
19
7 

6A
pJ

. 
. .

20
8 

. .
94

4C
 

The Astrophysical Journal, 208:944-954, 1976 September 15 
© 1976. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

CORRELATION ANALYSES OF MICROSTRUCTURE AND NOISELIKE INTENSITY 
FLUCTUATIONS FROM PULSAR 2016+28 

J. M. Cordes 
Department of Applied Physics and Information Science, University of California, San Diego 

Received 1975 March 27; revised 1976 February 16 

ABSTRACT 
Correlation analyses of pulses obtained at 430 MHz with 12 /¿s resolution show that the pulsar 

signal is accurately described as amplitude-modulated Gaussian noise. In the average auto- 
correlation function of many pulses, microstructure decorrelates at a 0.29 ms lag and is quasi- 
periodic with a 0.9 ms period. The microstructure in individual subpulses is usually quasi-periodic 
with a period that is usually in the range 0.6 to 1.1 ms. Microstructure that occasionally has 
periods between 0.3 and 0.5 ms tends to be weaker and is of shorter duration than the longer 
period microstructure. 

The hypothesis of D. C. Backer that there is a pulse to pulse correlation of the microstructure 
along a band of drifting subpulses was tested by computing cross-correlation functions of suc- 
cessive subpulses. Although average cross-correlations show no evidence of any such correla- 
tion, it does appear that the period of the quasi-periodic microstructure exhibits some pulse to 
pulse correlation in a few bands of subpulses. In general, the period changes markedly from 
pulse to pulse and between the subpulses in the same pulse. It is therefore implausible that stellar 
vibration, which has a 1 ms period and als damping time for a neutron star, is the cause of 
microstructure periodicities. 
Subject heading: pulsars 

I. INTRODUCTION 
Three categories of short-term temporal structure have been identified in pulsar signals. The mean pulse profile, 

obtained by averaging many pulses together, has an equivalent width of about 20 degrees of pulse longitude. 
Individual pulses generally show large deviations from the mean profile and are composed of subpulses and micro- 
pulses (microstructure) with typical widths of several degrees and several tenths of a degree, respectively. 

To date, most of the literature has been concerned with the properties of mean pulse profiles and subpulses. 
Microstructure has received comparatively little attention because the typical receiver bandwidths used allow 
sufficient dispersion distortion to conceal microstructure. Studies of individual pulses have been concerned with 
subpulse time scales, modulation indices, drift properties, and polarization (e.g. Lyne, Smith, and Graham 1971 ; 
Backer 1973; Rankin, Campbell, and Backer 1974; Taylor, Manchester, and Huguenin 1975). 

In order to study microstructure, dispersion distortion must be removed or observations must be made on low- 
dispersion pulsars at sufficiently high frequencies that distortion is minimal. Analyses of high-time resolution data 
include measurements of microstructure time scales by computation of intensity autocorrelation functions. 
Hankins’s (1972) analyses of PSRs 0950 + 08 and 1133 + 16 revealed 175 /xs and 575 ¿¿s microstructure time scales, 
respectively. Cordes and Hankins (1973) presented results for several other pulsars, including PSR 2016 + 28 which 
has a 290 /xs microstructure time scale at 318 MHz. Their results also showed that (1) not all pulsars studied have 
microstructure, (2) when present, the microstructure time scale is frequency independent, and (3) for PSR 1919 + 21, 
microstructure exists at 74 and 111 MHz but not at 318 MHz. Boriakoff’s (1973) correlation analyses verified 
some of these results and also revealed a quasi-periodicity, with period £ 0.9 ms, in the microstructure of PSR 
2016+28. 

Previous work suggests that subpulses are composed of micropulses. Hankins (1971a, b) discussed pulses of 
PSRs 0950 + 08 and 1133 + 16 which show micropulses as features within subpulse envelopes, although PSR 
0950+08 also exhibits occasional isolated micropulses. Backer (1973) first pointed out that the microstructure of 
PSR 2016 + 28 appears to be correlated between successive pulse periods as a subpulse drifts through pulse longi- 
tude. 

