also Fig. 7). 
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TABLE 4 
Diffusion Characteristic Times (years) 

461 

M(M0) He Mil Ga Sr Eu Hg 

2.6  
2.0  
1.55  
1.4  
1.2  
1.07  
K« = 1.5). 
1 (a = 1.0). 
1 (a = 0.7). 

4.3 
1.3 
1.8 
4.3 
1.1 
1.5 

104 

105 

106 

106 

108 

109 

5.4 x 109 

1.9 
3.2 
2.1 
5.1 
5.3 

108 

109 

1010 

109 

108 

1.9 x 106 

3.6 
2.9 
2.0 
4.9 
4.4 

108 

109 

1010 

109 

108 

9.2 x 103 

1.6 x 
2.5 x 
1.9 x 
4.4 x 
3.9 x 

108 

109 

1010 

109 

108 

8.0 x 
2.2 x 
1.7 x 
3.8 x 
3.4 x 

107 

109 

1010 

109 

108 

5.2 x 107 

1.9 x 109 

1.5 x 1010 

3.4 x 109 

2.6 x 108 

In solar-type stars, diflusion leads to underabun- 
dances (see § l\d). One may then use equations (36) and 
(37) to calculate the abundance anomalies in the con- 
vection zone and so in the atmosphere. The time scales 
are listed in Table 4 for a few elements of interest. 
Whether large abundance anomalies should appear or 
not on the surface of solar-type stars depends entirely 
on the ratio of mixing length to pressure scale height 
and will be settled only by progress in convection 
theories. For a = 1.5, 1.0, and 0.7 the abundance 
anomalies should, for Mn, respectively be by factors 
of 0.8, 0.4, and 2 x 10~4 after 4.5 x 109 years. The 
relative homogeneity of abundances in solar mass stars 
may perhaps be used to set a lower limit on a\ how- 
ever, meridional circulation must also be taken into 
account (Vauclair, Vauclair, and Michaud, in prepara- 
tion). Perhaps the light elements (Li, Be, B) will be 
very useful in this respect (Vauclair, Vauclair, Schatz- 
man, and Michaud, in preparation). 

For the 1.07 M0 model, the results quoted are for an 
a = 1 model and do depend on a; however, abundance 
anomalies appear here most likely to materialize. 
Note that the heaviest elements will be most under- 
abundant and that the expected underabundances are 
of many orders of magnitude. That holds even more 
strongly for the 1.2 M0 stellar model, though there 
some of the elements will probably be overabundant. 
The underabundances will be by very large factors 
(10"6 for Hg after 109 years; the reader can easily 
calculate cases of interest to him by using equation 
[36]). The possible overabundances of Be, B, and P, 
however, will not be larger than a factor of 10, 
whereas those of F, Na, Cl, K, Sc, Ti, and V will be 
smaller than a factor of 3. The other elements either 
are likely to be underabundant or are certainly 
underabundant (see § l\d). 

In a \A Mq star, diffusion leads, in the convection 
zone and so in the atmosphere, to overabundances by 
two orders of magnitude for elements with 60 < ^4 < 
100 and for F, Cl, K, and Sc; but by one order of 
magnitude above A = 100 and for P, A, Ca, V, Cr, 
Mn, Co, and Ni. In this and other stars, the quoted 
overabundances are uncertain by about one order of 
magnitude for individual elements. 

In 1.55 Mq stars, diffusion leads to overabundances 
by three orders of magnitude for elements with 
60 < A < 100 and for Fand K\ but by two orders of 
magnitude for elements with A > 100 and for Cl, Cr, 

Mn, Co, and Ni. Overabundances by a factor of 3 are 
expected for Zr, and by a factor of ,10 for B, P, Ar, 
Ti, V, Nb and Mo. Note that here strontium is over- 
abundant by three orders of magnitude. Yttrium is 
underabundant by many orders of magnitude, and 
zirconium is overabundant by a factor of 3. This is 
due to the state of ionization at the bottom of the con- 
vection zone. Note also from Table 4 that the dis- 
appearance of helium is very rapid: it takes only 106 

years. 
In 2 Mq stars, overabundances will be by factors of 3 

for Be, Sc, Y, and Al; of 10 for B, Ti, and Zr; of 100 
for P and V ; of 1000 for Cl, Cr, Mn, Co, and Ni ; and of 
105 for F and those elements above the iron peak not 
specifically mentioned. But look at Figure 6 for under- 
abundant elements. Note the behavior of Sr, Y, and 
Zr. In smaller stars the maximum overabundances 
were determined by the point where 

Sr = Sgt • 
Elements could not be more than 1000 times over- 
abundant in a 1.55 M0 star because at the point in the 
envelope where AM = 1000 AMC, the radiative acceler- 
ation becomes smaller than goT* However, in a 2 M© 
star, this point occurs so deep in the star that elements 
do not have time to diffuse from there to the surface 
in the stellar lifetime (see Fig. 7). In 2 M© and heavier 
stars, the maximum size of the overabundances are 
determined by the stellar lifetime. 

In 2.6 M© stars, there are overabundances by a 
factor of 3 for Y; of 10 for Be, Al, Zr, and Sc; of 102 

for B, Ti, and Nb; of 103 for P, Ar, and Y; of 104 for 
Cl, K, Cr, Mn, Co, and Ni; of 105 for F; and of 106 

for those elements above the iron peak that are over- 
abundant (see Fig. 6) but not mentioned above. The 
limit of 106 is due to the time it takes for elements to 
diffuse upward. For the 2.6 M© and lighter stars we 
assumed that AMC included the mass of the hydrogen 
convection zone. However in the 2.6 M© star, the 
convection carries little energy and could probably be 
suppressed by the magnetic field. Then the outer 
atmosphere of the star would be stable, the zone that 
one needs to contaminate is only the line-forming 
region, and the overabundances would generally be 
multiplied by a factor of 10. In the 3.3 and 5.0 M© stars, 
only the line-forming region is assumed contaminated. 

In 3.3 M© stars, there will be overabundances by a 
factor of 3 for Be, Mg, S, and Ca; of 10 for B, N, Al, 
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Sc, Sr, and Y ; of 102 for Ti and Zr; of 103 for P and 
V; of 104 for Cl and Cr; of 105 for F, Mn, Co, and 
Ni; and of 107 for most of the elements above the 
iron peak. Here the mass of the contaminated zone, 
AMC, is assumed to be the mass of the line-forming 
region that is the region above rRosseland = 0.1. This 
is somewhat approximate. If one preferred a larger 
line-forming region by a factor L, one merely would 
decrease the overabundances by the same factor since 
the number of diffused elements would not be changed 
but would be mixed in a larger mass. 

In a 5 Mq star we have very nearly the same thing: 
Be, Mg, Sc, Fe, and Y overabundant by a factor of 3; 
B, N, Al, Si, S, Zn by a factor of 10; Ti by 102; P and 
V by 103; Cl, Cr, and Mn by 104; F, Co, and Ni by 
105; and most of the elements above the iron peak by 
107. Note that especially in the last three stars, the 
small abundances (<10) are entirely caused by 
diffusion at temperatures smaller than 40,000 K where 
our results are uncertain. Some of those calculated 
overabundances are then expected not to materialize. 
However, there is no doubt that overabundances of 
P, Y, Cl, Cr, Mn, F, Co, and Ni by four orders of 
magnitude or so are allowed by the reservoir. For most 
of the elements above the iron peak, it is seven orders 
of magnitude. 

IV. DISCUSSION 

Compare now these results with observed abundance 
anomalies (Preston 1974). The Am stars correspond 
approximately to our 1.55 and 2.0 M© stars. Diffusion 
leads to overabundances of three to five orders of 
magnitudes for heavy elements in those stars, whereas 
overabundances of one to two orders of magnitude 
are observed. Similarly, underabundances of Ca, Sc, 
and a few light elements are predicted by diffusion 
(see Fig. 6) and are observed, but the predicted under- 
abundance factors are much larger than observed. 
We assumed, in our calculations, no turbulence or 
meridional circulation. Either would considerably 
diminish the anomalies predicted by diffusion. Obser- 
vations seem to tell us that some stars are stable 
enough for diffusion to be important but that they are 
barely stable enough, the abundance anomalies being 
considerably reduced by turbulence or meridional 
circulation. The effects of turbulence and meridional 
circulation will be studied by us in a separate paper 
(Vauclair, Vauclair, and Michaud, in preparation). 
A detailed comparison with observations must await 

