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ABSTRACT 

Returning radiation is radiation emitted by an accretion disk which returns to its surface due to 
gravitational focusing or the shape of the disk. While it is unimportant for thin disks around non- 
rotating black holes, returning radiation will have significant effects on the structure and appear- 
ance of thin disks around rotating holes with ajM æ 1. We calculate the flux of the returning 
radiation as a function of radius for a/M = 0.9, 0.99, 0.9981, and 0.9999, treating the propaga- 
tion of the radiation by general-relativistic geometric optics and treating the disk as thin. We 
also consider the effects of returning radiation on the spectrum of an accretion disk seen by a 
distant observer. The spectrum will be modified by the returning radiation at photon energies 
greater than about lOkeV and less than about 10 eV. The notch at lOkeV in the “pre-transi- 
tion” spectrum of Cyg X-l might be a “signature” of returning radiation. 
Subject headings: black holes — X-rays: sources 

I. INTRODUCTION 

Not all the radiation emitted by an accretion disk around a black hole escapes to large distances: some of it 
goes down the hole and has an important effect on the way the hole evolves (Thorne 1974); some of it returns 
to the surface of the disk, where it is reabsorbed or scattered. In this paper, we calculate the flux of the returning 
radiation in a steady-state, very thin accretion disk.1 In such a disk the flux of locally generated energy, measured 
at the surface of the disk in the rest-frame of the accreting gas, is determined by conservation laws and does not 
depend upon the poorly understood properties of the accreting gas (Page and Thorne 1974). 

If the disk is thin, the flux of the returning radiation may be determined solely from the distribution of the 
locally-generated energy, by using geometric optics to follow photons in the gravitational field of the hole. Thus, 
the flux of the returning radiation will also be independent of the properties of the accreting gas. In a steady-state 
disk, the flux of radiation emitted from a point on the disk’s surface must equal the sum of the fluxes of the 
locally generated energy and the returning radiation. Thus, returning radiation will have important effects on 
the appearance of the disk if the flux of returning radiation is comparable to the locally generated energy. 

In § II we calculate the returning flux in the inner disk, where radiation returns due to gravitational focusing. 
The returning flux exceeds the locally generated flux near the inner edge of the disk, where energy generation in 
the disk ceases and the gas begins to plunge into the hole. There the returning radiation affects the structure of 
the disk : the inner radius shifts to larger radii when effects of returning radiation are considered. 

In § III we calculate the effects of the returning radiation on the outer disk, where radiation returns due to the 
flared shape of the disk. Shakura and Sunyaev (1973) observe that, since the disk is flared, the returning flux 
must exceed that generated locally at sufficiently large radii. The Doppler effect and gravitational focusing concen- 
trate the radiation from the inner disk toward the equatorial plane, which increases the returning flux (Cunning- 
ham 1975). The heating of the outer disk by the returning radiation has important effects on its structure at large 
radii (r ^ 104 M). 

In § IV we consider the effects of returning radiation on the observed spectrum of the disk. Returning radia- 
tion which is scattered by the disk will add a high-energy component to the spectrum, and this might explain the 
notch at 10 keV in the “pre-transition” spectrum of Cygnus X-l. The heating of the outer disk greatly changes 
the spectrum at energies below about 10 eV. 

* Supported in part by the National Science Foundation [MPS 75-01398]. 
1 The standard, Newtonian model of such disks has been developed by Lynden-Bell and Rees (1972), Pringle and Rees (1972), 

and Shakura and Sunyaev (1973). Relativistic effects on the disk structure are analyzed by Novikov and Thorne (1973) and Page 
and Thorne (1974). This model has been successful in explaining certain features of the observed spectrum of Cygnus X-l (Thorne 
and Price 1975; Eardley, Lightman, and Shapiro 1975). 
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RETURNING RADIATION IN ACCRETION DISKS 535 

II. RETURNING RADIATION IN THE INNER DISK 

Assume that the inner disk lies in the equatorial plane of the black hole, and is thin and (when time-averaged) 
axisymmetric and in a steady state.2 

Gas in the disk flows nearly along circular geodesics, spiraling slowly inward and losing energy and angular 
momentum until it reaches the inner edge of the disk; then it plunges into the hole, losing little more energy or 
angular momentum. Thus, at the inner edge, energy generation becomes negligible. However, for reasonable 
values of the accretion rate, the gas inside the inner edge remains optically thick to electron scattering and shines 
due to returning radiation and its own internally stored energy. In the standard model, the inner edge lies at the 
radius of marginal stability for circular geodesics; we shall find that it lies at a slightly different radius when 
returning radiation is considered. 

We find the returning flux at a point of the surface of the disk by following the returning photons back to their 
sources. This process is described in detail in Cunningham (1975) (hereafter, Paper I), where we discuss the ap- 
pearance of the disk to a distant observer, a closely related problem. As in equation (12) of Paper I, we may 
express the flux F0 (ergs s-1 cm-2) of the returning radiation across the disk’s surface, as measured by an ob- 
server at rest with the accreting gas at radius r0, as an integral of the observed intensity I0 (ergs s_1 cm-1 sr-1) 
over solid angle Q. Geometric optics relates I0 to the intensity Ie of the radiation, measured in the rest frame of 
the gas which emits it. The integration over solid angle may be expressed as an integration over the redshift of 
the returning radiation and its radius of emission re. Thus, 

F0(r0) = J cos n0I0dil 

= J 77-1 eos n0g
ilFe{re)[dQ,lë{g, re)]dgdre, (1) 

where g is the ratio of observed to emitted energies of returning photons [g = (1 + z)-1 and I0 = g4/e, where 
z is the redshift, defined in the usual manner] ; [dQ./d(g, re)]dgdre is the solid angle observed for a bundle of pho- 
tons from re in dre with g in dg; and n0 is the angle between the disk’s surface normal e(z) and the direction of 
the incoming photons, as measured by the observer. The function / relates the emitted intensity Ie to the emitted 
flux Fe: 

Hre, ne) = Trle(re, ne)/Fe(re), (2) 

where ne (a function of g and re) is the angle from the surface normal at which the radiation is emitted. Thus, / 
equals unity for isotropic emission; / ^ i + f cos ne for the limb darkening characteristic of an electron-scatter- 
ing atmosphere (Chandrasekhar 1950). The emitted flux Fe will be the sum of the locally generated flux Fg and 
the flux returning from other parts of the disk F0: 

Fe = F0 + Fg . (3) 

Since the returning radiation carries angular momentum, it exerts a torque on the gas that absorbs it. This 
torque must be counterbalanced by viscous stresses in the disk. Hence, returning radiation will influence the 
radial structure of the disk, including the rate of energy generation. Equation (4), which is derived in the Appendix, 
relates Fg to FgO, the flux of the locally generated energy in the absence of returning radiation, and r(<z,)(2), a com- 
ponent of the stress tensor of the returning radiation at the disk’s surface: 

Fg{re) = Fg0(re) - Fg0(rin) - (3/2)M1/2rr7/2^-1 P ^T^r^dr, (4) 
in 

where rin is the radius of the inner edge of the disk and ^ and @ are functions of r, which approach unity for 
r » fms (eqs. [A7] of Appendix). 

The stress r(<p)(2) may be expressed as an integral of the returning radiation over solid angle (see Misner, Thorne, 
and Wheeler 1973, chap. 22): 

= cos ifj0 cos nJodCl 

= J TT"1 cos to cos n0g
il[Fg(re) + F0(re)][8Q.ld(g, re)]dgdre, (5) 

2 These are the assumptions of the standard model (Page and Thorne 1974). However, Eardley, Lightman, and Shapiro (1975) 
find that the innermost regions of the disk may be geometrically thick, in which case this study would need revision. Bardeen and 
Petterson (1975) consider disks not in the equatorial plane of the hole—but find that the inner regions of such disks (r < 103 M) 
are pulled into the equatorial plane by “dragging of inertial frames” and viscosity. The effects of the returning radiation in the 
outer regions of such disks would be substantially different from those described here, however. 
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where is the angle between the direction of the incoming photons and the direction of motion e{(P), as measured 
by the observer at rest in the accreting gas. The vectors e(<p) and are two of the basis vectors of the observer’s 
rest frame; the full orthonormal tetrad is given by Novikov and Thorne (1973). 

