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ABSTRACT 

In order to predict the likely distribution of stars around a massive black hole in the core of a 
cluster of stars, we derive an equation of the Fokker-Planck type that describes the diffusion of 
stars in the 1/r gravitational well of the black hole, by star-star gravitational collisions. The main 
assumptions are: (1) the distribution of stars is adequately described by a single-particle dis- 
tribution function that is spherically symmetric in coordinate space and approximately isotropic 
in velocity space; (2) the stars have equal masses; (3) star mass « black-hole mass « cluster- 
core mass; (4) a star is destroyed by star-star collisions or by tidal forces when its binding energy 
in the well exceeds a specified large value; (5) binaries are unimportant. We calculate numerical 
solutions for the time-dependent equations. These solutions indicate that the equilibrium star 
density, closely approached within a collision time, approximates an r“7/4 power law through- 
out most of the well. The same equilibrium power law obtains for nonisotropic distribution 
functions whose anisotropy is independent of r. Stars in bound orbits about a black hole diffuse 
down slowly into its gravitational well under equilibrium conditions. A black hole of ^ 103 Af0 
may accrete stars primarily by capture from unbound orbits. 

We calculate the predicted shape of the star distribution near the cluster center that might be 
observed with small diaphragms. We also calculate, as a function of diaphragm size, the velocity 
dispersion and line profile that might be measured spectroscopically. Some calculations are also 
presented for an open slit configuration. We conclude that, for globular clusters in our Galaxy, 
one might be able to detect black holes with masses ^ 5 x 103 M0 and, with a large space tele- 
scope, masses ^ 103 M©. We also present an approximate formula for the mean distance of a 
massive black hole from the center of mass of the unbound stars. 
Subject headings: clusters: globular — stars: black holes — stars: stellar dynamics 

I. INTRODUCTION 

Theorists have felt for years that the cores of globular clusters were likely sites for massive black holes (see, 
e.g., Wyller 1970; Peebles 1972a), and this feeling has been strengthened recently by the discovery that several 
X-ray sources are associated with globular clusters (Giacconi et al. 1974; Clark, Markert, and Li 1975; Cañizares 
and Neighbours 1975). Some models of these sources involve massive black holes (e.g., Bahcall and Ostriker 
1975; Silk and Arons 1975). It therefore seems reasonable now to investigate in detail a question raised by Wyller 
(1970) and treated semiquantitatively by Peebles (1972a, b), namely, what would be the distribution of solar-mass 
stars around a massive black hole in the core of a star cluster? 

The present work was motivated by, and in many ways follows, that of Peebles (19726), who used dimensional 
reasoning to derive a power-law for the distribution function, /, describing stars in bound orbits about a black 
hole. We adopt his basic physical picture, wherein stars in bound orbits in the — GMBH/r gravitational potential 
of the black hole diffuse from one bound orbit to another because of star-star gravitational scattering. We derive 
detailed expressions for the relevant diffusion coefficients and solve numerically the time-dependent Boltzmann 
equation. We find solutions that satisfy the boundary conditions at zero binding energy and large binding energy 
(the Peebles solution does not). Our results resemble somewhat those conjectured by Peebles in that when the 
system is near its equilibrium steady-state configuration (after roughly one relaxation time) the distribution 
function is then approximately a power law throughout most of the hole’s gravitational well. However, we deduce 
a different energy power law than he did,/(is) oc is174 instead of is3/4, and our solutions imply a lower equilibrium 
rate for accretion of stars onto the black hole from bound orbits. In constructing his scaling argument, Peebles 
assumed that the scattering rate into more bound orbits was independent of stellar energy and also independent 
of the energy, ED, at which stellar coalescence (or tidal disruption) occurs. Our calculations show that the Peebles 
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STAR DISTRIBUTION AROUND BLACK HOLE 215 

solution actually implies a very rapid rate of diffusion of stars away from the black hole (see discussion following 
eqs. [58] and [63]). 

The reader who is primarily interested in observations may do best by turning directly to § V in which we discuss 
various methods of detecting massive black holes in the cores of globular clusters. We formulate the mathematical 
problem in § II, listing our principal assumptions and outlining our procedure. Most of our calculations are de- 
scribed in §111, in which we derive a time-dependent diffusion equation for an isotropic distribution function; 
obtain a simple zero-flow solution,/oc E1,4:, that does not satisfy the “realistic” boundary conditions; present 
numerical solutions of the full time-dependent equation; and discuss the star accretion rate. In § IV we general- 
ize our simple solutions to the case in which the distribution function is allowed to be a factorable function of 
energy and eccentricity. We calculate in § V the star distribution near the center of a star cluster and predict the 
star counts or photometric intensity that might be measured (cf. eq. [85]). We also derive expressions for the 
line profiles and velocity dispersions that may be observed spectroscopically with small diaphragms or slits (see 
especially Figs. 3 and 4). This section also contains estimates of what black-hole masses one might hope to detect 
in globular clusters with ground-based or space telescopes and an approximate formula for the mean distance of 
a massive black hole from the center of mass of the unbound stars. The expected large statistical fluctuations 
close to the black hole are discussed in § VI. The possible relevance of various stellar accretion processes for 
globular-cluster X-ray sources is discussed briefly in § VII. 

II. FORMULATION 

a) Assumptions 

We list below our principal assumptions and approximations. 
1. The distribution of stars is adequately represented by a single-particle distribution function that is spherically 

symmetric in space and approximately isotropic in velocity space. We follow Peebles (1972a) in using a single- 
particle distribution function (see § VI). In our detailed calculations we assume that the distribution function 
is approximately isotropic but show in § IV that our equilibrium power-law solution is also valid for a large 
class of nonisotropic distribution functions. The rate at which stars diffuse closer to the hole, a slow noniso- 
tropic process, is calculated assuming the distribution function is isotropic, analogous to the calculation 
of radiative diffusion in stellar interiors using scalar quantities. 

2. The black-hole mass, MBH, is much less than Mc, the mass of the core of the globular cluster. 
3. The stars around the hole all have the same mass Af*, which is small compared to MBH. 
4. Only a small fraction of these stars are binaries. 
5. The predominantly important collisions are those involving small changes in star velocity. This assumption 

is standard in treating diffusion caused by an r~x scattering potential (e.g., Rosenbluth, MacDonald, and 
Judd 1957). 

6. A star is destroyed if its binding energy per unit mass in the hole's gravitational wall exceeds ED ~ (GMJR*), 
because then direct contact collisions between stars become more important than distant gravitational 
encounters (see § III^ and Frank 1976). 

b) Some Implications 

Our aim is to determine the stellar distribution function, f{x, v, t), the number of stars per unit volume in 
coordinate space, per unit volume in velocity space. Given /(x, v, t), the number density, mean-square velocity, 
etc., may be calculated straightforwardly. 