For signal processing purposes it is convenient to assume that subpulses and microstructure are multiplicatively 
related. This possibility was explored by Cordes (1975) who compared an empirical intensity model with intensity 
fluctuations of PSR 1919+21. The evidently accurate model represents a subpulse as a deterministic modulation 
of stochastic intensity variations that include microstructure. Rickett (1975) has proposed a more comprehensive 
model for the envelope of the undetected signal, which is referred to as amplitude-modulated noise (AMN). It 
depicts all pulse structures as envelopes of a complex, white Gaussian noise process whose correlation time is 
established by the reciprocal receiver bandwidth. 
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In the present paper the models of Cordes and Rickett are combined in order to explore the properties of 
microstructure and to test the AMN model for PSR 2016 + 28. The composite model is developed in the Appendix. 
In addition, autocorrelation functions (acf’s) and cross-correlation functions (ccf’s) of pulses are discussed to 
explore the subpulse-micropulse relationship and to test Backer’s hypothesis concerning the longevity of micro- 
structure. 

U. DATA REDUCTION 

Data were obtained at the Arecibo Observatory on 1973 June 26 at 430 MHz with a circularly polarized feed. 
The undetected signal from the 250 kHz bandwidth intermediate frequency amplifier was mixed to baseband by 
two local-oscillator signals whose phase difference was 90°. The resultant in-phase and quadrature signals were 
sampled at 4 /¿s intervals and written on magnetic tape. Subsequent processing at the University of California, 
San Diego, included removal of dispersion distortion by digital filtering (Hankins 1971a, £), detection, low-pass 
smoothing, and decimation in the computer to obtain 12 /¿s resolution. 

The set of 130 pulses contained 36 bands of drifting subpulses, the general properties of which may be seen 
in Figures la and lb where histograms of the band lengths and drift fates are shown. The drift rates were calculated 
from the medians of cross-correlation functions of contiguous pulses. Backer’s (1973) Figure 16 shows drift rates, 
plotted against the running band index numbers, with the same large variability as that in the histogram. Three 
representative bands, numbers 2, 12, and 15 in the set of 36, are shown in Figures 1c, Id, and le, which show 
prominent microstructure within the drifting subpulses^ These three bands were analyzed by correlation methods 
to test whether or not the microstructure is correlated along a band. 
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PSR 2016 
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(d) 
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Fig. 1.—(a) Histogram of numbers of pulses in drifting subpulse bands, (b) Histogram of subpulse drift rates, (c, d, e) Pulses 
of bands 2, 12, and 15 (dashed lines) obtained at 430 MHz. Dispersion distortion has been removed and postdetection smoothing is 
100 /xs. All pulses are plotted with the same height in order that microstructure be discernible. 
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III. CORRELATION ANALYSIS 

Intensity correlation functions of pairs of pulses were computed by multiplying discrete Fourier transforms of 
intensities, obtained by a [Fast Fourier Transform algorithm, and transforming the product back to the time 
domain. Processing with N point transforms yields N/2 lags of the correlation function. Details of this well-known 
method may be found in a review by Bergland (1969). 

When we denote the unnormalized correlation function of the ith and the (/ + &)th pulses as R7
(fc»i)(T)? the 

average, normalized correlation function is obtained according to 

= 2 Ri^'X-r)/j, [R^'KOW^^m112 , (1) 

where the k = 0 case is simply the autocorrelation function. The data correlation functions can be compared with 
those predicted by the amplitude-modulated-noise model. As shown in the Appendix, the kth correlation function 
is modeled as : 

ri(k\r) = rs(r)[l + m/W„(t)][1 + a8k0A(r)]/(l + m„2)(l + a') , (2) 

o 
Q> 

O 
O 

Frequency (KHz) 