Henceforth, it will be convenient to use dimensionless quantities representing the radius, the fluxes, and the 
stress: 

r* = r/M, (6a) 

y=(r/r+)-\ (6b) 

/ = F/F* , (6c) 

j = T^jP* , (6d) 

F* = {l>ßiT)KiQMr~:i = (0.6 x 1026 ergs s-1 cm-2)ilÿ0*.M*-2r*-3 , (6e) 

=^o/(1017gs-1) (6f) 

M* = M/3Mq , (6g) 

where r+ is the radius of the event horizon and tif0 is the accretion rate. We shall find that f0 and fg are slowly 
varying functions of radius and are of order unity in the inner disk. At large radii fg equals unity: Fg = F*. 

We define Tf and Ts, the flux and stress transfer functions: 

Tf(r0, re) = (ln) ~ 1r+ ~2r0
3 J cos «„g4/[dCl/d(g, re)]dg, (7a) 

Ts(r0, re) = (2n)~1r+ “2r0
3J cos >p0 cos n0g

il[ôü/8(g, re)]dg . (7b) 

The integrations over g include all radiation emitted at re and returning at r0; and iff0 and n0 are functions of r0 
re, and g determined by the geometric optics of the rays connecting re with r0. The method used to evaluate these 
transfer functions is described in the appendix to Paper I. 

In terms of the dimensionless parameters and the transfer functions, equations (1), (4), and (5) become 

/oOo) = Í Tf(y0, ye)[f„(ye) + fg(ye)]dye, (8a) 
Jo 

-3 fVin 
Uvo) = fMo) - fMin) - z (rJMy^y^-1 S)msy~1dy, (8b) 

Jy0 

s(y0) = f rs(yo, ye)[fo(ye) +/g(ye)]dye. (8c) 
Jo 

The generated flux in the absence of returning radiation fg0 is easily calculated. In fact,/^ may be expressed ana- 
lytically (Page and Thorne 1974). Thus, once the transfer functions are known, the equations (8) determine /0 
and/3 implicitly. We convert them to a system of simultaneous linear equations: 

fo = Tr(fg +/0), (9a) 

fg=fg0-A-s, (9b) 

* = 7>(/9+/0). (9c) 

Here, f0, fg, fga, and s are «-tuples of the values of f0,fg,fgo, and s for n values of y; Tf and Ts are n x n matrices 
of values of T, and Ts\ and A is an n x n matrix representing the integral over s in equation (8b). We can write 
the formal solution to equations (9) immediately: 

/ff ={I + ^.JS.[I + (I- T,)-1.^]}-1./^ (10a) 

f0 = (l- Tf)-i-Trf9 , (10b) 

where I is the n x n identity matrix. 
Numerical values for the transfer functions are given in Tables 1-4 for a/M = 0.9, 0.99, 0.9981, 0.9999, as- 

suming isotropic emission. (We do not include a/M = 0 because returning radiation is unimportant in the case 
of a nonrotating hole.) These transfer functions were computed [i.e., dQ./d(g, re), n0, and ift0 were evaluated as 
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TABLE 1 
The Transfer Functions Tf(y0, ye) and Ts{y0i ye) for a¡M = 0.9 

• • • 
re/M. 

0.05 
6.42 

0.15 
3.71 

0.25 
2.87 

0.35 
2.43 

0.45 
2.14 

0.55 
1.94 

0.65 
1.78 

0.75 
1.66 

0.85 
1.56 

0.95 
1.47 

J'o ro!M 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 

6.42 
3.71 
2.87 
2.43 
2.14 
1.94 
1.78 
1.66 
1.56 
1.47 

0.333 
0.222 
0.194 
0.188 
0.191 
0.198 
0.206 
0.214 
0.223 
0.231 

0.322 
0.226 
0.197 
0.186 
0.187 
0.193 
0.202 
0.211 
0.221 
0.232 

0.321 
0.228 
0.193 
0.178 
0.172 
0.173 
0.178 
0.184 
0.192 
0.199 

0.337 
0.245 
0.201 
0.180 
0.168 
0.165 
0.166 
0.169 
0.173 
0.178 

0.378 
0.289 
0.239 
0.206 
0.189 
0.179 
0.175 
0.173 
0.174 
0.176 

0.405 
0.351 
0.304 
0.267 
0.241 
0.228 
0.195 
0.210 
0.207 
0.206 

0.295 
0.325 
0.320 
0.304 
0.289 
0.280 
0.275 
0.270 
0.267 
0.265 

0.095 
0.134 
0.154 
0.169 
0.182 
0.197 
0.211 
0.224 
0.237 
0.248 

0.007 
0.012 
0.015 
0.019 
0.022 
0.026 
0.031 
0.036 
0.041 
0.047 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

y0 r0IM 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 

6.42 
3.71 
2.87 
2.43 
2.14 
1.94 
1.78 
1.66 
1.56 
1.47 

0.099 
0.097 
0.102 
0.100 
0.122 
0.137 
0.154 
0.173 
0.192 
0.205 

0.048 
0.050 
0.059 
0.071 
0.086 
0.102 
0.122 
0.142 
0.164 
0.181 

0.030 
0.024 
0.029 
0.038 
0.050 
0.063 
0.079 
0.096 
0.114 
0.129 

0.022 
0.009 
0.010 
0.015 
0.024 
0.034 
0.046 
0.060 
0.074 
0.087 

0.020 
-0.002 
-0.007 
-0.004 

0.001 
0.008 
0.017 
0.027 
0.038 
0.048 

0.019 
-0.010 
-0.024 
-0.028 
-0.027 
-0.024 
-0.039 
-0.014 
-0.008 

0.000 

0.015 
-0.115 
-0.032 
-0.045 
-0.054 
-0.061 
-0.068 
-0.074 
-0.079 
-0.084 

0.006 
-0.004 
-0.015 
-0.026 
-0.038 
-0.052 
-0.069 
-0.087 
-0.107 
-0.124 

0.001 
0.000 

-0.001 
-0.002 
-0.004 
-0.006 
-0.010 
-0.014 
-0.020 
-0.026 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

functions of re, g] assuming the following world lines for the gas: (i) at r > rms, circular geodesics; (ii) at r < rmS5 
inward spiraling geodesics which were circular at rms. 

The values of the transfer functions assuming the limb darkening of an electron-scattering atmosphere do not 
differ from the isotropic values by more than a few percent: the effects of limb darkening in this problem are 
negligible. So, we shall not present separate results for limb darkening. 

TABLE 2 
The Transfer Functions Tf(y0, ye) and rs(^o, ye) for a/M = 0.99 

ye • • • 
rJM. 

