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ABSTRACT 

On the basis of 447 radial velocities obtained at the Lick Observatory by Paddock in the years 
1927-1935, an attempt is made to discover the nature of the semiregular variability of a Cygni 
(A2 la). Harmonic analysis of the 144 velocities obtained in 1931 suggests that this variability is 
due to the simultaneous excitation of many discrete pulsation modes. The amplitudes and periods 
of these modes are then determined by least-squares fitting to all the data, and a final solution is 
obtained that comprises 16 terms with periods from 6.9 to 100.8 days. All terms are found to have 
highly significant amplitudes, and most terms also pass a test of the stability of their amplitudes 
and phases. Reasons are given for believing that most terms represent nonradial oscillations, and 
this leads to the suggestion that the resulting surface motions are to be identified with macro- 
turbulence. An argument is also given for believing that the pulsational instability persists down 
to periods at which atmospheric oscillations become progressive, and this leads to the suggestion 
that such waves are observed as microturbulence and give rise to the observed mass loss. The 
importance of further monitoring of the variability of supergiants is stressed. 
Subject headings: stars: binaries — stars: individual — stars: mass loss — 

stars : semiregular variables — turbulence 

I. INTRODUCTION 

Following up clues in the earlier literature, Abt 
(1957) demonstrated that probably all la supergiants 
of early and intermediate type are small-amplitude 
velocity-variables. He also noted that a few of them 
are known to be small-amplitude light-variables. The 
typical ranges are ~10kms-1 in velocity and 
^0.1 mag in light; the typical time scale of the semi- 
regular variations is ~ 10-100 days. 

Although the variability of a few of these stars has 
been known for several decades, its character remains 
unknown. All that can be said with certainty is that 
the variability is not simply periodic and that its time 
scale is too short for orbital motion. We may also say 
with some confidence that the variability is basically 
a pulsation phenomenon since the typical time scales 
are comparable to the expected periods of radial 
pulsation in the fundamental mode (Abt 1957). The 
possibility that the variations are due to oscillations 
confined more or less to these stars’ atmospheres is 
therefore ruled out. 

Because of the limited duration (~30 days) of his 
observing program, Abt could neither exclude nor 
investigate the possibility that the “semiregular” 
variability of these supergiants is due to two or more 
simultaneously excited pulsation modes. There is, 
therefore, no observational basis for believing that the 
variation is in any degree stochastic. Such a variation 
might be expected, however, if, following Underhill 
(1960), we were to associate the variable radial velocity 
with the large-scale atmospheric motions inferred 
from the line profiles of these same supergiants since 
the term “macroturbulence” used to describe these 

motions seems to imply that they are stochastic. In 
fact, of course, the evidence for these large-scale 
motions, though strong, does not in any way determine 
their statistical character. Indeed, if we accept that 
the same motions cause both the line broadening and 
the line shifts, then the argument identifying the 
velocity variability with pulsations should lead us to 
entertain the hypothesis that macroturbulence is itself 
a pulsation phenomenon, being related perhaps to 
the line broadening observed at certain phases for the 
ß Cephei stars. We may recall that some aspects of the 
variable velocity and line broadening of the ß Cephei 
stars can be understood by supposing that their 
pulsations are nonradial (Ledoux 1951; Osaki 1971). 

With the generality of the variability of the la super- 
giants established, the logical next step would be to 
secure extensive observations of one such star, so that 
the hypothesis of multiple periodicity could be tested. 
Such observations are in fact available already for 
a Cyg (A2 la), whose variable radial velocity was the 
subject of an astonishingly extensive investigation by 
Paddock (1935) at the Lick Observatory. Paddock’s 
observations span the years 1927-1933, during which 
time 399 radial velocities were determined from 794 
plates all taken with the Mills three-prism spectro- 
graph (11 Â mm-1) attached to the 36 inch refractor. 
Moreover, all the a Cygni plates were measured twice 
by Paddock himself on a Hartmann Spectro-Com- 
parator against one of the plates as a standard. 
Because of this, the changes in velocity are followed 
with high precision, and the loss of accuracy that 
results from combining the work of different measurers 
is avoided. It is rare indeed to work with such homo- 
geneous data. 
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TABLE 1 
Additional Mills Velocities 

JD 
(2,428,000 + ) 

Velocity 
(km s_1) 

JD 
(2,428,000 + ) 

Velocity 
(km s-1) 

JD 
(2,428,000 + ) 

Velocity 
(km s-1) 

2.668. 
2.692. 
2.703. 
2.717. 
2.731. 
2.745. 
2.758. 
2.772. 
2.786. 
2.800. 
2.814. 
2.828. 
2.841. 
2.855. 
2.869. 
2.883. 