these results. Similarly, the lower temperature stars 
(7T

e4 ä 0.6) are here predicted to have overabundances 
of about one order of magnitude, but the same turbu- 
lence or meridional circulation that reduces the anoma- 
lies in Am stars probably reduces them to a factor of 3 
or lower at 7^4 _ 0.6. The predicted underabundances, 
which are often by very large factors in low-mass stars, 
may not be eliminated and should be looked for. In 
more massive stars (Af > 2.5 Af©) our results should 
be compared with observations of Ap and Bp stars. 
Here the predicted anomalies are slightly larger (107 

instead of 106) than the largest observed abundance 
anomalies. These calculations show clearly, beyond the 
error bars, that even the largest observed abundance 
anomalies can be caused by the migration of elements 
from the interior of the star. However, our treatment 
of the atmosphere is here too approximate for us to 
carry a detailed element-by-element comparison in 
Ap stars. The atmosphere will modulate the abundance 
anomalies. 

As a final remark, we would like to point out where 
more calculations are needed and where the calcula- 
tions presented here are accurate enough. In general, 
at T± ^ 4, the calculations presented here are not 
accurate enough. They do give the average behavior, 
but many individual elements (e.g., some of the rare 
earths) are expected to behave very differently from the 
average. Detailed studies are then needed. However, 
at T± ^ 4, the reverse is true. Most elements are 
expected to behave like the average. In particular, no 
difficulty is expected from iron-peak or heavier ele- 
ments. Detailed studies may be needed at temperatures 
larger than TV# 4 for some of the lighter elements: 
for Li, Be, and B certainly, perhaps for Si and a few 
others. For most elements, then, detailed atomic data 
(/-values, energy of excited levels, ionization energy) 
are needed only for calculations at T± ^ 4, correspond- 
ing to states of ionization with ionization potentials of 
60 eV or less. Such data are not always available, but 
even fewer data exist for more ionized states. 

We are indebted to Dr. A. N. Cox for kindly calcu- 
lating opacities for us and for supplying them to us in 
an especially useful form. We thank Drs. Claude 
Mégessier, Thierry Montmerle, Françoise Praderie, 
and Myron Smith for a critical reading of the manu- 
script. We would like to thank Alice Chénard for the 
typing of a difficult manuscript and Robert Martel 
for the drawings. 

APPENDIX A 

ESTIMATE OF/-VALUES 

We based our estimates of /-values mainly on the analysis and Tables of Wiese, Smith, and Glennon (1966) and 
Wiese, Smith, and Miles (1969). They so depend implicitly on experimental and theoretical evaluations. 

In their analysis Wiese, Smith, and Miles (1969) give the Z-dependence (where Z is the charge of the nucleus 
whereas elsewhere in this paper Z is the charge of the ion) of transition probabilities and/-values for a number 
of configurations (see in particular their Figs. 10-21). As Z increases, the /-values of the lines connecting some 
configurations go up while others go down. This is to be expected from the sum rule (Pecker and Schatzman 1959) 
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TABLE A1 
Oscillator Strengths 

463 

State 
(1) 

2n/mn 
(2) 

(1 </) 
(3) 

(0.3 </< 1) 
(4) 

0.1 < / < 0.3 
(5) 

io- 1 < / < 
(6) 

IO"1 io- </< 
(7) 

io- /< 10"3 

(8) 

Ground states. ... 
First excited states. 
8 states of Si i... . 
10 states of Si n... 
14 states of Si m. . 
11 states of Si rv.. 

Average (all)  
Average (Si)  
Chosen middle  
Chosen low   
Chosen high  

0.70 
0.75 
0.57 
0.78 
1.37 
1.15 

0.89 
0.97 
1.0 
0.2 
2.0 

0.12 
0 
0 
0.2 
0.7 
0.4 

0.24 
0.43 

0.5 
0.9 
0.5 
0.6 
0.9 
1.0 

0.73 
0.83 

x 0.5112 2 
1 

10 

1.12 
1.25 
1.4 
0.8 
1.9 
0.8 

1.2 
1.2 

x 0.2 
x 0.1 
x 0.10 

0.9 
1.9 
2.1 
1.1 
0.9 
1.6 

1.4 
1.2 

4 x 0.02 
2 x 0.04 

20 x 0.04 

4 
4 

40 

0.6 
0.9 
2.1 
0.7 
0.07 
0.9 

0.88 
0.56 

x 0.002 
x 0.004 
x 0.004 

4 
4 

40 
40 

0.5 
1.8 
1.1 
0.9 
0.14 
0.09 

0.76 
0.38 

x 0.0002 
x 0.0004 
x 0.0004 
x 0.00004 

which relates the algebraic sum of the /nm-values from level n to all other levels, to the number of outer electrons 
involved in the state n (Unsold 1955, p. 350). As Z varies, the number of electrons involved in a given configuration 
does not change. For this reason, the “average”/-values will be determined by an analysis of a number of ions in 
Wiese, Smith, and Miles (1969), and upper and lower limits will also be justified. Then the /-values so determined 
will be compared with the experimental ones for Fe i. 

In Table A1 we have summarized the information from Wiese, Smith, and Miles (1969) used in this paper. We 
have summed, from a given lower level m, the /mn-values of transitions to all upper levels within 80 percent of the 
ionization potential of the lower level. Beyond that energy the flux available drops down too rapidly for the transi- 
tions to contribute (see Fig. 1). These are given in column (2). We have also given, in succeeding columns, the average 
number of transitions from one lower level, in a given range of /-values. The averages were carried out separately 
from the ground states of neutral elements from Na to Ar, for the first excited states of the same elements, and for 
eight to 14 levels of the first four ionization states of Si. Silicon was singled out since we also could compare the 
data with the more complete tables of Moore (1965) for the intensity of spectral lines. This comparison suggested 
to stop our averages after the tenth level of Si n, the 14th of Si m, and the 11th of Si iv since the data of Wiese, 
Smith, and Miles (1969) were becoming less complete. We similarly limited the study to the ground states and first 
excited states of the neutral elements. 

From a comparison of the various ionization states of Si (which cover the Na i to Si i configurations) we conclude 
that the total/-value from lower levels does «oí depend considerably on the number of outside electrons. The 
sum always appears reasonably close to 1. We estimate a lower value of 0.2 and an upper value of 2.0. We have also 
compared these values with those of Fe I (not shown on Table Al) (Allen 1971 ; Corliss and Warner 1964). Again, 
after the recent correction (Allen 1971) the average /-values summed to all upper states but averaged over all lower 
states is close to 1. We have not included these data because of some arbitrariness as to exactly how to introduce 
the corrections. The average /-value we need here then does not increase with the number of electrons outside closed 
shells (the sum rule, Unsold 1955). It appears more related to the number of electrons that can make the transitions, 
and this is always reasonably close to 1. This is the value chosen for all unsaturated calculations and for the 
“middle” estimate of saturated calculations. 

For saturated calculations the number of transitions is also important. This is estimated from columns (3)-(8). 
The number of strong transitions (/ > 10-1 and perhaps / > 10-2) can be reasonably estimated from the data we 
present. But the number of weak transitions (/ < 10 _2) is clearly underestimated because not all weak transitions 
have been observed. Furthermore, in our analysis of the Fe i spectrum, whereas it appeared that the summed /- 
value remained constant, the number of transitions contributing to it increased considerably. Finally, from 
equation (6) it appears that, for an element with ^4 = 16 if re4 = = 1, one unsaturated transition with/ = 10-3 

leads to = 104 cm s-2 and so is sufficient to push the element upward. Only the weak transitions, from a given 
lower level, whose summed /-value is ~ 10“3 will contribute significantly to the radiation force. Those arguments 
have led us to choose the middle, low, and high estimates shown in Table Al. Only those results which are indepen- 
dent of the estimate of the number of lines and of the /-value will be given a high degree of certainty. 

APPENDIX B 

EXAMPLE OF RADIATIVE ACCELERATION CALCULATIONS 

As an example of how radiative accelerations can be calculated from the equations obtained here, the strontium 
radiative acceleration is calculated at two points in a 2.6 M© stellar envelope. First at r4 = 10, from equation (10) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

21
0.