0.05 
5.10 

0.15 
2.95 

0.25 
2.28 

0.35 
1.93 

0.45 
1.70 

0.55 
1.54 

0.65 
1.42 

0.75 
1.32 

0.85 
1.24 

0.95 
1.17 

y0 r0IM 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 

5.10 
2.95 
2.28 
1.93 
1.70 
1.54 
1.42 
1.32 
1.24 
1.17 

0.441 
0.315 
0.292 
0.297 
0.321 
0.361 
0.423 
0.494 
0.578 
0.683 

0.411 
0.295 
0.262 
0.257 
0.270 
0.298 
0.345 
0.404 
0.476 
0.567 

0.413 
0.297 
0.254 
0.236 
0.236 
0.249 
0.279 
0.319 
0.372 
0.440 

0.432 
0.322 
0.268 
0.241 
0.230 
0.230 
0.245 
0¿72 
0.311 
0.361 

0.458 
0.362 
0.303 
0.267 
0.243 
0.234 
0.234 
0.251 
0.277 
0.316 

0.479 
0.416 
0.358 
0.313 
0.275 
0.256 
0.246 
0.250 
0.265 
0.291 

0.470 
0.478 
0.442 
0.396 
0.352 
0.314 
0.294 
0.279 
0.282 
0.294 

0.314 
0.450 
0.509 
0.518 
0.496 
0.461 
0.418 
0.394 
0.234 
0.375 

0.064 
0.143 
0.234 
0.327 
0.415 
0.487 
0.530 
0.569 
0.600 
0.613 

0.001 
0.001 
0.003 
0.005 
0.008 
0.013 
0.020 
0.031 
0.050 
0.078 

y0 rJM 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 

5.10 
2.95 
2.28 
1.93 
1.70 
1 54 
1.42 
1.32 
1.24 
1.17 

0.130 
0.138 
•0.149 
0.163 
0.183 
0.212 
0.256 
0.323 
0.429 
0.601 

0.056 
0.059 
0.071 
0.087 
0.107 
0.134 
0.173 
0.232 
0.323 
0.471 

0.037 
0.027 
0.032 
0.042 
0.057 
0.078 
0.108 
0.152 
0.223 
0.338 

0.034 
0.014 
0.012 
0.017 
0.027 
0.042 
0.066 
0.101 
0.157 
0.247 

0.036 
0.009 
0.001 
0.001 
0.006 
0.017 
0.035 
0.062 
0.107 
0.181 

0.041 
0.010 

-0.005 
-0.011 
-0.009 
-0.003 

0.011 
0.032 
0.066 
0.125 

0.044 
0.014 

-0.007 
-0.020 
-0.025 
-0.025 
-0.018 
0.000 
0.024 
0.069 

0.032 
0.018 

-0.005 
-0.029 
-0.046 
-0.059 
-0.061 
-0.058 
-0.042 
-0.024 

0.007 
0.008 
0.002 

-0.013 
-0.036 
-0.066 
-0.100 
-0.138 
-0.188 
-0.244 

0.000 
0.000 
0.000 
0.000 
0.000 

-0.001 
-0.003 
-0.007 
-0.017 
-0.040 
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TABLE 3 
The Transfer Functions Tf(y0, ye) and Ts(y0, ye) for a/M = 0.9981 

re/M. 
0.05 
4.75 

0.15 
2.74 

0.25 
2.12 

0.35 
1.80 

0.45 
1.58 

0.55 
1.43 

0.65 
1.32 

0.75 
1.23 

0.85 
1.15 

0.95 
1.09 

y0 rolM 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 

4.75 
2.74 
2.12 
1.80 
1.58 
1.43 
1.32 
1.23 
1.15 
1.09 

0.482 
0.351 
0.334 
0.351 
0.388 
0.450 
0.548 
0.715 
0.957 
1.228 

0.450 
0.324 
0.291 
0.290 
0.309 
0.351 
0.424 
0.551 
0.743 
0.977 

0.459 
0.331 
0.283 
0.270 
0.268 
0.288 
0.335 
0.423 
0.564 
0.758 

0.486 
0.366 
0.303 
0.273 
0.263 
0.265 
0.296 
0.352 
0.457 
0.618 

0.513 
0.418 
0.351 
0.303 
0.280 
0.269 
0.280 
0.317 
0.394 
0.524 

0.520 
0.481 
0.419 
0.365 
0.323 
0.303 
0.296 
0.310 
0.363 
0.466 

0.472 
0.534 
0.512 
0.466 
0.412 
0.374 
0.344 
0.336 
0.363 
0.440 

0.331 
0.509 
0.589 
0.603 
0.575 
0.521 
0.469 
0.440 
0.414 
0.456 

0.088 
0.226 
0.398 
0.572 
0.702 
0.787 
0.795 
0.750 
0.683 
0.658 

0.001 
0.003 
0.008 
0.021 
0.044 
0.088 
0.170 
0.303 
0.582 
1.056 

y0 r0¡M 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 

4.75 
2.74 
2.12 
1.80 
1.58 
1.43 
1.32 
1.23 
1.15 
1.09 

0.140 
0.152 
0.168 
1.189 
0.215 
0.252 
0.308 
0.405 
0.593 
0.957 

0.056 
0.059 
0.074 
0.094 
0.118 
0.151 
0.198 
0.277 
0.429 
0.734 

0.039 
0.026 
0.031 
0.044 
0.060 
0.085 
0.120 
0.184 
0.295 
0.543 

0.038 
0.013 
0.010 
0.015 
0.026 
0.044 
0.071 
0.118 
0.209 
0.413 

0.042 
0.011 
0.000 

-0.001 
0.004 
0.016 
0.037 
0.074 
0.147 
0.318 

0.048 
0.015 

-0.003 
-0.011 
-0.011 
-0.005 

0.009 
0.038 
0.098 
0.243 

0.049 
0.023 

-0.001 
-0.016 
-0.024 
-0.024 
-0.016 
0.006 
0.053 
0.173 

0.039 
0.031 
0.010 

-0.014 
-0.033 
-0.043 
-0.045 
-0.057 
0.003 
0.096 

0.011 
0.018 
0.016 
0.000 

-0.027 
-0.061 
-0.094 
-0.018 
-0.114 
-0.072 

0.000 
0.000 
0.001 
0.001 
0.000 

-0.003 
-0.014 
-0.042 
-0.134 
-0.441 

Both of the transfer functions are surprisingly well behaved. Their slight variations with radius are easily ex- 
plained. Consider first the flux transfer function. For a given observation radius r0, this function is large for 
fe » r0, since then the returning radiation will be gravitationally blueshifted; it is large also for re « r0, since 
then the returning radiation will be gravitationally focused, and a component of it will be blueshifted due to 
the Doppler effect of the relativistic orbital velocity of the emitting gas. This Doppler blueshift vanishes for emit- 
ting gas near the horizon, since there the gas will be flowing away from the observer and into the hole. Thus, 

TABLE 4 
The Transfer Functions Tf(y0yye) and Ts(y0i ye) for ajM — 0.9999 

JV .. 
f'elM. 