Peebles (19726) noted one great simplification that follows from assumptions 1 and 3, namely, that the iso- 
tropic part of the distribution function / can be written as a function of just E and t, where, following Peebles, 
we define E to be minus the stellar energy per unit mass : 

E = GM^/r - $v* (1) 

with v = stellar velocity and r — distance from black hole. We indicate below the explicit ideas and approxima- 
tions that lead to the result/ # f(E, t). 

We first note that assumption 2 implies that rc, the stellar collision time, is long compared with T, the orbital 
period. We write 

rc v3n~1(GM^)~2 

T~- ^ ’ (2) 

where n = number density of stars. As a typical velocity, we adopt <At;2)1/2, the measured velocity dispersion 
along the line of sight in the core of the cluster. For a typical radius, we take r = rh (the characteristic gravitational 
capture radius), where (Peebles 19726) 

rh = GM^Av2}-' . (3) 
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216 BAHCALL AND WOLF Vol. 209 

For a typical density, we take n equal to nQ, the number density of stars in the cluster’s core, thus obtaining 

Te <Afl2)2 

T ~ rhn0(GM*)2 ' 

Eliminating rh from equation (4) using (3) and using the definition of a core mass, 

Mc = frrn0rc
3M^, 

yields 

T 
<Ai?2>V 

G3MbhM*Mc 

(5) 

(6) 

Using the inferred relation (Peterson and King 1975) that 

GMc/rc - <Ai?2> (7) 

in globular clusters, and then assumption 2, leads to the desired result 

l£ 
T 

rsj M¿_ 
A/*A/bh 

» 1 . (8) 

It might be argued that the above “typical” choices for r, w, and v are actually not typical deep down in the well. 
However, our procedure is self-consistent: solutions obtained assuming rc » T imply that rJT increases with 
decreasing r. 

The ratio tc/T is typically ^ 106 in the situations we consider. Thus we can assume consistently that the flow- 
associated anisotropic part of the distribution function is of the order of 10"® of the isotropic part, and we neg- 
lect anisotropy in computing collision rates and related quantities. 

The Boltzmann equation implies that, in the absence of collisions, the distribution function / is constant along 
the trajectory of a particle in phase space, and this constancy holds approximately in our problem because of 
equation (8). Thus,/(ra, va, t) = f(rb, vb, t) if (i*a, t;a) and (r0, vb) both lie on the same orbital path, and, neglecting 
anisotropy of /, directions are irrelevant, so that 

f(ra,va,t) =f(rb,vb,t). (9) 

The only restriction, given our assumptions of isotropy and no collisions, on the validity of equation (9) is that 
(ra, Va) and {rb, vb) correspond to the same energy. Thus/is a function of just E and t. 

Assumption 2 implies another simplification, namely, that the gravitational potential for r ^ rh is, within an 
additive constant, approximately equal to —<7Mbh/ay because the total mass of stars at r ^ is much less than 

T 47Tr2n(r)dr « \ . (10) 
Azbh j0 

The correctness of equation (10) can easily be verified by taking a “typical value” n = n09 then using equations 
(5) and (7) with assumption 2. The use of « = can be checked a posteriori for self-consistency: in all of our 
solutions w is a sufficiently weak function of r that 

Í r2n(r)dr ~ nQ[ r2dr. (11) 
J o «lo 

A further implication of the assumptions is that the radius, rD ~ GMBUIED, at which stellar disruption occurs 
is much smaller than i.e., 

rDlrh ~ R*(Av2}/GM* . (12) 

In typical rich clusters, <At;2) ~ 50 km2 s"2 and GMJR* ~ 2 x 105 km2 s“2. Thus 

rDlrh~2x IO'4. (13) 

The region where stars remain intact but have their motion dominated by the gravitational field of the well thus 
spans several orders of magnitude in both r and E. 

c) Outline of Procedure, Boundary Conditions 

We first calculate, in terms of the distribution function f(E, i/ the net rate R{E, t) at which stars flow dif- 
fusively through energy level is toward higher is-values (more tightly bound orbits). Then we use conservation 
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of particles to derive a diffusion equation for the system, an equation expressing df(E, t)/dt in terms of 
dR(E, t)ldE. Starting from an arbitrarily chosen initial condition,/(is, 0), we step the diffusion equation along 
in time until the system comes to equilibrium. As a boundary condition, we require 

f(E, t) = nolXAi)2)]-3'2 exp 
L<Ar2> 

(14) 

for E < 0, because the distribution functions in the cores of globular clusters are presumed to be nearly Maxwel- 
lian. Since the stars are disrupted for E > ED, we get 

f(ED,t)=0, (15) 

and do not calculate / for higher E’-values. The imposition of the boundary condition (15) forces the solution to 
be far from a Maxwell-Boltzmann distribution, since the solution for thermal equilibrium requires many stars 
near the black hole. 

III. EQUATIONS FOR AN ISOTROPIC DISTRIBUTION FUNCTION 

a) Calculation of the Scattering Rate 

Consider first an elementary collision in which the velocity of star a changes from va to va' and the velocity of 
star b changes from vb to vb'. It is convenient to discuss the collision in terms of relative and center-of-mass velo- 
cities : 

==K~ vb (16a) 
and 

rM = i(va + vb), (16b) 

with analogous definitions for Vf and VM\ Also define 

Ea = GMBH/r - iva
2 , (17a) 

iC = GMBH/r - «O2 , (17b) 
with analogous definitions for Eb, Eb. 

The function R(E, t) is the number of stars per unit time that are scattered into a region of energy greater than 
E by two-particle collisions. The number of collisions in volume d3r per unit time causing transitions from volume 
d3vad

3vb = d3VRd
3VM in two-particle velocity space to volume d3va'd

3vb = d3Vfd3VM' is 

d3rd3VRd
3VMd3VR'd

3VM'-VR(doldiï)f(Ea, t)f(Eb, t)8<3XVM' - VM)S(VR' - VR)(VRT
2 , 

where da/dQ is the differential scattering cross section. For convenience in performing the integrals, we have 
written da/dQ dQ as 

With d3 VR and d3 Vf written out in terms of magnitudes and directions, we integrate over all collisions to obtain 

R(E, f) = J d3rj VR
2dVR J d2QRj dVB'j d2QR j d3VM j d3VM' 

x VR(dc/dÜ)f(Ea, t)f(Eb, - VM)S(VR' - VR)S, (18) 
where 

S = Hsign (Ef - E) + sign (Eb' - E) - sign (Ea - E) - sign {Eb - E)] (19) 

is +1 for transitions crossing E to higher energies, — 1 for transitions crossing E to lower energies, and zero for 
all other collisions. A factor of ^ has been included to avoid counting each reaction twice. 