Fig. 2.—(a) The average autocorrelation function (acf) of 130 pulses with 12 ^s resolution. All data within the pulse profile 
window were used in the calculation. The intersection of the dashed lines yields a 280 /ns time scale for the microstructure feature. 
An arrow designates an enhancement at 0.9 ms lag that is due to microstructure periodicity. The enhancement at 9.5 ms, labeled jP2, 
is due to the occasional presence of two drifting subpulses within the pulse window. H is the height of the zero-lag spike, H1 is a 
measure of microstructure strength. (Jb) The average acf computed by autocorrelating individual subpulses separately. The half- 
width at half-maximum of the broad portion of the acf, 3 ms, is a measure of the average subpulse time scale, (c) The intensity 
spectrum, which is the Fourier transform of the acf in Fig. 2b. The narrow low-frequency feature is due to subpulses. The 
feature at 1.1 kHz is due to microstructure periodicity. The dashed line is a fit to the microstructure portion of the spectrum used 
to extrapolate high frequencies to low frequencies, (d) The microstructure autocovariance multiplied by the subpulse autocorrela- 
tion, obtained from the spectrum in Fig. 2c by removal of the subpulse feature of the spectrum. The half-width at half-maximum, 
designated rß in the text, is 160 fts. 
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where rs is the acf of the subpulse modulation, is the normalized autocovariance (acv) of microstructure, is 
the microstructure modulation index (ratio of standard deviation to the mean), A(r) is a one-sample-wide spike 
whose properties are defined in equation (A3), âk0 is the Kronecker delta, and a is related to the noise statistics. 
The derivation of equation (2) assumes that subpulses modulate a microstructure random process that is statistically 
stationary. Subpulses are assumed to be perfectly correlated from one pulse to the next. Microstructure and noise 
are assumed to be completely uncorrelated between pulses, as provided for by the Kronecker deltas in equation 
(2). The model ignores the shape of the average-pulse profile and thus implicitly assumes that subpulses and 
microstructure are gated by a rectangular longitude window. The effects of this assumption will be discussed 
below. For details refer to the Appendix. 

a) The Intensity Autocorrelation Function {acf): Ä: = 0 

Two average acf’s were computed from the data. The first computation used all data within the window de- 
scribed by the average pulse profile. The second was obtained by separately autocorrelating each subpulse in the 
profile window. Both were normalized according to equation (1). These acf’s, shown in Figures 2a and 2è, contain 
a wealth of information about temporal structure of the pulses. Features include (1) the zero-lag spike whose 
height, H = 0.230 ± 0.005, is directly comparable with that predicted by the AMN model; (2) a narrow micro- 
structure feature of width 280 ^s, a time scale obtained from the intersection of two straight lines fitted to the acf ; 
a slight enhancement of the acf at ~0.9 ms, first pointed out by Boriakoff (1973), is due to the quasi-periodicity 
of the microstructure; (3) the microstructure feature has a height H1 from which a value of m» can be obtained; 
(4) a wide subpulse feature has a half-height width of 3 ms; (5) a small correlation enhancement at roughly a 9.5 
ms lag is P25 the intrapulse separation of drifting subpulse bands. 

The AMN model predicts that the acf has a zero-lag spike of height 

^ = (« + iS)/(y-
1 + a + i8), (3) 

where ß is a measure of the signal-to-(off-pulse) noise ratio, and y is a parameter of the low pass filter. If the modu- 
lated noise of the model has complex Gaussian statistics, the detected noise will be a chi-squared random variable 
with two degrees of freedom whose modulation index is unity. The parameter a is the square of the modulation 
index, and thus a = 1 for complex Gaussian noise. A test of the AMN model can be made by comparing the 
unity value of a with a value deduced from the data by solving equation (3) for a : 

a = H!y{\ -H)-ß. (4) 

The smoothing filter used on the data had weights proportional to the elements of the fifteenth row of Pascal’s 
triangle, for which y = 0.145; ß was measured to be 1.04 ± 0.05; equation (4) then yields a = 1.02 ± 0.05, where 
the error is related to errors in estimates of H and ß. These data are therefore consistent with noise in the AMN 
model having complex Gaussian statistics. 

The microstructure modulation index, raw, can be calculated from the height of the microstructure portion of 
the acf,/fi, as designated in Figure 2a: 

*V= {Hr'll + y(a + ß)]-' - l}-1/2 . (5) 