0.05 
4.54 

0.15 
2.62 

0.25 
2.03 

0.35 
1.71 

0.45 
1.51 

0.55 
1.37 

0.65 
1.26 

0.75 
1.17 

0.85 
1.10 

0.95 
1.04 

rJM Tf 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 

4.54 
2.62 
2.03 
1.71 
1.51 
1.37 
1.26 
1.17 
1.10 
1.04 

0.510 
0.378 
0.366 
0.392 
0.445 
0.531 
0.673 
0.927 
1.372 
2.791 

0.479 
0.344 
0.309 
0.313 
0.342 
0.399 
0.502 
0.690 
1.047 
2.211 

0.496 
0.358 
0.304 
0.288 
0.292 
0.322 
0.387 
0.520 
0.800 
1.716 

0.531 
0.403 
0.336 
0.299 
0.285 
0.295 
0.337 
0.428 
0.648 
1.386 

0.559 
0.468 
0.393 
0.340 
0.313 
0.302 
0.322 
0.381 
0.554 
1.162 

0.550 
0.543 
0.484 
0.424 
0.377 
0.347 
0.348 
0.371 
0.499 
1.009 

0.450 
0.574 
0.589 
0.555 
0.500 
0.443 
0.405 
0.405 
0.486 
0.899 

0.247 
0.460 
0.618 
0.690 
0.696 
0.651 
0.564 
0.524 
0.536 
0.846 

0.061 
0.187 
0.395 
0.625 
0.785 
0.957 
0.974 
0.901 
0.786 
0.914 

0.001 
0.004 
0.015 
0.038 
0.112 
0.266 
0.900 
1.473 
2.286 
2.295 

y0 rJM 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 

4.54 
2.62 
2.03 
1.71 
1.51 
1.37 
1.26 
1.17 
1.10 
1.04 

0.146 
0.162 
0.183 
0.209 
0.243 
0.291 
0.366 
0.497 
0.722 
1.650 

0.057 
0.059 
0.076 
0.099 
0.129 
0.169 
0.229 
0.332 
0.519 
1.279 

0.040 
0.024 
0.030 
0.043 
0.064 
0.094 
0.139 
0.215 
0.364 
0.966 

0.041 
0.012 
0.008 
0.013 
0.026 
0.048 
0.082 
0.141 
0.264 
0.752 

0.047 
0.011 

-0.003 
-0.004 
0.002 
0.016 
0.041 
0.Ö88 
0.190 
0.600 

0.053 
O.OsfS 

-0.004 
-0.015 
-0.016 
-0.009 

0.007 
0.045 
0.130 
0.479 

0.050 
0.029 
0.003 

-0.017 
-0.029 
-0.029 
-0.022 
0.004 
0.074 
0.373 

0.031 
0.034 
0.019 

-0.006 
-0.030 
-0.049 
-0.050 
-0.040 
0.013 
0.265 

0.009 
0.018 
0.023 
0.016 

-0.005 
-0.040 
-0.075 
-0.095 
-0.076 
0.125 

0.000 
0.001 
0.001 
0.003 
0.005 
0.004 

-0.018 
-0.083 
-0.268 
-0.449 
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the flux transfer function is zero for emitting gas at the horizon. For r0 and re » r+, Tf cc re
ll2r0

5l2(re + r0)~
512. 

Thus, Tf diverges if r0 and re -> oo, although the divergence is integrable in equation (8a). We are not interested 
in using this formalism for very large r0, however. 

Increasing a/M decreases the radius of marginal stability. As a result, gas near the horizon tends to move along 
circular, rather than radial, trajectories if a/M is large. The radiation this gas emits to larger radii and the radia- 
tion it receives from larger radii will both be less Doppler redshifted than if the gas were flowing radially. Thus, 
increasing a/M increases the flux transfer function for small r0 and re. 

The stress transfer function is the product of the flux transfer function and an average value of cos i/j0 for the 
returning radiation (i/j0 is the angle from the e((p) direction, the direction of motion in the rest frame). Thus, the 
stress transfer function is positive if most of the returning radiation is observed to come from the direction of 
motion. This is generally so, due to the large orbital velocity of the accreting gas. However, if both r0 and re are 
small, the transfer function may be slightly negative : the net positive angular momentum carried by the return- 
ing radiation balances the aberration caused by the observer’s motion. 

Numerical values for /0, fg, and fg0 are compared in Table 5 for the four values of a/M. These results, like 
Tables 1-4 for Tf and rs, were computed assuming the inner edge of the disk lies at the radius of marginal 
stability rms, a slightly erroneous assumption, which leads to fictitious, negative values oïfg very near the radius 
of marginal stability. Note that f0 is roughly constant with radius, while fg drops to zero at the inner edge of the 
disk. By assumption we set /g = 0 inside rms ; this means that we ignore not only viscous heating in the inward 
spiraling gas, but also emission produced by the gas’s internal store of thermal energy. 

The relative importance of returning radiation in the inner disk is very sensitive to the value of a/M: Returning 
radiation is negligible for a/M < 0.9; it exceeds or is comparable to that generated locally for a/M > 0.999. 
Thus, the appearance of disks around rapidly rotating holes will be rather different from that of disks around 
slowly rotating holes, due to returning radiation. 

The difference between the actual locally generated flux fg and that in the absence of returning radiation fgQ 
is only about 10 percent over most of the inner disk for a/M = 0.9999, much less for smaller values of a/M. Of 
course, very near the inner edge of the disk, there is a considerable fractional difference between fg and fgQ. Here, 
returning radiation modifies the radial and vertical structure of the disk. 

The angular momentum transported by the returning radiation slightly increases the inner radius rin of the 
disk. The requirement that the viscous stress always oppose the shearing motion of the gas leads to an approximate 

TABLE 5 
The Returning Flux /0, The Locally Generated Flux fg, and the 

Locally Generated Flux with No Returning Radiation fg0 

y 

Parameter 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 

a¡M = 0.9, rin = 2.33 M, rms = 2.32 M 

r/M  6.42 3.71 2.87 2.43 2.14 1.94 1.78 1.66 1.56 1.47 
f0  0.019 0.014 0.012 0.011 0.012 0.012 0.012 0.013 0.013 0.013 
fg  0.297 0.139 0.050 0.003 0.000 0.000 0.000 0.000 0.000 0.000 
fg0  0.301 0.141 0.052 0.004 0.000 0.000 0.000 0.000 0.000 0.000 

a/M = 0.99, rin = 1.46 M, rms = 1.45 M 

5.10 2.95 2.28 1.93 1.70 1.54 1.42 1.32 1.24 1.17 
0.060 0.046 0.042 0.042 0.043 0.045 0.050 0.057 0.064 0.076 
0.369 0.257 0.186 0.122 0.062 0.012 0.000 0.000 0.000 0.000 
0.379 0.266 0.194 0.130 0.069 0.016 0.000 0.000 0.000 0.000 

a/M = 0.9981, rin = 1.24 M, rms = 1.23 M 

4.75 2.74 2.12 1.80 1.58 1.43 1.32 1.23 1.15 1.09 
0.100 0.083 0.079 0.079 0.082 0.087 0.098 0.118 0.152 0.199 
0.383 0.294 0.241 0.194 0.144 0.088 0.028 0.000 0.000 0.000 
0.398 0.308 0.256 0.210 0.162 0.105 0.041 0.000 0.000 0.000 

alM = 0.9999, rin = 1.09 M, rms = 1.08 M 

rIM  4.54 2.62 2.03 1.71 1.51 1.37 1.26 1.17 1.10 1.04 
f0  0.171 0.162 0.167 0.176 0.189 0.212 0.274 0.350 0.486 0.771 
fg  0.383 0.309 0.272 0.241 0.213 0.180 0.138 0.075 -0.012* 0.000 
fg0  0.406 0.330 0.294 0.268 0.245 0.220 0.185 0.129 0.026 0.000 

rIM. 
fo.... 

fgO- • 

rIM. 

fg.... 
fgO ' • 

* This negative value for fg is fictitious; it arises from the erroneous assumption that rln = rms made in the calculation. 
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relation between the stress *9 of the returning radiation and the value of the inner radius (see Appendix): 

rln* Ä rms* + (3/2)rms*
1/2^1/25', (11) 

where rms is the radius of marginal stability (the inner radius in the absence of returning radiation) and ^ is a 
function of rms, defined in equation (A7). Having obtained approximate solutions for/0 and /g, we evaluate s 
at rms and solve equation (11) for rin. Numerical values of the inner radius and the radius of marginal stability 
are compared in Table 5. Note that the outward shift of the inner edge of the disk is always extremely slight. 
Even for a/M £ 1, the stress s is not large enough to overwhelm the @112 term in equation (11) [^(rms)->0 
as ajM —> 1]. 

Thus, even though the flux of the returning radiation is significant compared to the locally generated energy 
for a/M ä 1, its effects on the disk structure and the rate of energy generation are minor everywhere except very 
near the inner edge of the disk. 

III. RETURNING RADIATION IN THE OUTER DISK 

At very large radii, r0 ^ 1000 M, the flux of returning radiation will be larger than predicted by Table 5, since 
the disk has a flared shape, and it is the shape of the disk, rather than gravitational focusing, that causes radia- 
tion to return to the disk’s surface. One might expect that, since the Rosseland mean free-free opacity is much 
greater than the electron-scattering opacity in this region, all the returning radiation would be absorbed and 
would heat the disk. However, because of the energy-dependence of the opacity, a large fraction of the returning 
radiation is scattered, rather than absorbed. Even so, the energy absorbed from the returning radiation has im- 
portant effects on the disk structure. 