A change of variables is convenient: 

d3VMd3VM' -> (VRVf)~1dEadEa'dEbdEb'dQ>d<f>', (20) 

where O is the azimuthal angle between VM and the VRVf plane; O' is the azimuthal angle between VM
f and the 

VrVr' plane. Substituting (20) in (18), writing S(3)(^m' ~ Pm) *n terms of spherical polar coordinates, and inte- 
grating Vf yields 

R(E, t) = lj dEaj dE„j dEa’ j dEb'S(Ea' + 

x Si (Fb’ ùr’ ~ ')/(^ 

Eb' -Ea- £6) J d3rj VBdVBf d2QBf d2ilR 

OSPPGMBHr-1 - Ea- Eb - W]-1'2, (21) 
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where 

P = J ¿(hj - ÜM) (22) 

is an integral that is easily worked out: 

P = 2[sin2 ^ sin2 a — (cos 0' — cos 6 cos a)2]“1/2 . (23) 

Here 6 is the scattering angle (between VR and VR'); a is the angle between VR and VM; and 0' is the angle be- 
tween VR and VM'. One must perform some algebraic and trigonometric steps to obtain equation (23) since a 
and 6' are measured with respect to different axes. The bracketed term in equation (23) must be positive for a 
scattering process that satisfies the conservation laws, a requirement that determines the limits of integration in 
some of the following equations. 

If we make the small-scattering-angle approximation (assumption 5) and write a and 0' in terms of VR and the 
energies, we obtain 

P Ä 2VBEMu*{e*[VR
2EM - (2V - Ea')(Eb - Ea)] - (Eb - Ea - Eb' + Pa')

2}-1/2, 

where 

EM = 2CMBRr-i - Ea - Eb - $VR* . 

In the approximation of small scattering angles, the scattering formula is 

da \6G2M*2 

d£l * VR*0* ’ 

and we have 

R(E, t) = 1287rG2M*2 J dEa^ dEbj dEa'j dEb'8(Ea + Eb - Ea' - Eb')Sf(Ea, t)f(Eb, t) 

x J d3r p20BJ VB-
2dVBI[VR

2EM - (Eb' - Ea')(Eb - Ea)}^>2 , 

where 

/ = (ITT)"1 J üf2ßB'0-^2 - V]-1'2 , 

em
2 = (Eb -Ea- Eb' + £0')W£m - {Eb - Ea')(Eb - Ea)]-'. 

Note that 6m
2 must be positive if there is a solution to the scattering problem for the variables indicated. The 

integral / is easy to evaluate within assumption 5, which implies 6m « 1. The integral over VR is also simple, and 
the integrations over d2£lR and the direction of r contribute just a factor (47t)2. We obtain 

R(E, t) x G2M2 J dEa j dEb J dEa' J dEb'8(Ea + Eb - Ea' - Eb')Sf(Ea, t)f(Eb, 0| A| , (30) 

where 
A = Ea' — Ea = Eb — Eb , (31) 

fl'ma.x. 
K= r2dr(VRmax - VBmin)

3, (32) 
Jo 

j FBmax| = 2W[2GMBBr-
1 - Ea - Eb ± {(2GMwr^ - Ea - Eb)

2 - (Eb - Ea)(Eb' - ^O}1'2]1'2 (33) 

and 

rmax = 2GMm{Ea + Eb + [(Eb - Ea)(Eb' - ^O]1'2}-1 • (34) 

The indicated limits on VB result from the requirement that 6m
2 be positive. 

The integral K is easily calculated once one realizes that (FBmax — FBmln)
2 has a simple form. One finds 

K = *nG3Mw
3{Ea + Eb + [(Eb - Ea)(Eb' - Æ/)]1'2}-3'2 , (35) 

an expression that we can simplify by noting that assumption 5 implies 

Eb’ - Ea' ~ Eb — Ea ■ (36) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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Since S is antisymmetric under interchange of initial and final states while everything else is symmetric, we can 
replace f(Ea, t)f(Eb, t) by i[f(Ea, t)f(Eb, t) — f{Ea', t)f(Eb', t)]\ we can expand this expression in powers of 
the small energy change A. This manipulation is convenient because of the apparent singularity at small energy 
exchanges, A. Utilizing also the symmetry between a and b, we write 

R(E, t) s (8V2*r5/3)G5M*2MBH3J dEbj dEa[max(Ea, Eb)]-
3'2 

x lf(Ea, t)df(Eb, t)/dEb - f(Eb, t)8f(Ea, t)/8Ea]L, (37) 

where max (x, y) is the larger of x and y, and 

L = i/AA| A| -3[sign {Ea + A - £) - sign (ßa - E)] = 2\Ea - E\-1. (38) 
J — CO 

The integral over Ea formally diverges because of the singularity at Ea = E, so we introduce a small cutoff energy, 
Amln, and a maximum energy, ¿rmax, at which collisions are important. For a well-behaved function H(Ea), 

J \EaE-E\ H(Ea) = 2H{E) ln A ’ (39) 

where A = Em&JAmln. We obtain, finally, for the net rate at which stars diffuse through “energy” E, 

R(E,t) ä (32 x 21i2tt5/3)G5Mbs
sM*2 In A J dEb[max (E, Eb)]-

312 

x [f(E, t)8f(Eb, t)l8Eb - f(Eb, t)8f(E, t)/8E]. (40) 

The lower limit cutoff in equation (39) results from the requirement that the collision time at the maximum 
effective impact parameter, Z>max, be smaller than the orbital period of the bound star. The momentum transfer 
at ¿max is of order (GM*2/Z»maxt)), leading to a minimum energy transfer from orbits of energy £ of order 
(M#/Mbh)E. The maximum energy transfer, because of our small angle approximation, is of order E. Thus 

A ~ 34bh/37* . (41) 

In analogous problems in plasma physics, the maximum impact parameter is the Debye-Hückel shielding radius. 
For gravitational collisions that determine stellar relaxation times, the maximum impact parameter is the charac- 
teristic size of the system (see, e.g., Cohen, Spitzer, and Routly 1950). In the presence of a dominant central 
potential, our cutoff is more severe than either of the above. 

b) Time-Dependent Diffusion Equation 

The number of stars with “energies” between E and E + dE \s defined to be N(E, t)dE, and is related to 
f(E, t)dE as follows : 

N(E, t)dE = J d3rj d3vf(E, t)8(GMBa¡r - irv2 - E)dE = ir32ll2G3MBB
3E-5l2J 

Conservation of stars requires dN(E, t)dE = dt[R(E, t) — R(E + dE, i)] or 

8N(E,t)/8t = -8R(E,t)/8E, 

which, with equations (40) and (42), becomes 

8f(E, t) _ A r5(2 8 ffjr, f(E, t)8f(Eb, t)/8Eb - f(Eb, t)8f(E, t)l8E 
8t 8E\] d b [max (F, Eb)f'

2 

where 

A = (327t2/3)G2M*2 In A . 

Equation (44) is the basic diffusion equation governing stars in bound orbits around the black hole. We now re- 
write it in a dimensionless form, and a Fokker-Planck form. 

%E, t)dE. (42) 

(43) 

(44) 

(45) 
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Since/is Maxwellian for “energy” is < 0, it is useful to adopt dimensionless variables based on this boundary 
condition: 

g = (2n<&v2>y2n0-
1f; (46) 

x^E^Av2}-1; y=Eb<Av2}-1; (47) 

T = An0(27r(Av2))-3l2t. (48) 

The unit of time, (27T(<Av2y)3l2A~1n0~
1, introduced in equation (48) is of order one-half the relaxation times 

defined by Spitzer and Hart (1971) and Chandrasekhar (1942) for the region r > rh (although the meaning of 
some of our symbols is necessarily different from the usage of previous authors). Equation (44) becomes 

(49a) 

where the dimensionless rate-integral, Q, is defined as 

pX max 
Q(x, r) = dy[g(x, r)8g(y, T)ldy - g(y, r)dg(x, r)/8x] max (x, y)~312 . (49b) 

J — co 

Equation (49) holds for 0 < x < xm. We specify 

g(x, t) =ex, x <0; (50) 

g(x,T)=0, x>xmax, (51) 
where 

*maX = ED(Av2y~1 . (52) 

Numerical solutions to (49) are presented in § Hie. 
It is clear, a priori, that N{E, t) must satisfy a one-dimensional Fokker-Planck equation 

8#(gf - = -§Ë{N{E’t)cÁE’t)} + \w*{NiE't)cÁE’t)} ’ (53) 

because this form follows from assumption 5 and conservation of particles (stars). (See, for example, Chandra- 
sekhar 1943.) Using (42) and a moderate amount of straightforward algebra, one can show that (44) and (53) are 
equivalent if 

Ci(E, t) = (AE/Aty = (3/2m{JJ (E/Ehy
2f(Eb, t)dEb - J* f(Eb, t)dE^ , (54) 

CÁE, t) = (AE2/Aty = 2AE5'2 T f(Eb, t)[max (E, Eb)]~
3,2dEb. (55) 

J — CO 

c) Power-law Equilibrium Solutions 

We are interested in equilibrium solutions with dfjdt = 0. It is, of course, immediately evident from (40) that 
a Boltzmann distribution,/^) = Cexp {M^EjkT), implies R(E, i) == 0 and thus dfjdt = 0. However, as Peebles 
(1972è) has argued, this distribution implies enormous densities deep in the well, which would be destroyed by 
tidal breakup or coalescence (cf. the boundary condition of eq. [15]). 

Following Peebles (19726), we first consider equilibrium solutions (dfjdt = 0) in which the distribution func- 
tion has a power-law form, 

f(E) — CEP , (56) 

and R(E) has a nonzero value that is independent of E, Such solutions do not satisfy our boundary conditions 
(14) or (15); however, the solution that satisfies the boundary conditions might be expected to lie close to the 
power-law solution for rD « r « rh and, because rD is very much smaller than rh, this is a physically interesting 
domain. Substituting (56) in (40) gives 

R(E) = constant = T> f ^[max (E, Eb)]~
3l2{EpEb

p~1 - Eb
pEp-1} , (57) 

Jo 

= £)£2p-3i2 r ¿/z[max (1, z)]~3,2{zp~1 — zp} . (58) 
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Thus, if jR(is) = nonzero constant, then this was the conclusion reached by Peebles (19726) and was the 
basis for his /(is) = CE'3/4 power law. However, equation (58) reveals a problem with the Peebles law, namely, 
the zp term in the integrand is proportional to z“3/4 as z goes to infinity; the integral thus diverges at its upper 
limit. The constant value of R(E) is therefore minus infinity. A solution that is close to CEm (except near the 
boundaries) implies very rapid diffusion away from the black hole. 

We have found another power-law solution that corresponds to zero flow, R{E) = 0 for all E. Adopting form 
(56) again, we require 

/» 00 
0= dE^mixiEiE^Y^lEvEt?-1 - EJE*-1] 

Jo 

or 
o=p-1-(p + iyl + (i-pyl-(i-pyl. (59) 

Within the range where the integral converges, 0 < p < %, there is one solution: 

p = 1/4, i.e., /= C£1/4. (60) 

Thus f{E) = CE1/4 is an equilibrium solution to the diffusion equation. 
We note that this solution also gives zero when substituted into the right-hand side of equation (37), an expres- 

sion for R that (unlike [40]) is not subject to small errors caused by our sloppy treatment of the cutoff parameter 
A. This result is readily verified by substituting equation (60) into (37) and reversing the order of integration. 

d) Numerical, Time-dependent Solutions 

We have solved equation (49) numerically for the dimensionless distribution function g(x, r), for several values 
of xmSkX, starting in each case from an arbitrary initial condition. Results from two such calculations are shown 
in Figures 1 and 2. 

Note the following features : 
i) In the two cases shown, the initial distribution function was much smaller than the equilibrium value through 

most of the well; and the potential well started to fill up, first near the top (0 < jc « JCmax), then the bottom 
(•^ ^ ^max)*. 

ii) The distribution function changes rapidly for the first one unit of dimensionless time, but very slowly after 
r = 1 ; the function seems to approach quickly an equilibrium curve. 

iii) For 1 « x « Xmax* the equilibrium distribution function is within a factor of 2 of the simple power-law 
solution: 

g = lx11* . (61) 

As g approached its equilibrium form, the dimensionless rate integral Q appeared to approach a constant value 
of approximately 7 x 10"2 for A:max = 102 and 8 x 10“4 for jtmax = 104. 

X 

Fig. 1.—Dimensionless distribution function g plotted as a function of dimensionless binding energy jc, for the case where the 
star breakup point is xm&Ji = 100. The numbers on the curves are dimensionless times r. Also plotted for comparison is an jc1/4 

power law. 
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X 

Fig. 2.—Dimensionless distribution function g plotted as a function of dimensionless binding energy jc, for the case jcmax = 104. 
The numbers on the curves are dimensionless times r (see eq. [48] of the text). 