With Hi ä 0.18 we obtain mu # 0.50. 
In principle the microstructure autocovariance, /oM(r), could be acquired by division of the intensity acf by 

rs(r). Although an estimate of rs(r) is obtainable from cross-correlations, division by it would generate large 
errors in the quotient because of random fluctuations in the estimate. An alternative procedure that did not rely 
on any auxiliary correlation function was used to obtain the product /)w(r)rs(r), a quantity that is nearly as in- 
formative as Pu{t). The spectrum, shown in Figure 2c, is the Fourier transform of the acf in Figure lb. The broad, 
subpulse acf appears as a narrow, low-frequency spectral feature and can be removed from the spectrum by extrap- 
olating the high-frequency microstructure portion of the spectrum to the low frequencies. The extrapolation was 
performed by fitting an exponential to the microstructure spectrum, which appears as the straight line in the log- 
linear plot of Figure 2c. Transformation back to the time domain yields the product p^rfr) shown in Figure 
2d, The quasi-periodicity is revealed with a period = 0.9 ms and 0.05 correlation coefficient at a 0.9 ms lag. 
The periodicity also appears in the power spectrum as a feature at 1.1 kHz. Also shown in Figure 2d are measure- 
ments of the correlation time; the half-width at half-maximum, designated r^, is 160 /¿s and should be distinguished 
from the 280 /¿s value acquired from the intersection of lines fitted to the acf. 

Autocorrelation functions of individual pulses indicate that all parameters of the microstructure vary consider- 
ably between pulse periods and between drifting subpulse bands as well. The acf’s for bands 2, 12, and 15 are 
shown in Figure 3 with their corresponding autocovariances. Table 1 lists parameters of the microstructure for 
the three bands and the average over 36 bands. Of interest is the value of pfj) at a lag equal to PM which is the 
height of the quasi-periodic lobe relative to the central lobe. This height is as large as 0.4 for band 15 and is zero 
for band 12. The average value is 0.05. 
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Fig. 3.—(a, b, c) {upper) The average autocorrelation functions of subpulses in drift bands 2,12, and 15. {lower) The corresponding 
microstructure autocovariances, obtained as in Fig. 2d. 

The acf’s of individual subpulses generally show quasi-periodicities if the microstructure is strong, and often 
as many as 5 to 10 cycles of the periodicity are evident. About 60 percent of the subpulses show periodicities with 
the criterion that at least two cycles of the periodicity be discernible. A histogram of the periods in Figure 4 shows 
the wide range of periods. Generally, the subpulses with the strongest microstructure and the most obvious 
periodicities have values of P„ that fall into the range 0.6-1.1 ms. In Figure 5 we show the acf for a pulse that has 
10 cycles of a periodicity with period # 0.62 ms. The weakness of the periodicity in the average acf is evidently 
due to the wide range of periods. Short-period periodicities are occasionally apparent in a range ~0.3-0.5ms; 
the associated microstructure tends to be weaker and narrower than the longer-period microstructure. 

Along a band of drifting subpulses, usually varies over the whole range from pulse to.pulse. The micropulses 
in band 12 have discernible periodicities in only the second through fourth subpulses with values 1.7, 0.5, and 2.2 
ms, respectively. Band 2 has values over a narrower range, however: 0.81, 0.75, 0.82, 0.73, 0.70, and 0.96 ms for 
subpulses 1 through 6. Band 15 has the smallest variation of PM: 0.95, 0.96, 0.84, and 0.94 ms. Thus it appears that 
the mechanism that causes the microstructure periodicity may have pulse to pulse memory. For pulse periods 
in which there are two drifting subpulses, there does not seem to be any correlation of P„ between the two subpulses. 

b) Intensity Crosscorrelation Functions (ccfs): A: # 0 

Two kinds of average (over all bands) ccf’s were obtained. The first was simply the sum of the ccFs for individual 
bands. The second was computed by finding the median, or center-of-area, of each band’s ccf, shifting the ccf to 
center on zero lag, and then adding it to the average. The resultant ccf’s are shown in Figure 6 for a one-pulse- 
period separation, labeled unshifted and shifted. From the unshifted ccf, an average value of the subpulse drift 

TABLE 1 
Microstructure and Subpulse Correlation Parameters 

T n Pn Tg 
acf 0*s) 0«) (ms) '•s(P(1)pll(P(,) 