We may express the flux of the returning radiation in the outer region as 

F0 — (cos no)L0l47rro
2 , (12) 

where n0 is the angle of the returning radiation with the surface normal and L0 is the “effective luminosity” of 
the inner disk, i.e., the luminosity a local observer would assign to it, assuming that it radiates isotropically. 
(Eq. [12] may be regarded as a definition of the effective luminosity.) Paper I describes how to evaluate L0 given 
the flux of the emitted radiation in the inner disk. Of course, the calculations of Paper I neglect returning radia- 
tion: the effective luminosities given there are underestimates for disks around rapidly rotating holes. 

In Table 6 we give the effective luminosity in the plane of the disk for five values of ajM, assuming either iso- 
tropic emission or the limb darkening of a scattering atmosphere, and either including or ignoring returning 
radiation in the inner disk. The values given are for the ratio 

Z* = L0¡Kí0 , (13) 

which measures the efficiency of the disk in converting rest mass energy to returning radiation. Our claims that 
returning radiation in the inner disk is negligible for ajM ^ 0.9 and that limb darkening has little effect on the 
returning radiation are supported by Table 6. 

If the disk remains thin and the returning radiation comes from the inward radial direction, then the angle 
n0 of the returning radiation is determined by the half-thickness h of the disk: 

cos n0 = dhldr0 — A/r0. (14) 

Thus, the amount of returning flux will depend upon the vertical structure of the disk, which in turn will be in- 
fluenced by the returning radiation. 

TABLE 6 
The Ratio L* of the Effective Luminosity in the Plane of the Disk to the Accretion Rate 

Returning Radiation in the Inner Disk. Included Included Ignored Ignored 

Limb Darkening. Isotropic Electron Isotropic 
Scattering 

Electron 
Scattering 

ajM: 
0.0000. 
0.9000. 
0.9900. 
0.9981. 
0.9999. 

0.0049 
0.0365 
0.1361 
0.2421 
0.4653 

0.0038 
0.0321 
0.1246 
0.2222 
0.4315 

0.0046 
0.0307 
0.0998 
0.1642 
0.2578 

0.0036 
0.0273 
0.0922 
0.1518 
0.2427 
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The returning radiation heats the disk. A returning photon of energy Ey = hv can interact with the gas in the 
disk (temperature T, density p) in several ways: by Compton scattering off an electron, for which the opacity 
and mean energy loss per scattering are 

/ces = (0.40 g"1 cm2), A^y= -^y/mec
2); (15a) 

by photoionization of intermediate-mass elements, with an opacity 

/cpi = (4 x 102g-1cm2)(^y/keV)-7/2 (15b) 

(assuming Brown-Gould 1970 abundances, temperatures T ^ 107 K, and photon energies lOkeV ^ Ey ^ 200 
keV); and by ion-electron free-free absorption, with an opacity 

*ff = (3 g -1 cm2)(£y/keV) ~ 3(/>/g cm " 3)(^r/keV) "1/2 (15c) 

(assuming Ey » kT ^ 10 eV). For conditions appropriate to binary X-ray sources (e.g., Cyg X-l, where photons 
from the inner disk have 20keV ^ Ey ^ 200 keV, while the outer part of the disk has p « 1 gem“3, kT ^ 1 
keV) Compton scattering and photoionization dominate over free-free absorption. 

To find the energy deposited in the disk by the returning radiation, we find an approximate solution to the 
radiative transfer equation for the returning radiation : 

(cos 0)dIldT =-/+£, (16) 

where / is the intensity (ergs cm-2 s-1 sr-1) of a beam of radiation at an angle 6 with the surface normal, r is 
the optical depth in the disk atmosphere, and S is the source function which describes the rate at which energy 
is injected into the beam. In this problem, the only process which creates photons with energies like those of the 
returning photons is Compton scattering, for which the source function is 

S = {\- ß)J, (17a) 

ß = Ki + (Ey/WeC^KesViKpi + *es) > (17b) 

assuming isotropic, slightly inelastic scattering, Ey/mec
2 « 1 ; / is the average of / over solid angle. We solve the 

transfer equation by the two-stream method (Mihalas 1970), and find that 

J ^ (F0/47t)[2(1 - /3)(1 +jS1/2)-1 exp (-2ßll2r) + (cos n0)~
1 exp (-t/cost20)] , (18) 

assuming that the disk is optically thick to the returning radiation and that cos «0 « 1. The energy ¿/is deposited 
in a volume element dV in time dt is 

dE/dVdt = 47rp(/cpi + Kes)ßJ. (19) 

Thus, the ratio of the energy flux Fd which is deposited in the disk to the total returning flux is 

FJFo = J (dE/dVdt)dz/F0 = ß112 . (20) 

This ratio is a function only of the energy of the returning radiation and is always of order unity; the minimum 
isß112 ^ 0.25, at Ey ^ 25 keV. Intherange 10 keV < Ey < lOOkeV, ß1/2 ^ 0.5. Accordingly, ^ F0ß (ß x 1/9) 
is a reasonable approximation, and will be used henceforth. 

If the disk is optically thin, much less energy is deposited : 

FJFo ä; ßrT/cos n0 ^ ÍTr/cos n0 , (21) 

where rT is the optical thickness of the disk to the returning radiation, measured vertically. 
One can show, by examining the rates for various interactions between the energized electrons and the plasma, 

that the deposited energy gets thermalized and reradiated thermally. Thus, the surface temperature Ts must be 

oTf = Fd + Fg x F* + F0/3 (tt » oos n0) 
(22) 

ä F* + g¡F0TT/cos n0 (tt « cos n0). 

We shall assume the disk to be isothermal at a temperatüre T x Ts and find its vertical structure. Actually, there 
must be a temperature gradient in the disk interior to transport the locally generated flux Fg. Clearly, this gradient 
will be unimportant when the deposited flux Fd exceeds Fg. When Fd « Fg, our isothermal model does not differ 
significantly from the model for the outer disk of Novikov and Thorne (1973), which does include a temperature 
gradient. 
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The equations governing the disk’s vertical structure are the equation of state, 

p = IpkT/mn > (23a) 

where p is the gas pressure (in the outer region of the disk, radiation pressure is negligible); the condition of 
vertical pressure balance. 

dp/dz = — pR(z\tXzmz = —pMr~3z, (23b) 

where R(z\t)(2Xt) is the gradient of the “vertical acceleration of gravity” in the rest frame of the gas; and the vis- 
cosity relation, 

Cij pdz = J t{(pXr)dz = (27r)-1ilÿ0M
1/2r-3/2, (23c) 

where ti(p)ir) is the stress in the gas, measured in the rest frame. See § 5.7 of Novikov and Thorne (1973) for dis- 
cussion of these equations. Solution of equations (23) gives 

/> = pcexp(-z2//*2), (24a) 

Pc = (1.4 x 1013 gem"3)«"3rK-
3/2 , (24b) 

h — (0.27 cm)M*r*3/27,
K

1/2 , (24c) 

Tes = (2.6 x lO12)«-1^^*-1^-3^-1. (24d) 

The optical thickness of the disk to electron scattering res is approximately equal to the total optical depth rT 
for the returning radiation. 

There may be three regions of the outer disk: an unheated region in which the surface temperature is deter- 
mined primarily by the rate of local energy generation, surrounded by an optically thick reheated region in which 
the temperature depends upon the flux of returning radiation and is sensitive to the shape of the disk surface, 
surrounded in turn by an optically thin reheated region in which the temperature depends upon the intensity of 
the returning radiation and is independent of the shape of the disk. 

In the unheated region oT4 = i7* and 

T = (3.1 x 107 K)^o*1/4Af * " 1/2r* "3/4, (25a) 

Pc = (19 , (25b) 

h = (1.5 x 103 cm)^0*
1/8^f*3/4^*9/8 ? (25c) 

Tes = (8.4 x lO4)«-1^*3^*"1^*-3/4 . (25d) 

These results agree very closely with the structure for the outer disk given in equation (5.9.6) of Novikov and 
Thorne (1973). 