Our calculations, based on the assumption that / is isotropic, indicate that the relaxation proceeds on a time 
scale less than half of Chandrasekhar’s relaxation time tE, applied to the core of the cluster, neglecting the black 
hole. To see why, consider the energy diffusion coefficient (AE2/At} as a function of position for r ^ rh. The 
coefficient is of the order of v(K2}, where v = local collision frequency and <^2> = local average of the square 
of the stellar kinetic energy. The collision frequency increases slightly with decreasing r and <Ä^2> increases rapidly, 
like r-2. Consider the effect of this on a typical x = l (E = <Ai;2» star. Most such stars penetrate to radial 
distances several times smaller than and consequently feel, on parts of their orbits, diffusion coefficients 
(AE2/At} much larger than the ones felt by a typical cluster star that is not influenced by the gravitational field 
of the black hole. 

e) The Equilibrium Flow Rate and Other Accretion Rates 

The relationship between R{E, t), the flow rate, and the dimensionless integral Q(x, t) can be written 

where 
R(E91) = 7t2 ” 312Rq Q(x9 t) , 

*0 = y rh
an0 

4G2M*2 In An0 

(Av2y312 

(62a) 

(62b) 

which is of the order of the number of stars in the hole (with r < rh) divided by a mean collision time for the 
cluster. Numerically 

R0 - 6 X 10"7 yr-1 (MBU/103 Mo)3(n0f5 x 104 pc-3)2(10 km s"1/^2)1'2)9 . (62c) 

Although Q was generally ~ 1 for x ~ 1 early in our numerical experiments, the asymptotic values we ob- 
tained approximately satisfied the relation 

Q&^xSx^-1 xS(Av2y/(ED), (63) 

independent of x. But in (49b), each of the two terms in the integral expression for Q has a magnitude 
for 1 « x « xmax and g ä 2x1/4. Far from ;x:max> the two terms almost exactly cancel each other. However, near 
*max the two terms diverge from each other, the approximate cancellation no longer occurs, and the net flow 
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rate is of the same order of magnitude as the larger of the two terms. The bottleneck for the diffusive flow occurs 
near E # ED. For <Aü2> « E « ED, the flow rate could conceivably have been much higher, considering the 
number densities, mean energy, and available volume; however, to maintain a steady state, the distribution 
function in this energy range tends toward the 2£1/4 form in which the flow rate is zero. 

The energy flow rate (away from the black hole) is R(E, co)ED, which is practically independent of energy with 
our approximations (see eqs. [62a] and [63]). The distribution function far from the black hole does not depend 
much on 2£D, so it is natural that the heat flux must also be practically independent of E for E « ED. 

For the dimensional flow rate R(E, oo), we obtain, from (62) and (63) (^max ~ 1-9 x 103) 

*(£,=0) » (30 stars per lO10 yr) x 

* (5 x 

-7/2 

(64) 

a slow rate under expected globular-cluster conditions. 
The equilibrium flow rate calculated above probably does not represent the dominant contribution to mass 

accretion by the black hole; tidal breakup from unbound orbits (and perhaps capture from “loss-cone” bound 
orbits) are apparently more rapid processes. The capture, and tidal breakup, of stars from unbound orbits that 
happen to take them within a tidal radius of the black hole can be estimated using the static approximation. 
One finds an accretion rate 

^tidal — 27rrr(GAfBH«o)^ 1 

~ 10“7*5 yr if/ MBH \4/3/ ftp \ /10 km s"1^ r_Tr (Mo\^}\ 
\\103 Mq) \5 x 104 pc-3/ \ <Ai;2>1/2 ) [R0 \Mbh/ J/ ’ 

(65) 

where rT is the distance from the black hole at which tidal disruption occurs. Assuming that, at the beginning of 
the disruption process, the star traverses its orbit sufficiently slowly for hydrostatic equilibrium to obtain, one 
has rT ~ R*(MBh/M*)1I3

9 where R*, M* are the radius and mass of the star. Crude estimates suggest that this 
requirement is satisfied for most, or all, impact parameters of interest, but detailed dynamical calculations are 
obviously desirable (for other estimates of this rate, cf. Hills 1975 and Bahcall and Ostriker 1975). Frank (1976) 
has pointed out that the tidal radius rT is much smaller than the stellar coalescence radius, rD [rT/rD ~ (M*/MBH)213], 
and hence ED is the relevant energy at which to set our inner boundary condition. 

Another important process is the capture of stars that have been scattered from simple bound orbits into 
“loss-cone” bound orbits, i.e., bound orbits with E « GMBB/rT that are so highly eccentric that they come within 
rT of the black hole. Although we have no dependable quantitative formula for this capture rate RB, it is prob- 
ably small compared to R0, the number of stars with r < rh divided by the mean collision time, because it in- 
volves scattering into a small solid angle. The rate RB should be smaller than our numerically computed rates R 
until the system comes near equilibrium, when RB probably becomes greater than R. This uncertainty about 
Rb does not affect our conclusions that / approximates an is1/4 power law, but it means that the difference be- 
tween one of our computed long-time distribution functions and the is1/4 power law may not be a quantitatively 
accurate approximation to the difference between the actual system’s asymptotic distribution function and the 
Em power law. 

IV. ANISOTROPIC DISTRIBUTION FUNCTIONS 

a) Motivation 

We have considered so far collisional transitions between nearby energy levels on the assumption that the 
velocity-space distribution function within an energy level is isotropic except for the tiny correction due to the 
flow toward the black hole. We know this assumption must break down at some level of approximation (see 
the discussion of loss-cone effects above). A rigorous and straightforward approach to the anisotropic-velocity 
problem would be to let /be a function of orbital eccentricity e, as well as E and t, and to balance particles going 
in and out of each state of given E and e. But, with our present formalism, this approach entails an impracticably 
long calculation, and we have instead carried out a more restricted calculation with simplifying assumptions. 

We found that in the isotropic case the system converged to an asymptotic solution in the order of a relaxation 
time, and we therefore consider now only asymptotic solutions. We also found that the asymptotic isotropic solu- 
tion for “realistic” boundary conditions ([14] and [15]) was approximated closely by a simple solution (/oc E1^) 
for the “easy” boundary conditions (/-> 0 as is0, /-> 00 as is-> 00, i? = 0) for most of the region of in- 
terest. Therefore, we adopt the “easy” boundary conditions for our discussion of the more complicated aniso- 
tropic case. For these “easy” boundary conditions, the problem has no intrinsic energy or length scale, and we 
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expect that the fundamental solution, f(t-> oo), should have the same symmetry; specifically, it should be a 
separable function of E and e. We define an eccentricity parameter 

A = (1 - €2)/2 (66) 

and write 
f(E,e,r)=h(E)u(\)9 (67) 

where w(A) = arbitrary function of A. Equation (67), of course, does not apply to radii r that are inaccessible to 
a star of “energy” E, eccentricity e; / = 0 in such forbidden regions. 

We can show that setting h(E) = CE1I4: for E > 0, h(E) = 0 for i? < 0, yields a flow rate R(E) that is zero 
for all E; it thus represents a stationary state. The proof, which we outline briefly below, requires assumptions 
2 through 5 and equation (67). 

b) Outline of Proof 

We list below a series of steps by which one can show that the factorable / of equation (67) is a solution of 
the anisotropic problem outlined above. 

First, we rewrite equation (18) using the form (67) for the distribution function. Next we make two changes of 
variables, computing two Jacobians : 

d*VBd*VM-+J1dEadEbd\ad\bdiljadilsb, (68) 

where 0a and i/jb are the azimuthal angles, about the radial direction, of va and vb; also, 

dQfdVn'-^ JzdEa'dEh', (69) 

where = azimuthal angle, about the radial direction, of VR'. Next, we do the integral over VM' using the 
momentum-conservation delta function, and convert S(VR

f — VB) to an energy delta function. Then, we use 
equation (26), and the assumption of small scattering angle (assumption 5), to perform the integration over 6. 
We make repeated use of assumption 5 to express R in the form 

R(E) = 16^G6MBH
3M*2C2 J dEaj dEbj dEa'j dEb'(EaEb)-

ll2SS(Ea' + Eb - Ea - Eb)\A\-3P(Ea, Eb, Am), 

(70) 
where 

P(Ea, Eb, Am) — 
GMn 

; 2 j p J dXau(\a) J dXbu(\b) J #0 J w(EaEbyi* ± 

x (Fm x , (71) 

and r is a unit vector in the radial direction. The sum is over two cases, (va*r){vb*r) > 0 and (va*r)(vb*r) < 0. 
Any parameters involved in the definition of the arbitrary functions w(A) are symbolized by Am. The function P 
obviously has no dependence on final-state parameters, and all of the initial-state parameters are integrated over, 
except Ea and Eb. The factor GMB^ relates the distance and energy scales. Since P is dimensionless, it must be 
expressible as a function of dimensionless parameters, and, aside from Am, the ratio Ea!Eb is the only dimension- 
less parameter P can depend on. Note that P is also symmetric under a*-+b. 

Next we make the variable change dEadEb ->dkd(E¿ + Eb) and use the energy delta function to integrate 
over E¿ + Eb. Finally, with the same spirit that led to (39), we let 

S->\n A d8(Ea - E) 
dEa 

(72) 

and integrate once by parts, to obtain 

R(E) = -16n*GBMBB
3M*2C2 In A 2L jj” dEb(EEb)~

ll2P(E, Eb, Am) 

Because P depends only on E and Eb through their ratio, the curly-bracketed quantity is independent of E, as 
can easily be verified by changing the integration variable to EbjE. Thus we have 

R(E) = 0 (74) 

for all E. 
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V. OBSERVABILITY 

a) Characteristic Parameters 

Four parameters, each having the dimensions of a length, characterize star counts or intensity measurements 
designed to detect a massive black hole. These parameters are a core radius rc; a diaphragm size S; a “seeing” 
disk rs of the optical telescope; and a characteristic gravitational capture radius rh. Typical core radii, within 
which the unperturbed star distribution in a globular cluster is approximately constant, are (e.g., Peterson and 
King 1975): 

rc ~ 1 pc ~ 20" (distance/10 kpc) , (75) 

although all the four X-ray globular clusters that have been studied optically have rc < 0.5 pc (Bahcall, Bahcall, 
and Weistrop 1975; Bahcall 1976). Typical diaphragm sizes within which one might wish to count stars and 
measure the light intensity (or velocity dispersions or profiles) are circles of radii of order 

rs < S 10", (76) 

where rs ~ 1" for ground-based observations and ~0"03 for observations with a Large Space Telescope. The 
characteristic gravitational radius is (cf. eq. [3]) 

rÄ = 4.3 x 10-2 pc(Mbh/103 Mo)(102 km2 s“2/<^2)) 

~ 1 arcsec x (distance/10 kpc)-1 (Z2} ) ' (77) 

For spectroscopic observations, another characteristic quantity enters: 

Vo2 =2kTstJMstar, (78) 

where rstar and Afstar are appropriate averages of the stellar kinetic energies far from the black hole. The param- 
eter is difficult to measure, but typical values may be of the order of 10 km s-1 for globular clusters (see, e.g., 
Peterson and King 1975; Illingworth and Freeman 1974). Nearer the black hole, the typical velocity v is of course 
much higher. 

In what follows, we calculate various observable quantities as functions of dimensionless ratios of the above 
parameters. 

b) Number Density 

The number of stars per unit of volume is 

n(r) = J d3vf(E, t) . (79) 

We assume, as a good approximation to our numerical solutions, that the distribution function is a factorable 
function of energy and eccentricity, i.e., 

/= const. £1/4w(A) . (80) 

By changing integration variables in equation (79) to A = (1 — e2)/2 and y = rE/GMBK, one can show that 

n(r) oc r“7/4 , (81) 

independent of the distribution of eccentricities, w(A). A similar calculation gives « oc r-9/4 for the Peebles p = f 
power law. 

c) Observability of a Density Cusp 

The numerical calculations of the distribution function that were performed using the time-dependent Boltzmann 
equation (see §IIL/) show that an approximate representation of the stellar density near the center of the star 
cluster is 

w(r) ä wunperturbed(A*)[l + (r/j/r)7^4]. 

The number of stars that will appear in a circle of radius S is 

r* oo /»S 
N(S) = 4tt j dz I xdxn(r) , 

Jo Jo 

(82) 

(83) 
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226 BAHCALL AND WOLF 

where we have chosen a cylindrical coordinate system with origin on the black hole. The polar axis z is oriented 
along the observer’s line of sight, and x is the radial coordinate. Taking an approximate formula for the un- 
perturbed star distribution (King 1962), 

^unperturbedO") ~ ^(0)[1 “l- (^Ac)2] , (84) 
we find (by numerical integration) that 

A(S) * 27r«(0)5'2rc[l + 2.6(Slrc)(rhlsyn . (85) 

Equation (82) is valid for Strc ^ 0.3 and is the basic equation describing a density cusp. 
If one had a telescope with infinitely good resolution, one could count individual stars in the innermost regions 

of a globular cluster and determine accurately the function N(S). Unfortunately, with real telescopes (and a ter- 
restrial atmosphere) the problem is much more difficult. We calculate now how massive a black hole would have 
to be to produce a definitely distinguishable stellar density cusp. 

We suppose that one’s “credibility threshold” for believing that a massive black hole is present is crossed if 
the number of stars within a radius S is F or more times the average star density in the cluster core (for most 
workers, F ~ 2> to 10). One finds, using equation (85), that the minimum gravitational radius rh to which one is 
sensitive is then 

r* « 0.6(Frc)
4'7S3'7 . (86) 

Thus the maximum sensitivity is obtained by using the minimum diaphragm size consistent with a good signal- 
to-noise ratio. Diaphragms smaller than the seeing disk result in a loss of signal to noise. Thus the maximum 
sensitivity is achieved by choosing S = rs. 

Comparing equations (86) and (77) for plausible values of the parameters (Bahcall 1976; Peterson and King 
1975), one finds that ground-based observations of globular clusters are sensitive to black-hole masses 
>5 x 103 M0 (for F = 10, rc ~ 5", rs ~ 1", (Av2}112 ~ lOkms-1). For observations with a large space tele- 
scope, one might hope to detect black-hole masses as small as 103 Me. The limit of detectability scales approxi- 
mately as (cf. eqs. [3] and [86]) 

MBH(detectable) oc rcore
4/7<An2)(distance)+3/7 . (87) 

Note that one can search for the possible light enhancement just as well by using a photoelectric detector and 
integrating photons passing through a small diaphragm as by trying to count stars observed photographically 
close to the cluster center. In fact, the photoelectric measurement may be much easier and permits one to use 
smaller diaphragms. If one does observe a light enhancement photoelectrically, one can try to distinguish between 
the possibilities of many faint stars and one bright star (e.g., a horizontal-branch star) by taking spectra of the 
bright region or by trying to get high-resolution star counts close to the center. 

We can illustrate the use of equation (85) by applying it to the case of M15 (= NGC 7078 = 3U 2131 + 11). 
From Figure 2 of Bahcall, Bahcall, and Weistrop (1975), we conclude that 2.6(5,/rc)(rft/5')7/4 is <2 at angular 
distances S ^ 0!05. For a nominal core radius rc ~ 0!l-0!2, one concludes that rh ^ 10" and (cf. eq. [77]) 

MBH(in M15) < 104 Mq , 

in agreement with the earlier results (Bahcall, Bahcall, and Weistrop 1975). 

d) Velocity Dispersion and Line Profile 

The velocity dispersion is higher for stars that are in bound orbits close to the black hole since the potential 
energy increases approximately as r-1 near the center of the cluster. The velocity dispersion that one would expect 
to measure in a diaphragm of radius S centered on the black hole (cf. eq. [83]) is 

<^2> diaphragm 
Jo” dz Jo xdxn(r)\ ^2[A<0 + fE>o]d*v 

Jo” dz Jo xdxn(r)/ (/E<0 + fE>0)d
3v 

(88) 

where x and z have the meaning described before (eq. [83]) and n(r) is the undisturbed star distribution represented 
approximately by equation (84). Using the distribution function fE>0oz EVi, the Gaussian distribution function 
/E<0 of equation (50), and the relative normalization indicated by equation (61), one can show that 

(Vz ^diaphragm '\Av2'y 
Jo" dz\l xdxn[{l - P(5/2, o))e+a + 0.4(a)11'4] 

Jo” dz¡lxdxn{(\ - P(3/2, d))e+a + 1.1(a)7'4] 
In the above equation, a = rhjr and Pin, a) is the normalized incomplete gamma function of index n. 

(89a) 

P(n, a) = exp i—t)tn~1dt. (89b) 
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228 BAHCALL AND WOLF 

We have evaluated equation (89) numerically; the results for the calculated velocity dispersions are shown in 
Figures 3a and 3Z> for some typical cases. One can also derive an approximate analytic expression that provides 
a reasonably good representation (typically ~ 10% accuracy in the regions of interest) of the numerical calcula- 
tions. We find 

<^2> diaphragm ^ 
[0.9 + 3.5(rh/rcove)(rhlsyi±] 
[0.8 + 3.0(rhlrcore)(rJ*S')3/4] ^ ^ 

(90) 

We see from Figure 3 and equation (90) that there are appreciable effects (^ 50%) of the black hole on the 
velocity dispersion for ^ 2*S. 

Formulae (88)-(90) apply to the velocity dispersion of individual stars within a circular diaphragm of radius S. 
In practice, it may be easier to study the velocity dispersion as obtained from a series of open slit spectra placed 
close to or on the center of the globular cluster. The width of the slit, in the direction of the dispersion, would 
typically be of the order of the seeing disk, rs, while the length of the slit might be as large as rcore. We calculate 
below the velocity dispersion that would be observed with an “ideal” slit (width « length; no effects of seeing 
included) and indicate how these results might be used in practice. 

The velocity dispersion that would be measured with an ideal slit is 

/ 2\ J” dzn(r)\ [fE<0 +/£>oR2d3t> <^2>ldealSllt,d =      ^0n 

where 
r2 = z2 + d2 + y2 (92) 

¡Z dzn(r)j[fE<0+fE>0]d*v 

and d is the distance along the length of the slit from the center of the cluster and y(« d) is some “average” 
width of the slit. The integrations over velocity can be carried out analytically (cf. eq. [89a]), and the remaining 
one-dimensional integrations are simple to perform numerically. The results are shown in Figures 3c and 3d for 
some typical cases. An approximate analytic representation is 

1 + 0A5(rh/rc)(rh/dy * 
1 + 2A(rhlrc)(rhldyi\ ^ ^ 

(93) 

Note that Figures 3c and 3d, and equation (94), suggest that there is a 50 percent effect of the black hole on the 
velocity dispersion only when rh ~ lOd. 

There is no discrepancy between this result and the analogous relation given in equation (91) for a diaphragm. 
The integration over x (or equivalently, d) used to obtain the results for a diaphragm allow contributions from 
distances much closer to the black hole than the minimum diaphragm size, S( = rs). Since the velocity dispersion 
increases approximately as r-1 (see below), these closer contributions are weighted more heavily in the diaphragm 
average than are the outer contributions. In practice, a real slit spectrum will also contain contributions at a 
distance d from stars at closer separations because of seeing effects. For a slit spectrum atd~ rs, where the most 
critical information is obtained, the expected result is reasonably well approximated by the calculations described 
earlier for a diaphragm. For d » rs, one can use the results of Figures 3c and 3d, or equation (94), but must 
average them over seeing effects and the width of the slit. 

The one-dimensional velocity dispersion at a specified radius is given by the ratio of bracketed quantities in 
equation (89a). For some purposes, it is convenient to have an approximate analytic formula for the velocity 
dispersion of the bound stars; one finds 

<Vz2\tr ~ Tï<&v2y(rhlr), (94) 

for rh » r » rD. Near r = rD, the actual velocity dispersion may be of order a factor of 2 larger than indicated 
by equation (94). 

For possible applications, it is important to know if the velocity dispersions calculated above for a slit and a 
diaphragm are associated with a fairly “normal” line profile. The line profile can be determined from the follow- 
ing expression: 

where v± is the magnitude of the velocity perpendicular to the line of sight. The calculation of the line profile using 
equation (95) is complicated since one must use various ranges of integration depending on the relative sizes of 
r, rh, GMBnjvz

2, S, and rc. The final result must be obtained by one-dimensional numerical integrations. The re- 
sults are shown in Figures Aa-Ad for some typical cases. An expression for the line profile involving just one- 
dimensional integrals is given in Appendix A. 

It can be seen from Figures Aa-Ad that the expected velocity profile has broad wings; much of the calculated 
contribution to the velocity dispersion (eqs. [89]-[93]) comes from these wings. Since the measurement of wings 

Hy2, Mbh, S) = /0 J Jz J xdx^ [fE<0 + fE>0]vxdv1, (95) 
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Fig. 4.—The expected velocity profile as calculated for a diaphragm of radius S (cf. eq. [95] and Appendix A). The dots repre- 
sent the velocity profile in the presence of a black hole and the crosses represent the profile with no black hole present. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



230 BAHCALL AND WOLF Vol. 209 

in the velocity profile of an absorption line, or the detection of occasional high-velocity stars, is rather difficult 
observationally, we estimate a minimum detectable black-hole mass as given by (cf. Figs. 4 and Appendix A) 

Ot.min ~ 5rs, (96) 

where rs is the seeing disk. For rh ~ 5rs, there are appreciable differences between the expected velocity profile 
with and without a massive black hole present even at velocities ~ <2Ai;2>1/2. Note that the minimum mass detect- 
able spectroscopically depends linearly on the size of the seeing disk; number counts or intensity measurements 
depend instead on (see eq. [86]). 