Band 2  160 ± 10 860 ± 30 0.35 ± 0.03 3.6 0.30 
Band 12  160 ... 0.38 3.1 
Band 15  160 900 0.60 2.4 0.40 
Average (36 bands)  160 900 0.55 3.0 0.05 
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Fig. 4.—A histogram of the period Pß of quasi-periodic microstructure 

rate, 2.6 ms per period, was calculated from the ccf median. The shifted ccf is slightly narrower and has slightly 
greater peak correlation than the unshifted ccf. The maximum shifted correlation, 0.57, yields another estimate of 

from 1/(1 + m^Xl + a) = 0.57. The result, mß = 0.60, is 8 percent larger than the value obtained from the 
acf. Similar ccf’s for larger pulse-period separations have the same 0.57 peak correlation, which suggests that the 
discrepancy in mu is probably due to slight subpulse decorrelation that is induced by the mean-intensity profile, 
whose influence has been ignored in the analysis. Thus subpulses do not decorrelate in time (measured by pulse 
number) along a band. Rather, subpulses decorrelate as they drift in pulse longitude and feel the effects of the 
longitude-dependent pulse profile. No decrease of the ccf peak from 0.57 is observed with increasing value of k 
because each ccf is computed from pairs of subpulses that are distributed over all of the pulse profile; thus the 
effects of the average profile are integrated out as far as the ccf’s are concerned. 

c) Microstructure Correlation 

Neither of the ccf averages in Figure 6 shows any microstructure feature that is similar to the acf feature. Thus 
either microstructure is not correlated between pulses or the averaging processes obliterate a feature that is there. 

Fig. 5.—The autocorrelation function of a single pulse that has quasi-periodic microstructure with period = 0.624 ± 0.02 
ms. The tenth cycle of the periodicity in the acf is indicated by the arrow. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
8 

. .
94

4C
 

950 CORDES Vol. 208 

Fig. 6.—{upper) The average cross-correlation function (ccf) of subpulses separated by one pulse period, computed by simple 
averaging of ccf’s of individual bands, {lower) The average ccf for one pulse period computed by first shifting individual band 
ccf’s according to their median lags. 

To test the hypothesis of pulse-to-pulse correlation of microstructure, ccf’s for individual subpulse bands must be 
considered. The ccf’s of bands 2, 12, and 15 are shown in Figure 7 for 1, 2, and 3 pulse-period lags. The ccf’s for 
bands 2 and 15 show quasi-periodic fluctuations with period # 0.9 ms, while those for band 12 show structure- 
less fluctuations. 

One step in testing whether or not microstructure is correlated is to compare the amplitudes of ccf ripples with 
those predicted by the intensity model. Any ccf computed from a finite number of pulses will contain fluctuations 
with microstructure time scales, even if microstructure is uncorrelated. The amplitudes of the fluctuations are 
estimated in equation (A20) in terms of tu, and rs assuming that microstructure is aperiodic or that periodicities 
in different pulses are incommensurate. When we used values of these parameters particular to each band, error 
limits corresponding to 2 a were computed for the peak correlation region of the ccf’s. Referring to Figure 7, it 

Lag (ms) 
Fig. 7.—{a, b, c) Cross-correlation functions of pulses in subpulse bands 2, 15, and 12 for 1,2, and 3 pulse period lags. The error 

bars (2 a) represent expected ripple amplitudes calculated from a model that assumes microstructure is aperiodic and strictly 
uncorrelated between pulse periods. 
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can be seen that the fluctuations for band 12 are well within the error limits, those for band 2 are marginal, while 
those for band 15 are larger than the limits, albeit by a small amount. 

If the subpulses in a drift band contain quasi-periodic microstructure with the same period, then different error 
limits on the ccf ripple must be considered. The size of the ripples will depend on if the phase of the periodicity 
with respect to the centroid of the subpulse is correlated between pulse periods. If so, then the ccf ripples will have 
about the same amplitude as the size of the lobe at lag Pw in the acf. If not, ripples in a ccf that is the average of 
several single-pair ccf’s should be smaller than the acf lobe, and the ripples will not show a clear periodicity. 

In Figure 7 we see that the ripples in the ccf’s for bands 12 and 15 are indeed of the same amplitude as the acf 
lobe. Any conclusions based on this evidence must be drawn carefully because the ccf’s are sums of only a few 
pulse-pair ccf’s (for band 15 the ccf for a three-period lag was computed from only one pair of pulses). 

Finally, we point out additional evidence that the phase of the microstructure periodicity might be correlated 
between pulse periods. In Figure 7 arrows designate the medians (the centers of area) of the ccf’s. For band 15 
it appears that in all three ccf’s, a low point in the ripple is consistently close to the median, suggesting that the 
phase of the ripple in the subpulse is maintained over several pulse periods. 

We hesitate to conclude with any great confidence that the phase of the microstructure periodicity is “rigidly” 
attached to the drifting subpulse over several pulse periods’ duration. Any such rigidity implies a resonance Q 
of at least Pi/P# ä 557 ms/0.9 ms £ 600. Obviously, a larger sample of pulses with more sophisticated statistical 
tests is required to make any strong conclusion on this very important question. 

IV. DISCUSSION AND CONCLUSIONS 

We conclude that microstructure is weakly correlated from pulse to pulse in the sense that it can be quasi- 
periodic with a period that is maintained for several stellar rotations. Moreover, the data suggest that the reference 
phase of the quasi-periodicity is attached to the drifting subpulses and also may be correlated from between pulse 
periods. In general, however, microstructure is uncorrelated between successive subpulses and between subpulses 
within the same pulse. 

If radio emission from pulsars is due to curvature radiation from the polar region of a skewed dipolar magnetic 
field, then any pulse to pulse memory of microstructure, as well as of subpulses, must be in the current injection 
process; the radiating particles themselves escape from the velocity of light cylinder in less than a rotation period. 
It is tempting to associate the ~ 0.9 ms period of quasi-periodic microstructure with stellar vibrations which have 
similar periods and are damped on 1 s time scales due to gravitational radiation (Cameron 1970). This interpreta- 
tion is implausible, however, because the microstructure period is not the same between neighboring subpulses 
whose separation is ~ 10 ms. 

It is well known that pulsar radiation must be due to coherent processes because of the high inferred brightness 
temperatures of the radiation (^ 1031 K). That the signal for PSR 2016 + 28 conforms to pulse-modulated Gaussian 
noise implies that the radiation is incoherently added before it is recorded. Incoherent addition occurs in a receiver 
system with bandwidth Av because the signal is convolved in the time domain with a function of width (Av)_1. 
Interstellar scattering adds radiation over a time Tiss because of differential propagation times. Incoherent addition 
may also occur in the pulsar if many independent emission regions contribute to the instantaneous signal. 

To facilitate discussion of the noise statistics, we shall characterize the intrinsic wide-band pulsar radiation as 
amplitude-modulated shot noise. Shot noise (Papoulis 1965) is a sequence of narrow pulses whose occurrence 
times are Poisson distributed with mean density r¡ which has units of inverse time. The spectrum of pulsar radiation 
typically extends to a few times 109 Hz and is thought to be related to the size of bunches of particles. A single 
bunch will radiate a shot pulse whose duration is on the order of a nanosecond, the inverse of 109 Hz, and thus we 
consider the radiation to be a sequence of shot pulses. 

It can be shown (Cordes 1976) that the modulation index of shot noise (without any amplitude modulation) in a 
narrow-band receiver is 

^n=(l +<an
4>/<an2>W/2

5 (6) 

where an is the amplitude of a shot pulse. Since the intensity is proportional to the square of the number of particles 
in a bunch (Ap), we have an

2 cc Nc
2. The number of incoherent additions in the receiver resolution time is # 

77A. Thus a unity value of mn, which applies to Gaussian statistics, requires that 

<Ac
4>/<Ac

2)2Aj « 1 (7) 

or that 

^/^o2)«^1'2 (8) 

where (tn2 is the typical variation of the square of the number of particles in a bunch. 
For the case of PSR 2016 + 28 at 430 MHz, rlss # 2 /¿s, a value calculated from the measurements at various 

frequencies of the scintillation decorrelation bandwidth (Sutton 1971). Thus the relevant time scale for considering 
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incoherent addition is the effective receiver resolution of 12 /¿s because it is larger than ^iss. It is possible that wide 
bandwidths and high frequencies (such that Tiss is small) would reveal a violation of equation (7) and therefore 
provide information on the number of particles in a bunch. However, it is also possible that the shot noise density 
may be so large, due to the particle environment in the emission region, that equation (7) is always satisfied. 