In the optically thick reheated region aT4 ^ F0ß. In this region, properties of the disk, in particular the thick- 
ness h, depend upon f0, which, in turn, depends upon the angle n0 of the returning radiation. Equation (14) re- 
lates n0 to dh¡dr0 and, thus, gives a differential equation for nQ : 

cos n0 =2.95 x 10-3^o*1/8M*~1/4L*1/8r*J[r*1/4(cos «0)
1/8]/í/r* , (26a) 

which has the solution 

cos n0 = (1.25 X + 0*7/4)-8/7 , (26b) 

where C is a constant of integration. We have implicitly assumed that the disk has a smooth surface, so that 
equation (14) is valid everywhere. 

For a well-behaved solution, we must set C = 0. If C < 0, cos n? will be greater everywhere than for the C = 0 
solution, but at some large radius cos n0 will diverge; there equation (26a) will be violated. If C > 0, cos n0 will 
be less everywhere than for the C = 0 solution, but at some large radius cos n0 will be so small that reheating is 
negligible again. At this radius, however, a solution for the disk properties which joins smoothly onto the un- 
heated solution (25) will violate equation (26a), since cos n0 is not negligible at large radii in the unheated solu- 
tion. 
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Thus, in the optically thick reheated region of a disk with a smooth surface, 

T = (2.8 x 106K)^ro*2/7Af*"4/7^*2/V*-3/7, (27a) 

Pc =(2.9 x 103 g cm_3)a“1
J^o*4/7M*“8/7L*"3/7r*“33/14 , (27b) 

/z = (4.5 x 102cm)^o*1/7^*6/7^*1/7'‘*9/7
5 (27c) 

Tes = (9.4 X lO5)«-1^*577^*-3/7!,*-2^*-15/14. (27d) 

The properties of the disk are quite different in this region from those in the unheated region : reheating has im- 
portant effects on the disk structure. 

The transition between the unheated region and the optically thick reheated region occurs where T (unheated) = 
T (reheated), at 

r*! =(1.85 x l03)]Çf0*-
1,9M*2l9L*~819 . (28) 

Note that this radius is rather small for a disk around a rapidly rotating hole. 
In the optically thin reheated region crT4 # 1/9F0tk/cos n0. Thus, the temperature is independent of cos«0. 

The corresponding solution for the vertical structure is 

r = (1.8 x 108K)ci-1/5^o*
2/5M*-3/5L*1/5r*-7/10, (29a) 

Pc = (5.1 gcm-3)a-7ll0ti[0*
2l5M*-llll0L*-3ll0r*-39120 , (29b) 

A = (3.6 x 103cm)a-1/10
J/^o*1/5M*7/10L*1/10r*23/20 , (29c) 

Tes = (1.46 x 104)a-4/5^o*3/5-M*-2/5L*-1/5r*-4/5. (29d) 

The transition between the optically thick and the optically thin reheated regions occurs where T(thick) = 
T(thin), at 

r*2 = (4.55 x io6)a-1/ill9ti[0*
8ll9M*-2ll9L*-6119 . (30) 

Since this transition occurs at such a large radius, the disk will probably not have an optically thin reheated re- 
gion at all. A simple calculation of the flow of the accreting gas from the inner Lagrange point of the binary 
system (Cunningham 1973) indicates that the radius of the outer gas of the disk is, roughly, 

^*out ^ 3 x 106M*_:L « r*2 . (31) 

To derive the structure of the optically thick reheated region, we assumed that the surface of the disk was very 
smooth. However, suppose small bumps sometimes form on the disk surface. At a bump, the angle n0 of the 
returning radiation differs from its normal value. The inner edge of the bump will receive more returning flux 
and will be heated and swell; the outer edge of the bump will cool and contract. Thus, the bump will move in- 
ward. Local inhomogeneities should produce ingoing ripples on the disk surface. This rippling will not occur 
in the optically thin region, if it exists, since there the rate of heating is independent of the angle n0. 

We must determine if the ripples grow with time. If so, the disk structure described by equation (27) is meaning- 
less, and the optically thick reheated region will be unstable and in a state of chaotic motion. To do this we con- 
sider the time-development of a slight perturbation of the disk structure. 

Suppose that in some region of the disk the surface temperature Ts and the internal temperature Tt are slightly 
different from the equilibrium temperature T of equation (27a) : 

Ts = (1 + €s)T, €s<< l , (32a) 

T^il+edT, e,«!. (32b) 

The flux of energy (ergs s"1 cm~2) flowing from the surface to the interior of the disk is approximately 

Fi x (4/3)(AoT4/Az)/c~1p~1 x (16/3)oT4/z~1K~1pc~ 1(es - ej . (33) 

The heat capacity C (ergs cm-2 K-1) per unit surface area of the disk is 

C = J (3 - 2p ~1TdpldT)pklmKdz = (3TTll2/2)pchk/ms , (34) 
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assuming that the surface density remains constant as the disk responds to slight temperature changes. Thus, the 
rate at which the internal temperature is changing is 

öee/a; = FJCT = - e<) , (35a) 

ti = (9nll2/32)(k/mHc)KPc
2h2T-3 = (2.9 x 108 s)«-3^0*

12/7L*-20/7/-*-12/7 . (35b) 

We used for the opacity « the central value of the Rosseland mean free-free opacity 

K = (6.4 x 1022 g-1 cm2)(pc/g cm-3)TK-
V2. (36) 

The disk thickness and, therefore, the angle of the returning radiation and the surface temperature are deter- 
mined by the internal temperature. Equations (14), (22), and (34c) give 

€s = hi+ . (37) 

The general solution of equations (35a) and (37) is 

=/[r*“12/7(4/3 — i/ii)]r*2 , (38a) 

where/(*) is an arbitrary wave form. This solution represents damped, ingoing waves of velocity 

v = midryi = -mvm w 
and damping time 

ta = -‘€i(d€i/dt)~1 = . (38c) 

Siqce these waves are damped, the rippling of the reheated disk arising from small local inhomogeneities dies out, 
and the disk is stable in the reheated region. 

IV. THE OBSERVED SPECTRUM OF THE DISK 

Returning radiation modifies the observed spectrum of the disk at both high and low energies : The returning 
radiation which is scattered by the disk adds a high-energy component to the spectrum, while the returning radia- 
tion which is absorbed changes the structure and the spectrum of the outer disk. 

Consider the appearance of the outer disk. In the previous section we stated that the energy which the outer 
disk absorbs from the returning radiation will be reradiated thermally. Therefore, we assume that the outer disk 
radiates like a blackbody. 

Assume that all the photons from a portion of the disk surface are radiated with an energy E0 = 3kT, which 
is approximately the energy for which the specific intensity of blackbody radiation is greatest. Then the specific 
luminosity LSo (ergs s-1 eV_1) of the disk is, by equations (25a) and (27a), 

EJLEq = LUEoIE^Y1* for E0¡Está > L*213 , (39a) 

E0LEq = O/4)L**l3Lstá(E0/Está) ~2/3 for E0/Estd < L*213 , (39b) 

Estd=(28oV)M0*
ll3M*-213, (39c) 

Lstd =(1.0 x 1035 ergs s-1)^o*10/9M*“2/9 , (39d) 

for radiation from the unheated and optically thick reheated outer regions. The spectra of the radiation from 
the two regions are quite different from each other, since the radial variation of temperature is different in the 
two regions. 

Near the outer edge of the disk, the viscous interaction between the incoming gas stream and the disk will be 
an important heating mechanism, and the gas will also radiate energy it carries from the primary star. Thus, 
equation (39b) is very likely an underestimate of the specific luminosity for photon energies near the energy 
Eomu which is typical of radiation from the outer edge of the disk. If we use equation (31) for the value of the 
outer radius, then 

^out = 3 x lO-^o*“7721^*11/21!,*2/7^. (40) 

At lower energies, E « Eout, there will be a tail to the spectrum: LEq oc E2 for radiation from the disk, but radia- 
tion from the incoming gas stream will probably also be important. 