One might hope to detect black-hole masses ^ 5 x 103 M0 with ground-based spectroscopic observations 
and masses as small as 5 x 102 M© with a Large Space Telescope. The above estimates are based on plausible but 
uncertain choices of the parameters (cf. eq. [77], <Ai;2)1/2 ~ 10 km s"1, rs ~ l" or 0''1, respectively, for ground 
or space observations). 

e) Location of the Black Hole 

A massive black hole should be close to the center of the star distribution in a globular cluster since this is the 
region of lowest gravitational potential. It is useful to estimate the mean distance, <r>, of a massive star (black 
hole or otherwise) from the center of the cluster; future X-ray observations might be able to distinguish between 
various models of the globular-cluster X-ray sources depending on the observed values of <r> (Clark 1975). A 
correct treatment of this problem would involve the solution of the appropriate Fokker-Planck equation for the 
probability distribution of r in the presence of both bound and unbound stars. Instead we present a simple esti- 
mate that ignores all unbound stars as well as the polarizing effects of the black hole on the surrounding stellar 
medium. This simplified treatment was developed in collaboration with A. Lightman. 

With the above-described approximations, the average separation of the massive object, Mx, from the stellar 
center is 

or 

drra exp (-Mx^(r)/M*<Ar2» drr2 exp ( - Mx<f>(r)/M*< Au2» 

where c/>"(0) is the Laplacian of the gravitational potential at the center of the cluster. 
For the unperturbed star-distribution given in equation (84), 

and 

so 

<f>(r) X —(6GMooie/rc)[l - 6-\r/rc)
2] 

<Au2> x 0.65GMcoJrc, 

<r> ~ 0.9rc(MJMx)112 ■ 
The standard deviation <(r — {r»2)1'2, is 

a«r>) = <r>((3*r - 8)/8)1/2 ss 0.42<r> . 

(97) 

(98) 

(99) 

(100) 

(101) 

(102) 

For all the globular-cluster X-ray sources that have been studied optically so far, rc < 5" (Bahcall 1976). Many 
models of these X-ray sources, including some involving binary systems, suggest that Mx > 10 M© and thus 
<Y> ^ 1". Therefore, these models predict that the X-ray source should be located at the center of the unperturbed 
star distribution within the foreseeable accuracy of the measurements. 

It is useful to rewrite equation (101) in terms of rh using equations (3) and (100). One finds: 

(ry X 0.6rh(Mc/Mx)[MJMx]112 . (103) 

For Mx < 102-5 M©, the X-ray source spends most of its time in regions where the stars are in thermal equilibrium 
with a kinetic temperature /cT* ~ M*<Ar2> and equations (97)-(103) are therefore reasonable approximations. 
For larger values of Mx, the above analysis is not applicable, but the correct values of <r> are too small to be 
measurable with known techniques. 

VI. LARGE STATISTICAL FLUCTUATIONS 

The total number of stars with r < ri « rh is, according to equations (77) and (82), 

N(r < r0 ss (40 stars)(r1/rft)
5/4[«o/5 x 104 pc-3][MBH/103 M©]3[100 km2 s~2/<Aî;2>]3 . (104) 
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The radius containing one star, on the average, is given by 

r* ~ (0.05rft)[«o/5 x 104 pc-3]-°-8[(103 M0/MBH) ' ‘ (105) 

Applications involving the use of our computed distribution functions in the region r ^ r* are numerically un- 
reliable since statistical fluctuations about the ensemble-average are likely to be large. 

VII. ACCRETION RATE 

Bahcall and Ostriker (1975) suggested that, among other likely processes, globular-cluster X-ray sources may 
be powered by accretion of matter from stars that are tidally disrupted by passage close to the black hole, a rate 
we calculate in § Hie, equation (65). For larger black-hole masses (AfBH > 103 Af0), the process of gravitational 
diffusion may be more important, especially when loss-cone effects are included. The accretion rate for gravita- 
tional diffusion is proportional to MBH

3 compared to MBH
4/3 for tidal disruption (cf. equations (62c) and (64) 

with equation (65)). 
The time for the mass of the black hole to double (from MBH to 2 MBH) by the accretion of tidally disrupted 

stars is 

* double, tidal 2 x (106) 

where we have indicated only the most important dependencies. A lower-limit time for doubling by gravitational 
diffusion can be crudely estimated from equation (62c) : 

^double, diffusion ~ 2 x 109 
yr 

/103 M0\ 2/5 x 104 pc~3\ 2 / <Ai;2>1/2 \ 9 
\ / \ «o / \10 km s-1/ 

(107) 

The estimate given in equation (107) may be one or two orders of magnitude too small if the actual diffusion rate 
is nearer that given by the numerical solutions of the time-dependent diffusion equation, cf. equation (64). The 
latter equation could be used to find an upper limit to the doubling time by diffusion. 

We are grateful to Karl Rubin for expert programming and mathematical assistance and to Y. Avni, F. Dyson, 
B. Flannery, J. Katz, A. Lightman, J. Ostriker, P. J. E. Peebles, W. Press, M. Rees, and M. N. Rosenbluth for 
valuable conversations and for suggestions that greatly improved various drafts of this paper. 

APPENDIX A 

The velocity profile defined by equation (95) can be written in a fairly simple form after carrying out some 
algebra. Let = <2Ai;2>1/2, rz = 2GMBBlJvz

2, r0 = 2GMBBl/v0
2, and 6(x) = 1 for x > 0 and 6(x) = 0 for x < 0. 

We assume, as a reasonable approximation, that n(r) = constant x 6(rc — r). As before, rc and S are, respec- 
tively, the unperturbed core radius and diaphragm size. One finds 

I = constantes + I2 + h + S + h), 
where 

h = [0(S - r>//3], 

/2 = [0(rz - S)/3]{6(rz - rc)[r* - (r2 - S2)*12] + 0(rc - rz)[r* - (r/ - S2)3'2]}, 

h = [ö(rc - r2)8/-o75]£ dyy3li(l - v^y/v0
2)5li^l - 6^y - j ^ | » 

h = {00c - f2)r0
3 exp [-(u>0)

2]}^ ^ ^dyy2 exp (j“1)!! - ’ 

and 

h = mr* - rMrz - S)r0
3/5] dyy^[l - fe/t>o)2j]5,4{l - o(y ~ [l - (^)2]1'2} ' 
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