 .
4 

4 7
M

 

464 MICHAUD, CHARLAND, VAUCLAIR, AND VAUCLAIR Vol. 210 

and Table 2, AM/Af = 4 x 10“8, so that we can compare our result with those on Figure Ab. Then calculate the 
state of ionization of Sr. Using equation (11), with NI¡NI-1 = 1, and = 1, we find xi-i = 111 eV. From 
Carlson et al. (1970), strontium is then mainly in the form of Sr vu and Sr vm, which are not rare-gas configurations. 
One immediately obtains gR = 2.6 x 105 cm s-2 from equation (6) {A = 88). re4 was taken from Table 1, and 
r = R was assumed. The correction for saturation can be obtained using equation (30), with Ä' = 10. More accurate 
values for K could be obtained from a stellar envelope model, but we checked that R = 10 is a good enough 
approximation for nearly all cases. Then using “natural” abundances for Sr [Z(Sr) = 7.35 x 10"8], one obtains 
from equation (30) gBs = 2.5 x 105 cm s“2. This value for the upward radiative acceleration should be compared 
with the downward acceleration of equation (8). Using values from Table 1 one obtains gGT = 1.70 x 104 cm s-2, 
so the correction for thermal diffusion is only 13 percent in this case. The radiative acceleration on Sr is much 
larger than the downward acceleration at T± = 10. 

Now calculate the radiation force on Sr at T± = 3, even though our formulae are not so accurate there. From 
equation (11), we calculate xi-i = 39 eV, which from Carlson et al. (1970) implies that Sr is partially in a rare-gas 
configuration. It is then necessary to calculate the fraction of Sr that is in the rare-gas configuration. From equation 
(11), again with xi-i =41.31 eV, BI/BI^1 = 1, we obtain 

N(St iv) 
N(St m) 

= 0.4. 

We calculate only the unsaturated force : 

gn = 0.7 gB(Sr in) + 0.3 gR(Sr iv) . 

The radiation force on Sr iv is obtained from equations (19) and (21), while that on Sr m, a rare-gas configuration, 
must be corrected as specified in equations (19) and (20). For Sr m: 

urg = 0.6 x 41.3/kT = 9.6 . 

And from Figure 1 

P(9.6) = 0.6, 

so that 

gR - [(0.7 x 0.6 + 0.3 x 0.2)/3] x 1.7 x 108Te4*/ATt 

= 1.4 x 105 cm s-2 . 

Because of the rare-gas configuration, the radiation acceleration is reduced by a factor of 6, in reasonable agreement 
with the more exact calculation shown on Figure 4b (eq. [10] gives AM/M = 2.7 x 10“10). Note that in this 
Appendix we neglected the effect described in equation (18), but that it was included in the calculations of Figure 
4b. Except when the element is neutral or once ionized, it can be neglected in first approximation. 

APPENDIX C 

EFFECT OF SATURATION 

We will first show how to arrive at equation (30) which evaluates the effect of saturation on radiative accelera- 
tions. We will obtain a function with three arbitrary parameters. They will be determined by comparison with 
“exact” calculations for manganese. 

Assume that the radiation flux in two Doppler widths is transmitted to element A via one line. Then from 
equation (1) 

gs = 2Fv(^)ArD = gBij5.5 x 10-12 KAmTtm 

X{_A) _ ’ 
(Cl) 

where Avd and gR1 were taken respectively from equations (27) and (6). Since we assumed that all the radiation flux 
in 2Avd was transmitted to element A, we used 

KM) = KV 

in equation (1). We further assumed P(u) = 3 and w = 5 following the same agrumentation that led to equation 
(6). Equation (Cl) gives the amount of radiative acceleration transmitted to element ^ through one single saturated 
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line of Doppler width. As the abundance of element A, X(A)9 increases, the saturated width of one line will increase 
and the number of saturated lines will increase. We approximate this behavior by multiplying the right-hand side 
of equation (Cl) by 

B' = B0[l + Xk/X0
k], 

where B0, X0, and k are arbitrary constants to be determined later. Then 

jf Jl/27" 3/2 
gBIS = 5.5 x 10-12.B'gB, • (C2) 

The saturated radiation force must equal the unsaturated radiation force, gRI, in the limit of small abundances. We 
then use the simple interpolation formula: 

5.5 x lO-^B'KA112^312 

gBIS - 8m 5.5 x lO-^B'KA112^312 + X(A)’ ^ 

which has the required behavior in the two limits of small and large abundances. We have determined B0, Z0, and k 
by comparing gÄ7s with radiation forces calculated for Mn, as described in § lib. We then rewrote gRIS in the slightly 
simpler but equivalent form of equations (30) and (31). The constant E is introduced so that gRIS goes to the 
proper limit for the “high” and “low” approximations. 
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