Figure 1 shows the low-energy spectra for disks around holes of a/M = 0, 0.9, and 0.9999, calculated from 
equation (42). The upturn in the spectra at the energy E0 = L2,3Estd9 which corresponds to the transition between 
the unheated and reheated regions, is a pronounced feature, and is sensitive to the value of a/M of the hole. 
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log {Eo/[(28eV) MS1/3 M*~2/3]} 
Fig. 1.—The observed, low-energy spectrum of an accretion disk, assuming that 1/3 of the returning flux is absorbed and re- 

radiated thermally. Radiation from the unheated region of the disk, where the returning radiation does not strongly influence the 
surface temperature, has a different spectrum than does radiation from the reheated region, where returning radiation determines 
the temperature. The energy of the transition between the “unheated” and the “reheated” spectra depends upon the value of 
a¡M. The low-energy tail of the spectrum lies at energies below the thermal energy E0Vit characteristic of the outer edge of the 
disk, and is produced by radiation from very near the outer edge. 

Thus, observations at low energies (1-10 eV) of the outer disk might provide information about the hole. Un- 
fortunately, in a binary system the primary star will radiate strongly at these energies ; it may be very difficult to 
discern the disk. The value of the energy at which the spectra tail off depends upon M* and Af0* ; two choices 
for these parameters are shown in Figure 1. 

In addition to radiating thermally, the outer disk scatters an appreciable fraction (~f) of the returning radia- 
tion. The luminosity Lscat of the scattered radiation is proportional to the solid angle subtended by the outer 
disk, seen from the inner disk, and this solid angle depends upon the thickness of the disk at its outer edge. If 
we use equation (31) for the outer radius, 

¿scat = (4 x 1036 ergs s-1)^*8^^*"4^*^7 • (41) 

This luminosity is only a small fraction of the total luminosity of the disk (5 x 10“2 for a/M = 0.9999, 2 x 10-3 

for ajM = 0, with M* = /l^0* = 1). 
In the inner disk, where the flux of returning radiation is largest, electron scattering is the primary opacity 

mechanism, and most of the returning radiation is scattered, rather than absorbed. The luminosity of the scat- 
tered returning radiation from the inner disk is always much greater than that from the outer disk, and the spectra 
of the two types of radiation are similar. Therefore, the radiation scattered in the outer disk will be unobservable. 

We have not presented the full machinery to properly calculate the spectrum of the returning radiation scat- 
tered in the inner disk, as seen by a distant observer. For such a calculation, we would need to know the spectrum 
of the returning radiation seen by a local observer, not just its total flux, as a function of position on the surface 
of the disk. However, we may approximate the observed spectrum in a simple manner. 

Suppose we observe the disk from its axis. Then most of the observed radiation comes from r ^ 4M. Radia- 
tion which comes directly to us from smaller radii is very redshifted and contributes little flux (see Paper I). How- 
ever, radiation from the innermost disk may return to the disk at r ^ 4M and there be scattered to us. Thus, the 
observed spectrum will have two components at high energies : Radiation propagating directly to us will produce 
a component which dies at an energy characteristic of the surface temperature of the disk at r ^ 4M; scattered 
radiation will produce a component which peaks at a somewhat higher energy, characteristic of the innermost 
disk. 

We have seen that most of the radiation which returns and is scattered does so in the inner disk due to gravita- 
tional focusing. If we assume that this scattered radiation and the thermal emission come off the disk with about 
the same limb darkening, then the ratio of the observed fluxes in the two components of the spectrum equals the 
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0 

-3 
-2.0 -1.5 -1.0 -I 

log [E0/(52keV a 

-0.5 0.0 0.5 

Fig. 2.—The observed, high-energy spectrum of an accretion disk which scatters the returning radiation. We assume that the 
radiation is emitted with the spectrum of equation (42), which is appropriate for a radiation-pressure-dominated disk with an 
electron-scattering atmosphere, and that the disk is seen from the polar axis. Curves are labeled with the value of a/M of the hole. 
The “direct-component” of the spectrum originates at r > 4M and propagates directly to the observer. The “scattered com- 
ponent” is radiation which originates at very small radii, returns, and is scattered on its way to the observer. 

ratio of fluxes of the returning radiation and the locally generated energy in the inner disk at r ^ 4M. Table 5 
gives this ratio; it is 0.4 for a/M = 0.9999; 0.06 for a/M = 0.9. 

Both the total flux and the spectrum of the direct component may be calculated by the method of Paper I. We 
assume that the spectrum of the scattered component is similar to that of the radiation seen by a distant observer 
in the plane of the disk, which may also be calculated by Paper I. Since both gravitational focusing and Doppler 
blueshifts enhance the radiation that reaches the plane from the innermost disk, the spectrum of the scattered 
component is harder at high energies than a Newtonian spectrum of the disk (see Paper I)- 

We assume that, in the region of the disk which is producing most of the radiation, the disk is optically thick, 
radiation pressure dominates gas pressure, and electron scattering is the dominant opacity mechanism. For a 
homogeneous atmosphere with density roughly equal to that in the central regions of the disk, Novikov and 
Thorne (1973) calculate the specific intensity IE (ergs s-1 cm“2 sr"1 eV-1) of the emitted radiation and the sur- 
face temperature Ts: 

We have neglected the secular instability of the optically thick, radiation-pressure-dominated inner disk to 
the formation of overdense clumps and under-dense bubbles (Lightman and Eardley 1974). This instability might 
force part of the inner disk to become optically thin, in which case the spectrum of the emitted radiation will 
be different from that given here: The two-temperature model of Eardley, Lightman, and Shapiro (1975) for 
such an optically thin inner disk predicts an electron temperature which is higher (T ~ 109 K) and an emitted 
spectrum which is correspondingly more energetic than for our optically thick model. Therefore, results based 
on equation (42) must be interpreted with caution. 

The corresponding observed spectra, seen on the polar axis, for the four values of a/M, are shown in Figure 2. 
The superposition of the two components of the spectrum results in a notch at the energy at which the lower- 
energy direct component begins to fall sharply; this energy is, roughly. 

Ts = (6 x 108 K )(a29M * ~10 9Mo*8 9r * _ 17;9) x (relativistic corrections), 

where E is the energy of the emitted photons. The corrections in equation (42c) are such that 

rs £ (3 x 10® K)(a2'9M*-10'9^o*8,9>*-1,2 for a/M £ 1 , r* ^ 4 . 

IE oc x3'2e-*,2(e* - I)“1'2 , 

x — E/kTs, 

(42a) 

(42b) 

(42c) 

(42d) 

ä (20 keV)(«2,9M* “ 10,9Mo8/9), (43) 

for this model of the inner disk. 
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Fig. 3.—The “pre-transition” satellite and balloon observations of Cygnus X-l, compared to a theoretical spectrum. Param- 
eters for the theoretical spectrum are taken from observational data, when possible (see text). The agreement of the theoretical 
spectrum with the observations is fairly good, considering the crude model of the disk on which it is based. 

This notch is somewhat similar to, but not as deep as, that observed in the “pre-transition” spectrum of Cyg 
X-l. In spite of the crude model used for the inner disk and the approximate method used to generate the theo- 
retical observed spectra, a fairly good fit to the actual pre-transition observations of Cyg X-l can be obtained 
for reasonable values of mass and accretion rate. Figure 3 compares the observed spectrum of Cyg X-l (from 
Thorne and Price 1975) with a theoretical spectrum, for which we assume that Cyg X-l is at a distance of 2.5 kpc 
(Bregman et al. 1973; Margon et al. 1973), with a mass Af = 8 MQ (Paczynski 1974), and an inclination angle 
i = 0. (From the absence of X-ray eclipses and limits given by Paczynski 1974 one can conclude that i < 60°. 
For all i in this range the spectrum is qualitatively the same as for i = 0.) We also assume that the accretion rate 
is A5f0 = 4 x 1017 g s“1, the viscosity parameter is a = 0.1 (which are reasonable values for a disk in a close 
binary system [Shakura and Sunyaev 1973; Novikov and Thorne 1973]), and that ajM = 0.9999. (This value 
of ajM is substantially greater than the steady-state value for disk accretion, ajM = 0.998 [Thorne 1975]. How- 
ever, for the low rate of accretion we assume, the time scale for evolution of the hole is long, in excess of 108 

years.) The fit would be even better for a larger value of ajM, since then the notch would be deeper. The notch 
would also be deeper if the form of the emitted spectrum were harder, the decrease in surface temperature with 
radius were steeper, or the scattered flux were larger due to the surface of the disk swelling out of the equatorial 
plane. 

Note that the observations can be fitted moderately well by an optically thick, geometrically thin disk model. 
Thorne and Price (1975) and Lightman and Shapiro (1975) state that the disk must be optically thin in its inner- 
most regions to produce the observed E > 100 keV X-rays. Indeed, were it not for relativistic effects, one would 
conclude that the surface temperature given by equation (42) is too low to explain, simultaneously, the high 
energies and low luminosity of Cyg X-l. However, the scattered component of the spectrum will be blueshifted 
by almost a factor of 2 and the direct component will be considerably attenuated if ajM ^ 1 and the disk is 
observed from near its polar axis (see Paper I). Thus, the actual luminosity of Cyg X-l might be higher, and 
surface temperatures lower, than a Newtonian analysis of the observations would predict. 

We conclude that returning radiation will be an important phenomenon in accretion disks around rotating 
holes. However, before accurate, detailed calculations of its effects on the appearance of the disk can be performed, 
one must have an accurate model for the structure of the inner disk to determine properties of the disk atmos- 
phere and to give the thickness of the disk. If the inner disk is not geometrically thin, the results given here will 
need modification. 

I thank Kip Thorne for his advice on this research and on the preparation of the manuscript. 

APPENDIX 

THE NET FLUX OF LOCALLY GENERATED ENERGY 

The net flux, like other features of the radial structure of the disk, is governed by three conservation laws: 
conservation at rest mass, of angular momentum, and of energy. Page and Thorne (1974) present these laws in a 
convenient form, and their work needs little modification to include the transport of angular momentum and 
energy by returning radiation. 
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For a thin, axisymmetric, steady-state disk in the equatorial plane of a Kerr hole, in which gas moves generally 
along circular geodesics, the conservation laws given by Page and Thorne become: 
Conservation of angular momentum, 

+ 277r Í {tj + u^q* + q(pUr)dz\r + [2777*0/ + = 0 ; (Ala) 
J-h 

Conservation of energy, 

[-tilQut + lirr Í 0/ + mr + qtur)dz\r + [2777*0^ + utq
z)]tl = 0 . (Alb) 

J-h 

The conservation of rest mass has been invoked to bring the conservation laws into this form. We use the notation 
of Page and Thorne : tifQ is the accretion rate; w is the 4-velocity of the gas; t is the stress tensor in the local rest 
frame of the gas, and is orthogonal to w; ^ is the energy flux in the local rest frame of the gas, and is orthogonal 
to «; z measures vertical distance in the local rest frame; and the disk surfaces are at z = ±/z. 

We assume that the returning radiation is absorbed on the disk surface, so that in the interior of the disk energy 
is transported only in the z-direction: qT = q«, = qt = 0. This eliminates several terms in equations (Al). Since 
t is orthogonal to u, we have 

t* = = — ü.tff , (A2) 

where Q is the coordinate angular velocity of the gas. Equations (Al) may be written 

(-¿r0w* + 27TrW)tr + 47rr(S + u^F) = 0, (A3a) 

(-^0wt - 27rrQW)tr + 47rr(-QS + utF) = 0. (A3b) 
where 

W^C'tfdz, (A3c) 
j-u 

S = t(ßZ(z = h) , (A3d) 

F = qz(z = h) . (A3e) 

Note that F is the net flux at the disk surface; it is the difference between the flux emitted at the surface and the 
returning flux. 

We assume that the radiation emitted by the disk comes off vertically on the average, so that only the returning 
radiation contributes to S. Equation (5) relates the component T{(p){z) of the stress tensor of the returning 
radiation to the intensity and direction of the returning radiation, as observed in the rest frame. The indices 
(<p)(z) of this component refer to the orthonormal basis of the rest frame, e^t), e^, e{r), e{z), defined in the obvious 
manner. (For a description of this basis, see Novikov and Thorne 1973.) Since e{q>) and e(2) are orthogonal to the 
4-velocity n (= e(i)), and since e(<p) is the only spacelike basis vector with a component in the d¡d§ direction, 

t«P)W(z = h) = T((pXz); (A4a) 

S = eX(P)<pTWzK (A4b) 

Following the procedure of Page and Thorne, equations (A3a) and (A3b) are solved simultaneously to give 

F = iü, r(Wi + Q.uf) 1W ; (A5a) 

F = £l,r(ut + Q.u(p)~2r~1 j (ut + - rS)dr . (A5b) 

Note that F may be expressed as the sum of the flux F0 calculated with S = 0 (Page and Thorne express this quan- 
tity analytically) and a term which depends upon the returning radiation: 

F(r) = F0(r) - F0(rin) - ür(ut + Qw/"2r -1 f (ut + CluJSrdr, (A6) 
Jrin 

where the constant of integration in equation (A5b) was chosen so that F and W vanish at the inner edge of the 
disk rin. 
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The quantities in equation (A6) which refer to the motion of the gas may be expressed conveniently, in terms 
of the dimensionless functions introduced by Novikov and Thorne (1973): 

Ü = Mll2r~3l2^~1, (A7a) 

nr = -(3/2)M1/2/--5/2^-2, (A7b) 

(ut + QmJ = , (A7c) 

, (Aid) 

J1 = 1 + aMmr ~3,2 , (A7e) 

— \ — 3Mr-1 + 2aMmr~Z12, (A7f) 

® = 1 - IMr-1 + a2r "2 . (A7g) 

So, substituting these quantities in equation (A6), we find that 

F(r) = F0(r) - F0(rln) - (3/2)M1,2r-7/2^-1 T ^TMWr2dr . (A8) 
•'rin 

The steady-state assumption requires that the net flux F equal the locally generated flux Fg (see eq. [3]). 
The stress Wmust always oppose the shearing flow of the gas; hence, the positivity of Q>r means that W cannot 

go negative. As a consequence, at the inner edge of the disk, where the gas begins to plunge into the hole and 
the stress W nearly vanishes, we must also have W T is 0. At the inner edge, equation (A3b) becomes 

Uts = -AnrQ.SIÑ0 (at r = rin). (A9) 

This equation determines the radius of the inner edge. Expand ut>r near rms, the radius of marginal stability : 

Wi.r - utirr(r - rms), (A10a) 

Ut'ff = —Mr -3<^-1/2 (at r = rms). (AlOb) 

A first-order expansion is justified since we find that the difference between rms and rin is always extremely slight. 
Thus, by equation (A9), 

Tin - rms + 477^0 " W - l/2r 7/2^1/2r(<P)(S)|rms . (A1 

We have the interesting results that (for T((P)(Z) > 0) the returning radiation will decrease the net flux every- 
where and will destroy the nearly circular flow of the disk at some radius outside the radius of marginal stability. 
Because of the large orbital velocity of the gas, most of the returning radiation would be seen by a local observer 
to come from the direction of motion. The torque of the returning radiation, thus, tends to slow down the rota- 
tion of the disk and thereby forces the gas to spiral into the hole faster than it would otherwise. 
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