I would like to thank T. H. Hankins for his discussions and guidance with the observations. Helpful discussions 
with W. A. Coles and B. J. Rickett are also gratefully appreciated. This work was supported by the NSF through 
grant MPS 71-03377-A02. The National Astronomy and Ionosphere Center, Arecibo Observatory, is operated 
by Cornell University under contract with the National Science Foundation. 

APPENDIX 

CORRELATION FUNCTIONS OF AMPLITUDE MODULATED NOISE 

The amplitude-modulated noise (AMN) model formulated by Rickett (1975) is a statistical representation for 
the undetected narrow-band pulsar signal after dispersion distortion has been removed. Hankins (1971) and Rickett 
(1975) have described in detail the data acquisition and dispersion removal techniques. Basically, the signal from 
the receiver with center frequency v0 and bandwidth Av is shifted to zero center-frequency. The resultant signal 
has bandwidth Av/2 and is complex: in-phase and quadrature components of the signal are required for its com- 
plete description. A complex dispersion-removal filter is then applied to the baseband signal to obtain the signal 
of interest. 

The complex signal is not statistically stationary; the AMN model represents it as the product of stationary 
and unstationary parts : 

y(t) = a(t)n(t) , (Al) 

where a(0 is a real stochastic amplitude function and n(t) is complex, zero-mean, white Gaussian noise. The 
statistics of n(t) are described by the two second moments 

(n(t)n(t + r)> = 0 , (n(t)n*(t + r)> = an
2A(r) (A2) 

where the asterisk denotes complex conjugation and A(r) has the properties 

A(0) = 1 , J cItA(t) = A , (A3) 

A(r) is the autocorrelation function of the noise process; it has a width A and is the autocorrelation of the impulse 
response of the receiver. It is assumed that sampling is at the Nyquist rate, such that the sample interval, A, is 
equal to the reciprocal bandwidth. These properties of A(r) allow use of continuous functions while retaining the 
properties of sampled data. 

The detected signal is the intensity 

7(0 = A(t)N{t) , (A4) 

where A{t) = a2{t) and N{t) = |«(0|2- Separate realizations of this random process will be treated as individual 
pulses in correlation analyses. The ensemble-average correlation function of the ith and (/ + fc)th realizations is 
defined as 

+ T)ii+k(t)y, (as) 

where the angular brackets denote ensemble average. The normalized correlation function is 

r/fc>(r) = ^(rViîXO) . (A6) 

Note that the superscript's suppressed in the A: = 0, or autocorrelation, case. We will also consider acf’s of other 
functions, f(t), which will be denoted Rf{r) and will be defined as in equation (A5) with A: = 0. 

The amplitude function, A(t), contains contributions from subpulse and micropulse intensity variations. A(t) 
will be modeled as the product of a nonstationary subpulse part, S{t), and a stationary microstructure part, ii(t) : 

A(t) — S(t)[x(t) . (A7) 
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It is convenient to describe ix(t) by its modulation index, and its autocovariance (acv), ^(r), the latter being 
the acf of only the varying portion, /¿(/) — With m» defined by 

m»2 = [<A0> - <K0>2]/</40>2, (A8) 

the acf of /t(?) can be written as 

rÁT) = O + "î«2P«(t)/(1 + ™«2) • (A9) 

To obtain a final expression for the correlation functions, it will be assumed that subpulses are perfectly cor- 
related, and the microstructure and noise uncorrelated, between different realizations. Thus we obtain 

r/^r) = rs(r)[l + w„2Sko/>M(T)][l + a'SkoAir)]/^ + m/)(l + y) , (A10) 

where 8k0 is the Kronecker delta, rs(r) is the subpulse acf, and a is related to the signal’s noise statistics, as dis- 
cussed below. 

a) The Intensity Autocorrelation 

Before a comparison of the model with the data can be made, the effects of smoothing and additive noise must 
be considered. If the intensity is smoothed by convolution with an impulse response, h(t), which is defined to 
have unit area 

J <#/j(0/A = 1 , (All) 

the mean intensity is unchanged but the variance is reduced by a factor y < 1 : 

y =| dth2(t)/A . (A 12) 