-4.1 
-4.5 
-5.2 
-4.6 
-5.2 
-4.8 
-5.8 
-5.4 
-4.9 
-4.9 
-6.0 
-5.0 
-5.9 
-5.1 
-6.9 
-5.2 

2.897. 
2.911. 
2.925. 
2.938. 
2.952. 
2.966. 
2.980. 
2.994. 
6.664. 
6.678. 
6.692. 
6.706. 
6.720. 
6.734. 
6.748. 
6.761. 

-5.6 
-4.0 
-5.6 
-6.4 
-4.8 
-6.1 
-5.6 
-5.3 
-1.8* 
-6.1 
-4.1 
-4.0 
-4.7 
-4.6 
-5.4 
-5.5 

6.775. 
6.789. 
6.803. 
6.817. 
6.831. 
6.844. 
6.858. 
6.872. 
6.886. 
6.900. 
6.914. 
6.928. 
6.941. 
6.955. 
6.969. 
6.983. 

-5.5 
-5.2 
-5.6 
-5.4 
-6.3 
-5.7 
-5.1 
-5.7 
-5.5 
-5.5 
-5.4 
-5.8 
-4.0 
-4.8 
-5.5 
-4.8 

* This observation is omitted from all calculations. 

Although these data are now over 40 years old, their 
quality should not be doubted. Under the direction 
of Campbell and then Moore, the radial velocity 
program at Lick in those years yielded accurate 
velocities free from fluctuating systematic errors. This 
may be demonstrated using the list of spectroscopic 
binaries whose orbits were recomputed by Lucy and 
Sweeney (1971). In this list there are 25 systems for 
which the velocity residuals give o- < 1.5kms_1, 
where a is the standard error of a radial velocity of 
average weight, and for 13 of these the velocities were 
obtained with the Mills spectrograph. Since these 
binaries were usually observed over several seasons, 
this result confirms both the precision of the Mills 
velocities and the stability of the velocity system. 

Our purpose in this paper, then, is to analyze 
Paddock’s superb data with the hope of discovering 
the character of the semiregular variability of these 
supergiants. 

II. SHORT-PERIOD OSCILLATIONS? 

Although Paddock’s main concern was the night- 
to-night velocity variations of a Cyg, he also came to 
believe that significant variations occur within a single 
night, and he sought support for this belief by taking 
18 or 19 consecutive plates on each of four nights. In 
his paper, Paddock plots the data for three of these 
nights and draws freehand curves through the points 
to suggest the possibility of an oscillation with period 
~5 hr and amplitude ~ 0.5-1.2 km s"1. Subsequently, 
Paddock and Moore pursued this question further by 
taking 24 plates on each of the nights 1935 July 19 and 
23. These velocities, kindly made available to me by 
G. H. Herbig, are given in Table 1. 

In addition to giving this direct evidence for short- 
period variations, Paddock argues that such variations 
must exist because his measuring error (determined 
from his duplicate measurements of each plate) is 
markedly less than the external error (determined from 
measurements of closely consecutive plates). However, 

with the possible exception of early-type stars with 
broad, diffuse lines, this is always found to be so and 
is regarded as evidence of additional sources of error 
and not of true velocity changes (Petrie 1962). Since 
some of these additional sources of error, including 
certainly those related to the photographic plate, may 
afflict even Mills velocities, we may fairly conclude that 
this indirect argument of Paddock’s is less than com- 
pelling. The significance of the effect must therefore be 
decided from the variations observed on the six nights 
during which many plates were taken. 

However, before the significance of the short-period 
oscillation can be tested, the alternative hypothesis 
that the variations are due to additional sources of 
error must be considered. Adopting this hypothesis, 
we may use the residuals from a least-squares straight 
line fitted to the rtj velocities obtained on the jth night 
to derive an estimate Sj of o-, the external standard 
error of the radial velocity of a Cyg determined from 
one Mills spectrogram. This has been done for all the 
nights for which five or more velocities are available, 
and the results are given in Table 2. From these 
independent estimates si9 the precision of Paddock’s 
velocities is seen to have remained remarkably uniform 
over a 6-year interval; consequently, the combined 
estimate 

s = ^2 vJsí21^v^j112 = 0-60 km s"1, (1) 

TABLE 2 
Independent Error Estimates 

Date fij ^(kms-1) 

1929 Aug. 3  18 0.56 
1931 Oct. 24  7 0.46 
1931 Oct. 25  5 0.61 
1932 Aug. 2  18 0.46 
1932 Aug. 3  19 0.56 
1932 Aug. 4  19 0.67 
1935 Jul. 19  24 0.65 
1935 Jul. 23  23 0.64 
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Fig. 1.—Weighted mean amplitude spectrum for short-period oscillations. Solid line is the spectrum of the actual observations; 
dashed line is a “noise” spectrum. 

where = rij — 2 is the number of degrees of freedom 
associated with Sj, provides an unusually reliable esti- 
mate of the external standard of error of a velocity of 
unit weight (i.e., from one plate). The high precision 
of these Mills velocities may be appreciated by com- 
paring this estimate with the external standard error 
of 2.1 km s-1 that Petrie (1962) reports for the veloci- 
ties of A-type stars obtained with the Victoria two- 
prism spectrograph (11 Â mm-1). 

We now return to the question of the significance 
of the short-period variations. For each of the six 
nights for which 18 or more velocities are available, 
we have calculated the amplitude spectrum, 

Ajve~2jliftdt , (2) 

where A¿v is the velocity variation remaining after 
subtraction of the least-squares straight line fitted to 
the data obtained in the interval (0, Tj) on the yth 
night. (AjV is made into a continuous function by 
connecting consecutive residuals with straight lines.) 
Then, in order to optimize our ability to discover a 
persistent oscillation of small amplitude, these spectra 
are combined to obtain defined by 

<A(f)} = {2 vAAÂf)]2/2 ^}1/2 > (3) 

and this function is plotted in Figure 1. [Note that 
A(f) is related to the power spectrum P(f) by the 
relation A2 = 4P/T.] At first sight, Figure 1 appears to 
confirm Paddock’s discovery since it shows (A(f)y to 
have a pronounced peak corresponding to an oscilla- 
tion with period = 5.6 hr and amplitude = 0.36 km 
s-1. Before this confirmation can be accepted, how- 
ever, the significance of the peak must be tested. We 

may do this by replacing each velocity residual on each 
of the six nights by xk9 a random variable from a 
normal distribution of zero mean and standard devia- 
tion = 0.60 (eq. [1]), and then repeating the calcula- 
tions leading to <J4(/)>. Five such “noise” spectra 
were calculated, and three—one of which is plotted in 
Figure 1—were found to contain peaks comparable 
to the one found for the real data. Accordingly, there 
is no basis for rejecting the hypothesis that the varia- 
tions within one night are due solely to observational 
errors. 

Since others might interpret Figure 1 as providing 
marginal evidence in support of the short-period 
oscillation, we now compare its period with the critical 
period below which standing atmospheric oscillations 
are impossible. For an isothermal atmosphere, this 
critical period is (Lamb 1945) 

PL = InCs/yg , (4) 
where cs is the velocity of sound, y is the ratio of 
specific heats, and g is the gravitational acceleration. 
Now, from Groth’s (1961) model atmosphere analysis 
of a Cyg, we have Tef{ = 9170 ± 500 K and logg = 
1.13 ± 0.2. Adopting these values, taking the tem- 
perature of the reversing layer = 0.8 Te{i, setting 
y = 1 (isothermal oscillations), and assuming the 
mean molecular weight = 0.62, we obtain PL = 8.4 
days. Accordingly, if the atmosphere of a Cyg were 
subject to an oscillating disturbance with 5.6 hr 
period, its response would be not a standing oscillation 
but a traveling wave with wavelength short compared 
to the scale height. Such waves would not cause signi- 
ficant fluctuations in radial velocity; instead, they 
would be detectable as m/croturbulence. This argu- 
ment strongly supports the conclusion that the short- 
period variations are due to observational errors. 
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TABLE 3 
Distribution of Velocities 

LUCY 

1932 

Vol. 206 

Year No. of Velocities No. of Plates 

1927    2 2 
1928    28 53 
1929   8 33 
1930   11 21 
1931   144 338 
1932    60 208 
1933.. ...  61 139 
1934..   0 0 
1935   2 47 

Having failed to confirm the short-period oscillation, 
we now average the velocities for each night on which 
many plates were taken, and we assign weight Wj = rij 
to this average. The data now have the form of a single 
velocity on each of 316 nights. The distribution of 
these in time is given in Table 3. 

III. BINARY ORBIT? 

If averages of Paddock’s data are formed over 
intervals long compared with the time scale of the 
semiregular variations (i.e., »10 days), it becomes 
obvious (see Fig. 2) that a Cyg also undergoes long- 
period variations with range ~6 km s-1. The simplest 
explanation of this would be that a Cyg is a spectro- 
scopic binary. Accordingly, a search was made for 
orbits with periods greater than 150 days. Of the orbits 
found, two are sufficiently superior in their fits to the 
data that the others may be discarded. For these two 
orbits, the orbital elements and their standard errors 
are given in Table 4, and the orbits are plotted in 
Figure 2. The elements were obtained by least-squares 
fitting to all 316 velocities, each assigned unit weight. 
The standard deviation of the residuals (<r) are also 
given in Table 4, and they show the two orbits to be 
essentially equally successful in fitting the data. 

Because this long-period variation must be removed 
from the data before the semiregular variability can be 
properly analyzed, confirmation of the orbital motion 
is highly desirable, and this of course requires addi- 
tional velocities. Accordingly, at G. W. Preston’s 
suggestion, the author, using the Caltech Grant 
machine, measured ~ 150 coudé plates from the 
Mount Wilson and Victoria plate files, the plates 

TABLE 4 
Orbital Elements 

Element Orbit 1 Orbit 2 

P (days)  846.8 ± 9.3 776.4 ± 10.7 
To  417* ± 19 366 ± 17 
y (km s_1)  -2.81 ±0.17 -3.24 ± 0.16 
K (km s“1)   3.12 ± 0.56 2.61 ± 0.38 
e  0.60 ± 0.10 0.72 ± 0.10 
a)  318?3 ± 9?8 334?9 ± 7?9 
a (km s "1)  2.094 2.107 

* The origin of time is JD 2,426,600. 

1928 1930 

Fig. 2.—Long-period velocity variation. Group means and 
their standard errors are shown together with the orbital 
motions corresponding to the elements in Table 4. 

having kindly been made available by H. W. Babcock 
and K. O. Wright, the respective directors. This 
measuring program yielded 113 apparently acceptable 
radial velocities for the years 1927-1957, most of them 
having internal standard errors less than 0.6 km s_1. 
However, when these velocities were combined with 
the Lick data, there was a marked increase in a for 
both orbits, and this seems to be primarily a conse- 
quence of fluctuating systematic errors of ~ 2-3 km s “1 

in the additional velocities. This attempt to add to the 
observational data must therefore be judged a failure. 

Because of this failure, the long-period variation has 
been expressed in the form 

^ / . limit _ . 2irmt\ /c. 
v = y + Z \Am cos "T” + Bm sm ”T / ’ ^ 

where T is the elapsed time between the first and last 
observations, and the coefficients have been deter- 
mined by finding the least-squares solution subject to 
the constraint: 

M 
2 (Am

2 + Bm
2) = a2. (6) 

m = 1 

This constraint is made necessary by the large gaps 
between the blocks of data. Unconstrained solutions 
take advantage of their freedom to vary wildly in these 
gaps and, by doing so, become suspect near the ends 
of the blocks of data. By choosing a to be as small as is 
possible without increasing the standard deviation of 
the residuals significantly above its minimum value 
(i.e., for the unconstrained solution), this problem is 
avoided. The adopted solution has M = 1 and 
a = 3.5 km s-1, and is a fit to the J = 312 velocities 
(again with unit weight) obtained in the years 1928- 
1933. When this representation of the long-period 
variation is subtracted from the data, all oscillations 
with periods longer than ~ 280 days have been 
removed. (The isolated observations of 1927 and 1935 
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are omitted since, in the absence of a physical model 
for the long-period variations, we cannot hope to sep- 
arate the contributions of the long- and intermediate- 
period variations to these velocities.) 

After elimination of the long-period variation, the 
standard deviation of the velocity variation is a = 
2.06kms_1. Observational errors alone would be 
expected to give o-E = 0.60/\/w, where w is the mean 
weight defined by 

Making this calculation, we find that w = 2.2, so that 
(te = 0.41 kms“1, and a/aE = 5.1. Paddock’s obser- 
vations therefore provide a virtually error-free des- 
cription of the semiregular variation; consequently, 
no miracles of data analysis are required to extract 
signal from noise. 

IV. SEMIREGULAR VARIABILITY 

Having shown that the short-period oscillation is 
not statistically significant and having failed to confirm 
the reality of orbital motion, we now discuss the 
variability at intermediate periods. 

a) The 1931 Data 

The obvious starting point for the analysis is the 
data for 1931 since in that year Paddock measured 
a Cygni’s velocity on 144 nights (see Table 3) within an 
interval of 173.588 days. This block of data is such 
that w = 2.2, so that we again have aE = 0.41 km s-1. 

The semiregular variability in 1931 is shown in 
Figure 3. In this diagram, successive observations are 
connected by straight lines, these lines being dashed 
when three or more nights elapsed without an obser- 
vation. This diagram reveals that the range of the 
variation is 10.3 kms-1 (>>o-E) and that the typical 
time scale is ~ 10 days. 

The amplitude spectrum (eq. [2]) of the continuous 
velocity variation shown in Figure 3 is plotted in 
Figure 4. Also plotted in this diagram is the amplitude 
spectrum obtained when a Cygni’s velocity Vj at time 
tj and of weight w;- is replaced by v/ = 0.8 cos I'rrftj + 
0.60xnl\/Wj, with / = 0.0665, and where xn is a ran- 
dom variable from a normal distribution of zero mean 
and unit variance. This synthetic amplitude spectrum 
therefore approximates that of a star undergoing a 
pure sinusoidal oscillation of amplitude 0.8 kms-1 

and period ~ 15 days, and for which the observing 
program is identical to that for a Cyg in 1931. Inspec- 
tion of this synthetic spectrum reveals that the peak 
due to the oscillation stands well clear of the noise but 
that the sidelobes do not. Moreover, from the general 
level of the noise, we see that additional oscillations 
with amplitudes greater than ~0.25 km s“1 could be 
readily and reliably discovered. 

[Note that a pure sinusoidal term of amplitude A 
and frequency f0 appears in the amplitude spectrum as 
^41 sin x/x\, where x = 7r(/ — fo)IT, and T is the length 
of the record. The amplitudes of the first two sidelobes 
are 0.217 and 0.128 x A, respectively, and the full 
width at half-maximum is = 1.207/T = 0.007 day-1 

for T = 173.588.] 
Inspection of the two amplitude spectra for / ^ 0.15 

day-1, including frequencies not plotted in Figure 4, 
shows that the a Cyg data and the synthetic data yield 
comparable amplitudes. This result confirms that we 
do indeed know the level of observational error, and it 
also demonstrates that a Cyg is quiescent for periods 
shorter than ~6.5 days. For 0.15, on the other 
hand, we see that a Cyg has many (~12) peaks 
standing far above the expected noise level and, 
moreover, that several of these (e.g., those at / # 0.07 
and / £ 0.085) have widths that exclude their inter- 
pretation as pure sinusoidal terms. Since these latter 
peaks do show incipient resolution, however, it is 
tempting to suppose that they represent two or more 
sinusoidal terms whose frequencies are too close for 
resolution when the length of the record is only 174 

Fig. 3.—Velocity variation in 1931 after removal of long-period variation 
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Fig. 4.—Amplitude spectrum of the 1931 velocity variation (Fig. 3). Solid line is the spectrum of the actual observations; dashed 
line is a “noise” spectrum with addition of pure sine term. 

days. Thus the amplitude spectrum of a Cyg suggests 
the hypothesis that its semiregular variability is due 
to the simultaneous excitation of many discrete modes 
of oscillation. 

b) Search for Periods 

The above hypothesis is not proven by the amplitude 
spectrum since the duration of the 1931 observing run 
is not sufficient to demonstrate beyond question resolu- 
tion into discrete frequencies. Paddock’s data do, 
however, offer the possibility of demonstrating this 
hypothesis if the amplitudes and phases of the discrete 
modes of oscillation are stable in time, for then the 
variation during the entire period of observation (1928- 
1933) may be represented as 

p = 2 (a/ cos Irfit + bi sin lirft) ; (8) 
i 

and we can determine the constant coefficients ah bh 
and f by minimizing 

R = