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ABSTRACT 

The problems of model classification and parameter estimation are examined, with the ob- 
jective of establishing the statistical reliability of inferences drawn from X-ray observations. 
For testing the validities of classes of models, the procedure based on minimizing the x2 statistic 
is recommended; it provides a rejection criterion at any desired significance level. Once a class 
of models has been accepted, a related procedure based on the increase of x2 gives a confidence 
region for the values of the model’s adjustable parameters. The procedure allows the confidence 
level to be chosen exactly, even for highly nonlinear models. Numerical experiments confirm 
the validity of the prescribed technique. 

The x2min + 1 error estimation method is evaluated and found unsuitable when several param- 
eter ranges are to be derived, because it substantially underestimates their joint errors. The ratio 
of variances method, while formally correct, gives parameter confidence regions which are more 
variable than necessary. 
Subject headings: X-rays : sources — X-rays : spectra 

I. INTRODUCTION 

X-ray astronomy observations have reached a level 
of sophistication at which systematic errors are 
usually insignificant in comparison with photon 
counting statistics, particularly in studies of faint 
extragalactic objects. Inferences drawn from such data, 
which might concern the spatial structure, spectral 
characteristics, or temporal variability of a source, are 
necessarily subject to random errors originating in this 
photon noise. It is consequently important to adopt 
data analysis procedures whose statistical reliability 
can be established. 

In this paper, we adress two important problems 
often faced by X-ray astronomers : the assessment of 
the validity of models, and the determination of values 
of adjustable parameters which valid models possess. 
A feature common to these problems is that the worth 
of an experimental measurement can be judged by 
what it rules out. In the first case, demonstrating an 
incompatibility between some supposed emission 
mechanism and one’s data suffices to rule out that 
mechanism; yet demonstrating agreement does not 
prove that the supposed explanation is correct. In the 
second case, one may constrain model parameters by 
demonstrating that some large region of parameter 
space would lead to incompatibilities with the ob- 
servations; yet, with any finite stretch of data, the 
exact parameter values cannot be determined. In both 
cases, the statistical reliability of these determinations 
may be established through the use of techniques of 
testing hypotheses concerning classes of models, and 
subsets of classes of models. 

In parameter estimation, it is the range of parameter 
values to which a theory is restricted that is the useful 
result of an experiment. The discrete best-fitting 

values of the parameters are essentially statistical 
artifacts subject to a variety of correlated random 
errors originating in the counting statistics of the 
original data. If an experiment could be repeated 
without systematic changes, best-fitting parameter 
values would differ, while their properly derived 
allowed ranges will overlap. In this paper, we derive 
a prescription for obtaining joint parameter ranges 
which can be constructed at any desired confidence 
level, and present the results of extensive numerical 
simulations which verify this prescription. 

We stress that we are not discussing a specialized 
problem in error analysis which is subordinate to the 
primary data reduction effort; rather, this issue in- 
volves the techniques used to calculate the major 
experimental results. Preliminary discussions of this 
approach have been given elsewhere (Margon 1974; 
Margon, Bowyer, and Lampton 1975a; Margon et al. 
1915b). 

II. HYPOTHESIS TESTING 

a) Simple Hypotheses 

Numerous hypotheses can, in principle, be formu- 
lated about astrophysical processes. A hypothesis 
can be quantitatively tested if it provides a complete 
prediction of the expected data and a statistical 
description of the expected deviations or errors. In 
X-ray astronomy, hypotheses must include models 
for detector performance, background, dead time 
losses, etc., as well as the source spectrum and inter- 
stellar absorption. Deviations in count-rate accumu- 
lations are described by Poisson’s law, which under 
the usual circumstance of many counts per bin is 
accurately represented by a normal distribution whose 
variance is equal to the mean. 
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A hypothesis is said to be composite if it contains 
adjustable parameters. We shall first discuss the 
testing of simple hypotheses, i.e., those having a fixed 
predicted count distribution. Testing such a hypo- 
thesis is done with a three-step procedure (see, for 
example, Brownlee 1965, p. 97). First, a test statistic 
S' is devised, so constructed as to be sensitive to sig- 
nificant discrepancies between the data and the model. 
Second, the statistic is evaluated for the data on 
hand. Third, this value is compared with the theo- 
retical distribution of 5-values expected if the hypo- 
thesis were correct. When S is reasonably ranked 
among the values expected, the hypothesis is not re- 
jected by the test: the model may be wrong, but no 
significant discrepancy has been seen. If, however, S 
lies in an improbable “critical region,” the hypothesis 
is rejected; it is wrong, or else an improbable data 
set was obtained. The policy of rejecting a simple 
hypothesis whenever 5 lies in the critical region has an 
easily computable reliability. Suppose the hypothesis 
is correct. Then the probability a of wrongly rejecting 
it is just the probability that S lies in the critical 
region: 

« = 1/(5)^, a) 

where f(S) is the probability density of 5, given the 
hypothesis, and the integration is performed over 
the critical region. The quantity a is usually termed “ the 
level of significance” of the test, i.e., of the critical 
region. Because ruling out a correct model is a fairly 
serious error, it is important to minimize the chance 
of this happening, i.e., to avoid claiming incompati- 
bilities with models unless the test statistic is quite 
improbably situated. Above all it is important to 
state the significance level at which rejection of a 
model is claimed, to allow readers to understand the 
reliability of the claim. 

An appropriate and widely used test is based on 
Pearson’s x2 statistic. Let 

¿V 

.2 
(A - Fd2 

(2) 

where A is the (integer) number of observed counts in 
bin / and the A are the accumulations predicted by the 
model. Each term of this sum is of the form of a 
deviation squared divided by the expected variance 
a? = Fi. The deviations are approximately Gaussian; 
and if the hypothesis is correct, they have zero mean 
and are independent. Therefore, under the hypothesis, 
S will be x2 distributed with Á degrees of freedom.1 

If the hypothesis is wrong, there will be additional 
contributions to S from the systematic errors in the 
fit, and S will on the average be larger than expected. 
The hypothesis is to be rejected if S exceeds some 
critical decision threshold, which can be chosen at any 
desired significance level a from tables of the x2 

1 Pearson’s (1900) original formulation tested only the 
shape, and not the size, of the histogram. Thus the Fi were 
normalized to the A sum. With that constraint, the S statistic 
has only N — 1 degrees of freedom. 

probability function. We feel that significance levels 
of greater than 10 percent are not secure grounds for 
rejecting a hypothesis: there would be an appreciable 
chance of falsely ruling out a correct model, and we 
view this as a serious error. A 10 percent significance 
level appears to us to offer a reasonable compromise 
between security of conclusions and sensitivity toward 
detecting false models. 

In this connection, a variant of the procedure 
outlined above is often used. From the observed 
value of 5, one calculates the observed significance of 
the fit (sometimes called the confidence of the fit), 
a0bs> from 

«0bs=JJ/(xW, (3) 

where / is the density of the x2n distribution. If aobs is 
found to lie in the range 10-100 percent, no significant 
discrepancy exists between the data and the model. 
If instead a0bs <10 percent, the model can be re- 
jected with the knowledge that this policy would fail 
only once in l/a0bs applications. 

b) Composite Hypotheses 

In X-ray astronomy we may wish to determine 
whether, in an absolute sense, any given class of 
emission model is compatible with the data at hand. 
This question may be answered in a quantitative 
fashion independent of the existence of other similar 
or dissimilar models, through methods of testing 
composite (adjustable parameter) hypotheses. 

A composite hypothesis can be rejected only when 
its best-fitting adjustment can be rejected. Thus in 
attempting to rule out all (say) power-law emission 
models for a source, one must explore all power-law 
indices, absorption column densities, background- 
level uncertainties, etc., to identify the best-fitting 
example and test it. 

The test is again accomplished by comparing the 
value of a test statistic with the population of expected 
values of the test statistic, under the hypothesis. The 
X2 test again can be used. The S statistic, given by 
equation (2), is minimized by varying p nonequivalent 
adjustable parameters. This may conveniently be 
done using a grid search method. The minimum value 
found, 5min, is, even for nonlinear models, theoretically 
distributed as x2 with N — p degrees of freedom 
(Fisher 1924; Cramer 1946, p. 424; Cochran 1952). 
The composite hypothesis is rejected at significance 
level a if 5min is found to exceed the a-point of the 
X2n-p distribution, defined by 

« = JVCxW (4) 

where Y = x2N-p(a) and /is the density of the distri- 
bution. Again, only low significance fits constitute 
evidence against the class of models being tested. We 
recommend that a model be regarded as incorrect 
only if it can be rejected with a < 10 percent; that is, 
only if Smln > xVp(O.lO). 
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III. PARAMETER ESTIMATION 

a) General Considerations 

The foregoing discussion involves a best-fitting 
point estimate of the adjustable parameter set. A point 
estimate is, however, worthless for parameter esti- 
mation unless some quantitative statement can be 
supplied as to its accuracy. Methods for generating 
point estimates can, for linear models, be extended to 
error estimation through covariance matrix methods 
or variational procedures. Thus, least-squares esti- 
mators, maximum-likelihood estimators, etc., can be 
perturbed to find the degree to which the fit is sensitive 
to these misadjustments. 

If one parameter of a linear model is being esti- 
mated from the data, and if all others are perfectly 
known from other data, then the standard error in 
the estimate may be found from the parameter range 
required to increase the x2 statistic S by one (e.g., 
Bevington 1969, p. 243). Early efforts at multi- 
parameter estimation in X-ray astronomy (Gorenstein, 
Giacconi, and Gursky 1967; Gorenstein, Gursky, 
and Garmire 1968) attempted to extend this by 
successively holding all parameters but one fixed, and 
noting the range of the remaining parameter for 
which AS = 1. However, many parameter estimators 
of interest in X-ray astronomy are highly correlated. 
Perturbations in one parameter can be to some extent 
compensated by readjustments in other parameters. 
An error estimate which holds the other parameters 
fixed neglects this correlation and underestimates the 
error (Eadie et al. 1971, pp. 197 ff.). 

An illustration of the interdependence of parameter 
estimates is provided by plots of constant x2 in 

parameter space. This technique was first applied to 
X-ray astronomy spectra by Lampton et al. (1971), 
and has been adopted by other groups (Bunner et al. 
1972; Lea et al. 1973; Davison et al. 1975; Wolff, 
Helava, and Weisskopf 1975; Kellogg, Baldwin, and 
Koch 1975). It is important to establish the reliability 
of such constructions. Equivalently, we wish to 
construct a region that encloses the true value of the 
parameters, known to nature but not to the ex- 
perimenter, a quantitatively predictable fraction of all 
experiment repetitions. We refer to this fraction as the 
“confidence level” of the construction method. 
Because the experiment is conducted only once, we 
are forced to focus our attention on analyzing one 
discrete section of data. Hence we will usually have 
available as our experimental result only one such 
contour. However, if this contour is constructed 
according to a prescription which yields a calculable 
confidence level, we regard this confidence as equiva- 
lent to the probability that the one available contour 
encloses the true parameter set. We emphasize, 
however, that the region is a statistic constructed 
from the data; its properties, including its reliability, 
can be computed from probability theory. 

Confidence regions have received careful treatment 
in the literature (Cramer 1946, p. 511; Brownlee 
1965, p. 121; Eadie et al. 1971, p. 200). There are in 
principle infinitely many ways to construct regions at a 
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given confidence level. These methods give regions 
which can differ substantially in size, shape, and 
location. It is of course desirable that the region be as 
small as possible while achieving the required con- 
fidence level. In nonlinear estimation there is no 
satisfactory general way to construct minimum- 
volume confidence regions. Covariance matrices, for 
example, do not adequately describe errors in non- 
linear parameter estimation. However, with the 
prescription given below, regions can be constructed 
which do have usefully small parameter-space 
volumes and which can be chosen to correspond to a 
given confidence level. 

Before considering methods for constructing general 
confidence regions for parameters in nonlinear 
models, we shall discuss the simple example of a 
linear, independent, two-dimensional confidence re- 
gion. Suppose some quantity X is measured by one 
sample x known to have normal errors and variance 
o-2. Then with 68 percent confidence, one could claim 

x — <J<X<X + o. 

We emphasize that the true value Y is an unknown 
number and not a statistic; it is the interval {x — a, 
x + a) which is the statistic, and the confidence level 
is the probability of the “plus and minus one sigma” 
construction procedure being successful. We could 
also have claimed 

x — 0.47(t < Y < oo 

with 68 percent confidence. There are infinitely many 
procedures which give a 68 percent interval for Y. 
In this linear normal model, the symmetric interval 
is shortest (Brownlee 1965, p. 126). 

Now if a second quantity 7 is to be estimated from 
a sample y having normal errors independent of x 
and variance a2, one could claim 

y — a < Y < y + a 

with 68 percent confidence. The truth of this state- 
ment is independent of the truth of any claims about 
Y. The following statements can be made about Y 
and 7jointly: (1) The square x ± o, y ± cr contains 
Y, 7 with 46 percent confidence, (2) The rectangle 
x ± o, y ± oo contains Y, 7 with 68 percent con- 
fidence, (3) The half-plane x( + oo, — 0.47cr), y ± co 
contains Y, 7 with 68 percent confidence, (4) The 
square x ± 1.36o-, y ± 1.36o- contains Y, 7 with 
68 percent confidence, (5) The circle centered on x, y 
having radius 1.52o- contains Y, 7 with 68 percent 
confidence. 

The above statements illustrate the fact that, even 
in this linear independent-error example, joint con- 
fidence regions are larger than single-parameter 
intervals having equal confidences. The reason for 
this growth of interval lengths is simply that, in 
estimating many parameters simultaneously, there 
are many possible coordinates in which the region 
may fail to enclose the true value (Eadie et al. 1971, 
p. 197). 
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These statements also illustrate the variety of equal- 
confidence regions which may be constructed, and 
show that if some parameter is not of interest, it 
may be possible to weaken its constraint and corre- 
spondingly tighten the constraint on the remaining 
interesting parameter(s). However, when the errors 
are correlated, this separation is not trivial, because 
uncertainties in the uninteresting parameters contrib- 
ute to the uncertainties in the parameters sought. 

Confidence regions can also be constructed in such 
a way as to include irrelevant statistical variables. 
By an irrelevant variable we mean one which affects 
the contour but which is not affected by, nor can be 
used to infer, any of the desired parameters. For 
example, suppose that a procedure constructs a 10 
percent confidence region from a data set, and that 
another procedure constructs a 90 percent confidence 
region from the same data. Suppose that then a fair 
coin flip is used to select one of these regions. The 
overall procedure yields a 50 percent confidence 
region. Such constructions are unsatisfactory because 
the inclusion of the irrelevant variable makes the 
inferred parameter ranges more variable and hence 
less trustworthy than they might be in any one ex- 
periment. It is obvious that irrelevant variables should 
be avoided where possible. 

b) A Correct Procedure for X-Ray 
Astronomy 

We have noted in § lia that for a correct model with 
the true (but usually unknown) parameter values, the 
S statistic Strue will be x2 distributed with N degrees 
of freedom. We have noted in § lib that the best- 
fitting adjustment of the p parameters yields an Smin 
statistic which will be x2 distributed with N — p 
degrees of freedom. The argument given in the Ap- 
pendix establishes the difference of these, AS ^ 
Strue — A'min, as being distributed as x2 with p degrees 
of freedom, and proves that the AS variate is inde- 
pendent of Smln. This derivation is closely related 
to the addition theorem for independent x2 variates 
(Cramer 1946, p. 234), 

X2n-v + X2v ~ X2n , 

where ~ denotes “is distributed as.” 
Our remarks provide a prescription for finding a 

confidence region for the parameters, whenever the 
form of the model is correct. Imaging repeating an 
experiment whose data analysis procedure consists of 
exhibiting the /?-dimensional parameter space region 
R for which S - Smin is less than some fixed limit 
T. In some iterations, R will include the true param- 
eter point; others, not. But because the true parameter 
AS ~ x2p> the confidence is 

c = C f(x2)dx2 , 
Jo 

where / is the density of the x2p distribution. This 
establishes R as a confidence region. Its shape cannot 
be arbitrarily chosen as in the preceding simple 
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example because its extent is determined strictly by 
the (one-dimensional) AS distribution. However, this 
construction method has the advantage of nowhere 
relying of the linearity, separability, or independence 
of the model parameters. It therefore provides exact 
confidence regions even in nonlinear X-ray astronomy 
applications. 

We have noted that the AS statistic is independent 
of the £min statistic. Indeed, AS has only as many 
degrees of freedom as the parameter vector has 
dimensions. This situation assures us that irrelevant 
variables (e.g., components of Smin) have been ex- 
cluded from the confidence region construction pro- 
cedure. The actual value of Smin is irrelevant to the 
determination of the parameters’ values because, at 
Smin» all partial derivatives of S with respect to the 
parameters vanish. Indeed, the Smin distribution is 
independent of the parameter vector (Fisher 1925, 
p. 99). Information as to the size, location, and shape 
of the parameter confidence region must come from 
the variations of S in parameter space rather than 
from the value of Smm. 

In terms of the S statistic (eq. [2]), the recommended 
procedure can be established by the following argu- 
ment. By 

AS~x2p 

we mean for any number T 

Prob (AS > T) = Prob (X
2

P > T). 

With the limiting contour value SL defined as Smin + 
T, 

Prob (AS > SL Smin) = Prob (X
2

P > SL - Smin) , 

or, from the definition of AS, 

Prob (Strne > SL) = Prob (X
2

P > SL - Smin) . 

The left-hand side is just the probability a of the 
contour failing to enclose the true value, hence 

a = Prob (x2
P > - Smln). 

But, the a-point of the x2 distribution is defined by 

a = Prob [x2p > x2p(°0] > 

so that SL — Smin is exactly the «-point of x2
P, and the 

required contour for significance a is exactly 

Sl = Smirl + x2p(<*) • (5) 

In this expression, x2p(°0 is the tabulated value of the 
X2 distribution for p degrees of freedom and sig- 
nificance a . We reiterate that the value of p to be 
used in this expression is the number of parameters 
adjusted in minimizing S. The /7-dimensional param- 
eter region for which S is less than SL would enclose 
the true parameter vector in 1 — « of all experiments. 
Equivalently, any one observation’s contour has a 
confidence C = 1 — « of enclosing the true parameter 
vector. 

LAMPTON, MARGON, AND BOWYER 
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TABLE 1 
Values of the Term x2p(«) 

Significance Confidence    
a C i>=l P = 2 p = 3 p = 4 

0.80  0.20 “0.25a” , 0.06 0.45 1.00 1.65 
0.32  0.68 “la” 1.00 2.3 3.5 4.7 
0.10  0.90 “1.6a” 2.71 4.61 6.25 7.78 
0.01  0.99 “2.6a” 6.63 9.21 11.3 13.3 

In Table 1 we list the value of the term x2p(a) f°r 

several cases of interest. Also shown in the table, for 
the purpose of comparison with commonly used 
nomenclature (Eadie et al. 1971, p. 190), is the number 
of standard deviations of the normal distribution 
equivalent to each of the values of a. These values are 
given in quotation marks to emphasize that this 
problem does not involve normally distributed param- 
eter estimators. 

We note several interesting features of the table. 
For theories with one free parameter, a 68 percent 
confidence interval may be generated at 

:=: *Smin + 1-00. 

Therefore equation (5) reduces in the limit p = 1 
to the commonly used formula. As pointed out by 
Margon et al. (1975&), however, for the typical X-ray 
astronomy analysis one has /? = 3, and therefore to 
jointly estimate these three parameters with 68 per- 
cent confidence, 

= *Smin + 3.5 ; 

or to the more realistic confidence level of 90 percent, 

*Sl = ‘S'min + 6.25 . 

Kellogg, Baldwin, and Koch (1975; hereafter 
KBK) have suggested that Smin + 1 is appropriate 
for the joint estimation of several parameters. Here 
we note that our analytic derivation does not support 
the use of SmiVi + 1 for problems in which several 
parameters are simultaneously estimated. Indeed, for 
/? = 3, Table 1 shows that S^n = 1 regions have only 
20 percent confidence; only one in five such regions 
encloses the true value. However, equation (5) pro- 
vides an equally simple prescription that can be 
correctly applied for any desired values of p and a. 

It is important to bear in mind that statistical 
parameter estimation methods cannot be expected to 
function reliably in the presence of large systematic 
errors. One should proceed to estimate parameters 
of a model only after the model has been found to give 
acceptable fits. In the present context, this is equiva- 
lent to requiring that SmiTi be reasonably ranked in the 
X2n-v distribution, i.e., that S^in not greatly exceed 
N — p. 

We should explicitly point out that the formalism 
developed here has a much wider range of application 
than just the fitting of energy spectra. It can be applied 

to any binned Poisson accumulations for which the 
model prescribes the Fu as long as all i7* » 1 so that 
deviations are closely Gaussian. There is no restriction 
on A, except that it must exceed p. One application 
to X-ray astronomy is the testing of models of spatial 
source structure using binned angular scan data (Lea 
et al. 1973). Another would be a test for the presence 
of a source with background in an on-source off- 
source measurement. A joint hypothesis about source 
and background spectra can be tested with a x2 

statistic similar to equation (2) but containing not 
only background-plus-source terms but also back- 
ground-alone terms. In this fashion, the problem of 
uncertain constants may be dealt with. 

Tests for statistically significant differences in 
parameter values obtained from two or more data 
sets may be carried out with the formalism presented 
here. If the confidence regions overlap, there is of 
course no reason to reject the hypothesis of parameter 
constancy. Indeed, their overlap is a set of parameter 
values which reconcile all the data. Suppose, however, 
that two confidence regions having significances a are 
disjoint. Under the best-fitting constancy hypothesis, 
this circumstance could occur with probability a. The 
policy of rejecting the constancy hypothesis whenever 
the regions are disjoint would thus fail in a fraction 
a of all experiment repetitions. So, we regard the 
policy of rejecting parameter constancy when regions 
are disjoint, as having the same confidence as the 
regions, i.e., 1 — a. 

Recently, Wolff, Helava, and Weisskopf (1975) 
have obtained X-ray spectra of the Perseus cluster 
of galaxies, and argue that the spectral parameters of 
NGC 1275 diifer significantly from those of the re- 
mainder of the cluster, because the best-fit points 
differ. We caution that best-fit points are not suited 
to the task of hypothesis testing; in fact, a best-fitting 
point is a zero-confidence region whose location is a 
statistic dependent upon fluctuations in the data. Since 
the contours shown by Wolff et al. overlap even at the 
Smin + 1 level, there is no need to postulate differing 
spectra based on their parameter contours. 

c) Likelihood Ratio Methods 

A related method of parameter estimation is based 
on the extent of the likelihood function in parameter 
space. In X-ray astronomy, likelihood functions have 
been recommended (e.g., Hearn 1969) and used (e.g., 
Giacconi et al. 1972, 1974) for parameter error 
estimation. We briefly sketch the likelihood ratio 
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method here. For Gaussian deviations, the likelihood 
function 

is proportional to the probability that a model with 
arbitrary parameter values gives the observed data. 
To approximate a Poisson process, we set the vari- 
ances CTf2 = iv For ^ given set of data, L can be 
considered to be strictly a function of the adjustable 
parameters of the model, through the F* parameter 
dependences. By comparison with equation (2), we 
note that L = exp( —hence the parameter set 
which minimizes S, maximizes L. This maximum- 
likelihood estimator is, of course, unlikely to be the 
true parameter value. Its error may be expressed by 
constructing the region in parameter space for which 
the likelihood ratio À = L/Lmax exceeds some cutoff 
value Acrlt (Brownlee 1960, p. 113). This region will 
enclose the true parameter value in a predictable 
fraction of all experimental repetitions, and indeed its 
boundary coincides with the surface of constant S, 
with S = SmiTi — 2 In Acrit. The likelihood ratio 
method is thus equivalent to the x2 procedure sum- 
marized in equation (5), as noted by Cramer (1946, 
p. 426), and can be employed to construct parameter 
regions with any desired confidence level by choosing 
^crit(a) = exp [ —ix2p(a)]» as recommended by Eadie 
ei a/. (1971, p. 207). 

d) Reduced Numbers of Parameters 

The foregoing formalism provides a straightforward 
method to jointly estimate values of all parameters in 
fitted functions. For some purposes, however, it is 
desirable to obtain constraints on some subset of those 
parameters, without regard to the remaining ones. 
Examples of this situation are found wherever relevant 
but uninteresting variables (e.g., background levels) 
affect results, or where for display purposes the 
parameter region must be reduced to a two-dimen- 
sional contour. 

A rigorously valid constraint on the parameter 
subset values can be obtained by projecting the 
original /7-dimensional confidence region onto the 
desired subspace of, say, q parameters. The confidence 
of the projected region is at least as high as that 
of the original region, because it contains the original 
region as a subset. Consequently the exactly known 
confidence of the original region is a definite lower 
limit to the confidence of the projected region. 

The projection method may be implemented in the 
following way. First, a grid of parameter points is 
established in the desired subspace. Then, at each 
point in the grid, all p — q remaining parameters are 
adjusted to minimize S there. On this grid, the set of 
parameter values having S < SL will contain the true 
value with confidence C > 1 — a, where SL is taken 
to be Smin + x2p(°0 in accord with equation (5). 

A second method can be used to construct exact 
confidence regions for q of the p parameters when 

the model is linear, i.e., when the F* are linear func- 
tions of the parameters. In this case, the /7-dimensional 
covariance matrix Vpp provides a complete description 
of the fitting errors. The covariance matrix for the 
desired parameters, Vqq, is obtained by simply deleting 
the unwanted rows and columns from Vpp (Eadie 
et aL 1971, p. 199). The contribution to AS from 
random errors in the q parameters a is just the quad- 
ratic form aTVqq~

1a, which is distributed as x2 with 
q degrees of freedom (Eadie et al. 1971, p. 63; Brown- 
lee 1965, p. 277). Consequently a joint confidence 
region for the desired q parameters, independent of 
the values of the remaining p — q parameters, is the 
set of all points for which S < SL with SL = Smiri + 
X2

a(a). The construction of this region can proceed 
as in the first method, with a ^-dimensional grid of 
trial parameter values and with S minimized at each 
point with respect to the remaining p — q variables. 
Nothing can, of course, be said about these remaining 
parameters ; thus this is a specialized technique which 
has not commonly been invoked in X-ray astronomy 
analyses. 

We note that this method must be used with great 
caution because its derivation explicitly depends upon 
model linearity. In X-ray astronomy, spectral param- 
eters fix predicted count rates through highly non- 
linear functions, and we should not in general expect 
a linear matrix decomposition to satisfactorily remove 
unwanted parameter constraints. Specifically, when 
parameter-space constant-S contours deviate ap- 
preciably from ellipsoids, substantial model non- 
linearity is indicated. In such cases, projection of the 
full x2p region gives a secure upper limit to the joint 
errors in the q parameters. Nonetheless, the nonlinear 
numerical simulations conducted by Avni (1976) show 
that the confidence level achieved by projection onto 
the subspace of q parameters is accurately given by 
the x2(z function. 

A third method for reducing the number of con- 
strained parameters is possible whenever parameter 
intervals can be independently constructed. Specifi- 
cally, if the parameters to be fitted can be chosen in 
such a manner as to permit factoring the likelihood 
function, e.g., 

L{a, b, c) = La(d)Lbc(b, c), 

or (equivalently) decomposing the x2 statistic, 

S = Sa(o) + Sbc(b, c), 

then the separated parameters may be assigned 
confidence intervals independently of constraints on 
the remaining parameters. In this example, an interval 
for the a parameter would be the interval for which 
S < SL with SL = Smin + x2i(°0- Similarly, a joint 
confidence region for the parameters b and c is the 
S < SL region with SL = Smin + x22(«). 

We remark that this separation method is usually 
inapplicable to X-ray astronomy analyses, due to the 
complicated interdependences of scientifically useful 
parameters. In some cases parameters may be con- 
cocted which are reasonably independent of the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



No. 1, 1976 PARAMETER ESTIMATION IN X-RAY ASTRONOMY 183 

others; examples are the use of total count rate 
(Giacconi et al. 1972) or 1-10 keV fluxes (Bowyer 
et al. 1970) in specifying X-ray intensities. However, 
the intensity coefficient of a spectrum is not generally 
separable from the other parameters in spite of the 
fact that the fitting function is linearly dependent on 
it. This problem is due to the coefficient estimator 
being highly correlated with the other parameters. If 
its value is needed, it must be estimated jointly with 
the other parameters. 

IV. NUMERICAL SIMULATIONS 

In Margon et al. (1975a, b) we described several 
numerical simulations designed to measure the con- 
fidences of regions constructed according to various 
Smin + T prescriptions. The purpose of conducting 
those simulations was to verify that equation (5) is 
applicable to the specific nonlinear models used in 
X-ray astronomy spectrum analysis. They involved 
picking models by assigning parameter values to an 
equation of the form 

1(E) = aE-cQxv(-bE-*) (6) 

where a, b, and c set the intensity, absorption, and 
index of the hypothetical source. The simulations 
established that with T chosen to be 1.00, 3.50, and 
6.25, the reliability of the contours was 17 ± 10 
percent, 64 + 7 percent, and 84 ± 4 percent, in ex- 
cellent agreement with the x2s distribution appro- 
priate to this example (eq. 5). 

A more realistic simulation could be carried out by 
including the effects of the detector and pulse height 
analyzer on the observed count distribution. Although 
we have no reason to believe that the theory of § II 
should not be valid in both cases, the latter clearly 
offers a more unambiguous test of the technique. 

We have therefore generated data for this simulation 
by calculating a nominal response curve for a gas 
proportional counter of a type employed by numerous 
experimenters. We have assumed a gas mixture of 
argon and methane at surface densities of 4.3 and 
0.2 mg cm-2, respectively, and a £ mil Mylar window 
with a conductive Nichrome coating. 

One of the more mathematically interesting pro- 
perties of a proportional counter is its finite energy 
resolution. An incoming monochromatic photon 
flux is detected as a series of ion pulses having a 
distribution of different pulse heights. This con- 
volution could conceivably have an effect on the 
error estimation process, so we have included it in 
the simulated observations. We have used a Poisson 
energy resolution kernel of the form 

R(E, Y) = 
exp(-is/0 (£/g)y'Q 

Q TiY/Q+l)’ 
(7) 

where E is the incident photon energy, Y the resulting 
pulse height, and Q the mean ionization energy per 
primary electron. This function has been shown ex- 
perimentally to be a good approximation to actual 
proportional counter pulse-height distributions (Camp- 

bell and Ledingham 1966). For most of the simula- 
tions, unless otherwise stated, we have set Q = 0.043 
keV, which yields a resolution of 20 percent FWHM 
at the 55Fe line at 5.9 keV. 

The simulations proceded as follows. An incident 
spectral function such as equation (6) is chosen, and 
realistic values are selected for the free parameters. 
This then completely defines the “true” spectrum. 
This spectrum is then convolved with the counter 
response and resolution functions to yield an energy- 
dependent pulse-height spectrum of the form 

Fi = T ¡Yi + 11(E)rj(E)R(E, Y)dEdY, (8) 
JO jYi 

where r)(E) is the counter response function defined 
above, Yt and Yi+1 are the lower and upper energy 
limits of each pulse-height interval, and the other 
symbols have been previously defined. The pulse- 
height intervals have been selected to be 1 keV wide, 
centered on energies from 1 to 7 keV. The normaliza- 
tion coefficient in the function 1(E) was normally 
selected to yield hundreds or thousands of counts per 
pulse-height channel, i.e., similar to that obtained 
from a typical satellite or long rocket exposure. 

The iterative simulation is now ready to procede. 
Each iteration consists of applying a Poisson count 
rate fluctuation to each of the seven F*. This is done 
by calling a random number generator that supplies 
a normally distributed random number with mean 
and variance both equal to F¿. Define the resulting 
perturbed count rate spectrum as A; for each iteration 
it represents the results of one “experimental measure- 
ment” of the true pulse-height spectrum. For this 
iteration we may now immediately calculate StruG, the 
value of the statistic S in equation (2) for the true free 
parameter values, from the expression 

v(A-^)2 

í = i Ei 
(9) 

Note that the tr^’s are known precisely since we 
specified them to the random number generator. 

We now determine the best-fit free-parameter value 
for this iteration by varying the free parameter 
values about the known true values, minimizing 
equation (2) with a steepest-descent algorithm. 
Minimization continued until successive values of S 
differed by less than one part in 104. The result is a 
value for Smin and the associated values of the free 
parameters. It is now possible to calculate the quantity 
Arue — Smin needed to estimate the AS distribution. 
This completes one iteration of the simulator; the 
values of Strue, Smin, and the best-fit parameters are 
stored. For each choice of an initial function 1(E), 100 
to 150 such iterations were performed. 

At the conclusion of the simulation, certain sum- 
mary statistics are computed. The mean and sample 
standard deviation of the stored values of Strue, Smin, 
and Strue — Smin, are derived, and compared against 
the known mean and standard deviation for the x2 

distribution with N, N — p degrees of freedom, 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



© American Astronomical Society • Provided by the NASA Astrophysics Data System 



PARAMETER ESTIMATION IN X-RAY ASTRONOMY 185 

respectively. A histogram of the number of occurrences 
of each value range for each of the ^-statistics is also 
plotted, and compared with the appropriate x2 

distribution function, to ensure that the higher 
moments of the distributions are similar. The means 
and standard deviations of the free parameter values 
are computed, and compared with the known true 
parameter values. Finally, the fraction of *Strue — 
Smin which are less than 6.25, 3.5, and 1 were calcu- 
lated to compare with Table 1. Note that if Strue — 
Smin ^ T for any value of T, then a contour in S-space 
drawn about Smin of size S^in + T will encompass 
¿true- Thus this calculation is the simplest way to 
verify that a test contour does or does not encompass 
the true values, without the necessity of graphically 
constructing the entire contour in parameter space. 
Note that the procedure of verifying the contour 
volume in S-space, i.e., asking whether StTVie lies in the 
interval [Smin, Smin + T], is identical to performing 
this construction in the fully three-dimensional 
parameter space because of the correspondence given 
in equation (2). 

The results for each phase of the simulation [each 
choice of an 1(E)] are given in Table 2. We have taken 
some care to compute errors on the values of statistics 
and quantities derived from the simulation, so that 
they may be properly compared with expected values. 
These errors were computed as follows : 

ci) Mean 5*^rue, Miean *5^^, M^ean *5true ^min* 
Error quoted is the standard deviation of the mean 
of the list of statistics generated in the simulation. 

b) S.D. Strue, S.D. Smin, S.D. iStrue — Smin.—Error 
quoted by calculating the normal error in n inde- 
pendent samples of the variance of a Gaussian random 
variable. The fractional error in such a variance 
estimate is (Ijn — 1)1/2. 

c) Mean ömin, Mean 6min, Mean cmin.—Error quoted 
is the standard deviation of the mean of the list of 
parameter values that minimized S for each iteration. 

d) Fraction of (a, b, c)true within SmiYl + T, for 
T = 6.25, 3.5, 1.—Error quoted is the Bernoulli 
error for the known number of iterations. 

We now discuss each phase of the simulation 
separately. 

a) Power-Law Model with Attenuation 

The function given in equation (6) was used with 
a = 50,000, b = 4.6, c = 1.5. The value of b was 
chosen to give significant attenuation in the low- 
energy channels, and the value of the slope c is typical 
of that found in many celestial X-ray sources. A total 
of 113 iterations yielded the results in Table 2. The 
values of the statistics and free parameters are 
precisely as predicted to within the errors ; a contour 
of size Smin + 6.25 enclosed 90 percent of the true 
values, as predicted. In Figure 1 we present histo- 
grams of the values of the three 5-statistics obtained 
in the simulation, and appropriate x2 distribution 
functions, to show that the higher order moments of 
the distributions are also in agreement with theory. 

VALUE OF STATISTIC 
Fig. 1.—Histograms of the observed distributions of the statistics Strue — Smin, Smin, an(l Stme, for the 113 iterations of fits to 

power-law parent spectra described in § I Va. Also shown are the probability densities of the x2 distributions having 3, 4, and 7 
degrees of freedom, normalized to 113 trials. 
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b) Exponential with Attenuation 

To simulate thermal emission from a thin plasma, 
a function of the form 

1(E) = aE~x exp ( — Ejc) exp ( — bE~3) (10) 

was utilized in equation (8). The free parameters were 
set to resemble a 3 keV plasma, with moderate attenua- 
tion as in case A. After 152 iterations, Table 2 indi- 
cates that the distributions are again as predicted. 

c) Highly Nonlinear Exponential with 
Attenuation 

To create an extremely nonlinear case to test our 
technique, we repeated phase B with c = 400, i.e., 
the equivalent of a 400keV plasma. When measured 
with an instrument with a bandpass of 1-7 keV, 
relatively large fluctuations of the value of c about 
ctrue should have little effect on the derived spectrum. 
Thus the generated contours in parameter space 
should usually be open-ended in the direction of 
large c. The results in Table 2 show that the S- 
statistics still behave as we predict, after 111 iterations. 
The derived values of a and b also bracket the true 
values. The observed mean for c is 1150, substantially 
different from c^ue = 400 and indicating that the 
desired nonlinearity has been achieved. As expected, 
continued iterations yield values for c in the range 
~102 to infinity with relative uniformity. The im- 
portant result to note (Table 2) is that even in this 
highly nonlinear situation, the contours drawn 
according to equation (5) still encompass the true 
parameter values the correct fraction of times, even 
though the average best-fit parameter might differ 
from its true value. This fact reinforces the utility of 
regarding the confidence region, and not the best-fit 
point, as the essential result of a data analysis pro- 
cedure. 

d) Low-Count-Rate Exponential 

In a further effort to create a highly nonlinear 
problem, equation (10) was used again as the incident 
spectrum, but with a = 3000, b = 4.6, and c = 100. 
A 100 keV plasma with this value of normalizing 
coefficient a and the assumed instrument response 
function yields a very small total number of counts 
per channel, the least efficient channel containing 
only 16 detected counts. The results in Table 2 again 
show that the desired nonlinearity was achieved 
(with mean cmin = 460 while ctrue = 100) and that 
the contour prescription is still an effective one, since 
the predicted fraction of free parameter values still 
fall within the calculated contours. 

e) Instrumental Energy Resolution 

One might ask whether the finite energy resolution 
of proportional counter instrumentation may in- 
validate or modify the formalism derived here, because 
the strong physical correlation between neighboring 
pulse-height channels may reduce the effective 

number of independent degrees of freedom in the 
problem. It certainly is true that an intense mono- 
chromatic flux in one channel will cause a correlated 
increase in counts in neighboring channels, inde- 
pendent of the true flux in those channels. However, 
this does not alter the number of statistical degrees 
of freedom in the problem. This quantity is deter- 
mined solely by the number of independent samples 
of the randomized spectrum available to the observer, 
regardless of the physical process or algorithm which 
generated the data prior to its perturbation. 

To numerically verify our conclusion, we have 
examined several phases of our simulation relevant 
to the energy resolution problem. First, phases 
(d)-(d) above, which use a finite resolution comparable 
to actual detectors, may be compared with the simula- 
tions reported by Margon et al. (1975a, 6), which 
ignored resolution (and were thus equivalent to an 
experiment with perfect resolution). In all cases, 
equation (5) correctly sized the relevant contour. To 
further pursue this point, however, we conducted 
another simulation identical to phase (è), but with a 
value g = 0.3 keV inserted in the energy resolution 
kernel, equation (7). This is equivalent to an energy 
resolution of roughly 53 percent at 55Fe, far worse 
than would be tolerated in an actual experimental 
situation. The results in Table 2 indicate that the 
desired effect was achieved, because the errors on the 
derived values of amln, ¿>mln, are roughly twice as 
large as for case (¿), which is identical to the present 
case except for better resolution. This larger scatter in 
the derived values indicates that the degraded resolu- 
tion evidences itself in a less precise determination 
of the free-parameter values, as we would expect. 
Thus the contours resulting from these experiments 
have more volume in parameter space than those for 
case (b). However, contours drawn in S-space by 
equation (5) still enclose the predicted fraction of the 
true free-parameter values. This difference is of course 
due to the much slower variation of S with parameter 
value in the present case. Thus we have demonstrated 
that our formalism is independent of the magnitude 
of energy resolution of the experiment, as we predicted 
on theoretical grounds. 

V. THE SIMULATIONS OF KELLOGG et al. (1975) 

Kellogg, Baldwin, and Koch (KBK) (1975) have 
reported results of numerical simulations which they 
feel support the use of 5min + 1 to provide an a = 
0.32 contour for the case of # = 2 and /? = 3. In this 
section we describe their simulation and discuss their 
results. 

The KBK simulation method is the following. 
One spectrum of actual experimental data is first 
selected, containing (unknown) Poisson fluctuations 
about the (unknown) true spectrum. A single best-fit 
parameter set is then calculated, using a least-squares 
grid technique. On this grid, a single Smin + 1 contour 
is drawn. The iteration scheme consists of randomizing 
the best-fit spectrum and locating a new best-fitting 
parameter set, to determine if it is enclosed by the 
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PRESENT WORK KBK 

Fig. 2.—Schematic illustration of the simulations reported 
here, in which numerous confidence regions are tested to find 
their probability of containing the known true parameter 
value (cross). Also sketched is the method of Kellogg et al. 
(1975; KBK), where perturbed best-fit points are compared 
with a single parameter region. In both cases, the axes re- 
present derived values of any two free parameters. 

data: 

^ = |(A -i^)2. 

Then, by adjusting the p parameters of the model, one 
finds the minimum value of These situations now 
hold: {a) is in principle distributed as <j2x2n-p\ 
(b) = ^rue — is in principle distributed as 
cr2x2p, independently of ^nin. It follows that the 
ratio of variances is independent of a2 and is 

9? v2 
^true ^ 1 _L -X. P... Cf ~ V2 

'-'min A N -p 
1 + P 

N - p 
F(p,N-p) 

one original experimental contour. The fraction of 
these successes was taken to be the confidence of the 
contour construction method. 

The conceptual difference between our simulations 
and those reported by KBK is shown schematically 
in Figure 2. We have generated a great many three- 
dimensional contours about one known “true”-value 
point in parameter space, to assess the probability 
that any one contour contains this known point. 
KBK have calculated a single two-dimensional 
contour about one value of Smin; this contour may 
or may not contain 5true. They then calculate the 
fraction of further best-fit values falling in this one 
contour, a quantity which is unrelated to the prob- 
ability that the contour drawing technique is yielding 
a fixed, desired confidence level. The initial contour 
is not tested, because the true (astronomical) param- 
eter values and indeed the correct fitting functions are 
unknown. The subsequently randomized fits are of 
course not true parent spectra for the initial contour, 
so they do not test its confidence either. 

Since we have provided an analytic derivation and 
extensive simulations whose results are in agreement, 
while KBK have no derivation and simulations which 
do not appear to establish the reliability of their 
method, we feel that we are justified in concluding 
that equation (5) gives the correct confidence region 
for the joint estimation of p parameters. 

VI. THE RATIO-OF-VARIANCES METHOD 
Some recent X-ray astronomy papers (Charles, 

Culhane, and Zarnecki 1975; Fabian 1975) have 
employed the ratio-of-variances method (Draper 
and Smith 1966; Cline and Lesser 1970) to construct 
multiparameter confidence intervals. The method is 
appropriate in applications where a function F* is 
to be fitted to data A subject to errors having variances 
which are neither known nor fixed by the model, but 
which must be estimated from the data. If the errors 
have a common variance a2 and are Gaussian, one 
may proceed in the following way. The unnormalized 
sum of squared errors2 is formed from the N 

2 The formulation of Cline and Lesser (1970) allows for 
separate relative variances or weights for the N terms. We 
have adopted the simpler formulation of Draper and Smith 
(1966) to emphasize that the overall variance scale is a 
separately determined factor. 

where F is the Fisher-Snedecor distribution. A con- 
fidence region for the parameters is the parameter 
range having with 

= ^nin 1 + N 
; F(p, N - p, a) (11) 

in which F is chosen from the tables at the desired 
confidence level. 

It is correct that equation (11) will generate a con- 
fidence contour at level (1 — a). In addition to the 
derivation provided above, we have numerically 
verified equation (11) using a simulation technique 
identical to that described earlier to check equation 
(5). For any one given iteration, equations (5) and 
(11) will yield different size contours; this is certainly 
not incompatible with their both providing the same 
confidence level. Over the ensemble of iterations, both 
will enclose the true parameter values the correct 
fraction of trials. 

In the limit of infinite A - ^ the residual variance 
^miJN — p approaches the true value a2. Also, 
pF(p, N — p) approaches a x2

P distribution. It follows 
that in this limit a confidence region is defined by 
¥ < with 

= ^nin + ^VpO*) • 

In this limit, the region is the same as is given by 
equation (5). Thus the confidence region construction 
methods approach equality as A — oo. 

The ratio-of-variances method is self-consistent 
and has been recommended in a variety of applica- 
tions where the variance is unknown (Beale 1960; 
Draper and Smith 1966, p. 292). Cline and Lesser 
(1970) have shown3 that workers who choose to 
normalize ^in to A - /? are actually using the 
ratio-of-variances method. That is, they point out 
that (A - is not x2 distributed, but is 
instead distributed as pF{p, A — p). 

We wish to point out that the ratio-of-variances 
method is unnecessary and in fact undesirable in 
applications such as X-ray astronomy where term 

3 The clarification noted by Lesser et al. (1972, p. 610) 
applies to the number of degrees of freedom in their par- 
ticular problem, and not to the general formalism discussed 
here and in Draper and Smith (1966). 
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variances are exactly predicted by the model. The 
ratio-of-variances presciption for the limiting contour 
contains the statistic ^in. This value is, however, 
irrelevant to the estimation of parameters for the 
same reason that of § HIß is irrelevant: it is 
unaffected by the parameters’ values and so is of no 
help in estimating them. As a consequence, the 
contours produced are more variable than necessary 
and, as was discussed in § III, the best possible in- 
ferences about the parameters are not constructed. 
Further, there is another reason not to utilize equation 
(11). Because it normalizes the contour volume to the 
value ^in for a given data sample, it will tend to 
provide larger contours for larger values of 
giving the erroneous impression that the technique is 
somehow compensating for the poor-quality fit of the 
best model. We stress again that if Smiri y> N — p, no 
formalism which uses distributions describing random 
fluctuations can provide the proper error estimator. 
Thus this “normalizing” property of equation (11) 
is both illusory and misleading. 

VII. SUMMARY 

We summarize the chief conclusions of this paper 
as follows. 

1. Equation (5) is the correct multivariate least- 
squares error estimator for problems of the type 
considered here, i.e., the joint estimation of ^-param- 
eter values with data variances given by the model. 

2. Our numeric simulations indicate that on the 
ensemble average equation (5) yields the correct error 
estimator for the specific nonlinear equations of 
interest in X-ray astronomy. Regardless of the degree 
of nonlinearity introduced, there is no evidence of any 
departure of the actual uncertainties from those pre- 
dicted. Thus we see no reason to avoid application 

Vol. 208 

of an analytic formalism to this problem on the 
grounds that it is too complex or generally insoluble. 

3. We find no evidence, either analytic or numeric, 
that the >Smin + 1 technique is correct for problems 
in which two or more parameters are jointly estimated. 
Use of this technique in such cases will badly under- 
estimate the errors. Specifically, in an analysis with 
three free parameters, + 1 regions will enclose 
the true values only one time in five. 

4. The simulations reported by KBK in support 
of the use of + 1 are conceptually erroneous, in 
that they do not test the probability that any one such 
contour encompasses the true parameter values. 

5. There is no evidence that the finite energy resolu- 
tion of a gas proportional counter has any effect on 
the formalism derived here, in agreement with basic 
theoretical considerations. 

6. The paper by Cline and Lesser (1970) was 
directed as a comment on a specific parameter esti- 
mation method which is unnecessary when the data 
variances are fixed by the model. The resulting 
equation (11) is formally correct but needlessly more 
complex and less reliable than equation (5). The 
normalization of equation (11) to the derived value 
of ^nin does not extend the validity of the analysis 
to cases where » N — p. In such cases, the cause 
of the greater-than-Poisson fluctuations must be dealt 
with explicitly. 
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APPENDIX 

THE Smin AND A*S DISTRIBUTIONS 

In this Appendix, we sketch the derivations of the Smin and AS distributions. The arguments are due to Fisher 
(1924) for the one-parameter case and to Cramer (1946) for the ^-parameter case. 

I. DEFINITIONS AND NOMENCLATURE 

A function of the type 

N N 
Q = x'Ax = 22 aJkxixic 

k 3 

is called a quadratic form (see Cramer, pp. 107-108). ^4 is a symmetric N x N square matrix, and jc is a vector 
of N components. If new variables y are introduced by a linear transformation x = Cy, the quadratic form above 
is equal to 

Q = y'C'ACy = /By , 

where B is the new matrix C'AC. The rank of a quadratic form is the smallest number of independent variables 
on which Q can be made to depend, via nonsingular transformations of x (equivalent to rotations in A-space; see 
Cramer, p. 110). Rank measures the minimum dimensionality of A. Clearly, 0 < r < A. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
8.

 .
17

 7L
 

No. 1, 1976 PARAMETER ESTIMATION IN X-RAY ASTRONOMY 

II. THE iStrue STATISTIC 

Consider the sum-of-squares function 

189 

s= i (A - Ftfic?, 

where A are the data. If the true population mean and variance and ct*2 (known only to nature, unknown to 
the experimenter) were substituted, each term of the sum would be the square of an independent zero mean unit 
variance variable, x*. In the limit of many events per bin these deviations are normally distributed, by the central 
limit theorem. With the true values of A and cri2, S becomes 

-2*.’- X X , 

which is the quadratic form whose matrix is the TV x TV identity matrix 7. Its rank is N. Its sampling distribution 
is the x2 distribution with N degrees of freedom (Cramer, p. 234 and p. 313). 

III. THE *Smin STATISTIC 

Smin is another function of the same data: 

= 2 
(A - F.y 

2*2 = y'y ’ 

where each yi is the deviation of the datum A from the best fitting model’s prediction (Cramer, p. 427). By best 
fitting, we mean that the model’s parameters have been adjusted to minimize S. Cramer (pp. 427-431) shows that, 
under remarkably general circumstances, such a best adjustment exists. The model predictions’ parameter de- 
pendences are not assumed linear, but must be twice differentiable. 

The yi are not independent of each other, because the best fitting predictions /* introduce data-dependent 
correlations between them. 

Cramer then shows (pp. 431-434) that there exists a linear nonorthogonal transformation A such that y = Ax 
where the x are the independent true deviations. The rank of the quadratic form y'y is shown to be smaller than 
the rank of x'x by an amount /?, the number of nonequivalent adjustable parameters. (Note that the transformation 
applies to the data vector, which is normally distributed, not to the parameter vector. Thus we have incorporated 
no assumptions as to model linearity.) This result establishes Smin as being x2 distributed with N — p degrees of 
freedom, by Cramer’s argument of page 313. This result has been widely cited (e.g., Cochran 1952). The result is 
important in hypothesis testing. 

The statistic 

IV. THE AS STATISTIC 

AS — Strue Anin 

is of importance in parameter estimation. From the preceeding discussion, AS is a quadratic form 

2*<2-S*2 

where the yi are functions of the x¿. One way to evaluate this expression is to use Cramer’s transformation j = Ax 
described above, followed by his K transformation (pp. 433-434) which explicitly diagonalizes the X y? quadratic 
form in terms of x; it gives N — p nonzero diagonal elements, each equal to 1. This can be trivially subtracted from 
x'x to reveal that the AS statistic contains exactly p independent squares, and that none of these contribute to the 
Smin statistic. Hence, AS is independent of Smm> as stated in § III6. By Cramer’s argument of page 313, AS is x2 

distributed with p degrees of freedom and is independent of Smin- In Cramer’s notation, AS is the quadratic form 

x'BiB'By'B'x = x'HH'x. 

An alternate derivation, which does not require explicit use of the K transformation, can be constructed from 
Fisher’s lemma (Fisher 1925; Cramer, pp. 379-381). This important proposition establishes that the difference 
between a sum of N squares and S squares of orthogonal functions of the variables is a quadratic form of rank 
TV — S, is x2 distributed, and is independent of the sum of S squares. 
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Note added in proof.—The parameter-subset estimation procedure recommended by Avni, discussed here in § III, 
has been generally proven by W. Cash (preprint 1976). 
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