The undetected signal is contaminated by additive system noise whose statistics can be measured from off-pulse 
data. A parameter of interest is the intensity signal-to-noise ratio integrated over the mean intensity profile : 

ft/K/WWoff) (A13) 
Jo 

where </0ff> is the off-pulse mean intensity. The analysis assumes that the off-pulse mean has been subtracted to 
obtain /(¿). The off-pulse noise contributes only a zero-lag spike to the intensity acf, whose height is, if there is 
no smoothing, 

ß = </off>
2(l + 2Í)/Ra(0) • (A 14) 

If data are smoothed, the spike height is reduced by a factor y. With these definitions the parameter a in equation 
(A10) can be written as 

a = y(a + ß) , (A 15) 

where a = 1 for complex Gaussian noise. 
The intensity acf thus contains a zero-lag spike of height 

H = a'/(l a'). (A16) 

The AMN model can be tested by comparing the predicted height with that in correlation functions of data. 
Equivalently, a value of a estimated from the data 

a = H/y(l - H) - ß (Al7) 

can be compared with the unity value of the model. 

b) Intensity Crosscorrelations 

The model thus developed predicts that the ensemble average ccf’s are the same for any k ^ 0. With Æ = 1, 
for example, we have 

>V(1)M = rs(r)/(l + m/)(l + a’) . (A18) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
8 

. .
94

4C
 

954 CORDES 

Subpulse drift has not been explicitly included because it merely shifts the ccf to a central lag of Dk, where D is 
the drift rate in time-per-pulse periods. The ccf’s readily yield the microstructure modulation index from the maxi- 
mum correlation. 

The model ccf’s are to be compared with estimates of ccf’s from a finite number of pulses. The estimated ccf’s 
will contain fluctuations due to the stochastic variations of intensity. Since the ultimate goal of the analysis is to 
decide whether or not microstructure is correlated between successive pulses, a comparison should be made be- 
tween the ccf fluctuations in the data with those predicted by the model. To this end, we compute the ccf variance 
as a function of r : 

K(t)]2 = r-1 f dt[Ilr)Ii+k(t + T)- iV1^)]2/^)]2 . (A 19) 
Jo 

Of special interest is the zero-lag variance due to microstructure fluctuations only. If we assume that S(t) is de- 
terministic, that the width of pjj) is much narrower than that of S(t), and that mu

2 « 2, the zero-lag microstruc- 
ture variance can be estimated from 

K(0)],2 =M*Tßl2U*(l + m„2)(l + a'K, (A20) 

where Tß and rs are representative widths of the microstructure and subpulse acf’s. If the ccf is estimated from n 
pairs of pulses, the variance is reduced by a factor n~1. 

REFERENCES 
Backer, D. C. 1973, Ap. 182, 245. 
Berland, G. D. 1969, IEEE, Spectrum, 6, 41. 
Boriakoff, V. 1973, Ph.D. thesis, Cornell University. 
Cameron, A. G. W. 1970. 
Cordes, J. M. 1975, Ap. /., 195, 193. 
 . 1976, ibid., in press. 
Cordes, J. M., and Hankins, T. H. 1973, Bull. AAS, 5, 

18. 
Hankins, T. H. 1971a, Ap. J., 169, 487. 
 . 19716, Ph.D. thesis, University of California, San 

Diego. 
 . 1972, Ap. J. {Letters), 177, Lll. 

Lyne, A. G., Smith, F. G., and Graham, D. A. 1971, 
M.N.R.A.S., 153, 337. 

Papoulis, A. 1965, Probability, Random Variables and 
Stochastic Processes (New York: McGraw-Hill). 

Radhakrishnan, V., and Cooke, D. J. 1969, Ap. Letters, 3, 
225. 

Rankin, J. M., Campbell, D. B., and Backer, D. C. 1974, 
Ap. J., 188, 609. 

Rickett, B. J. 1975, Ap. J., 197, 185. 
Sutton, J. M. 1971, M.N.R.A.S., 155, 51. 
Taylor, J. H., Manchester, R. N., and Huguenin, G. R., 1975, 

Ap. J., 195, 513. 

Note added in proof.—A paper by V. Boriakoff recently (August 15) appeared in Ap. J. {Letters) which also 
discusses the microstructure of pulsar 2016 + 28. 
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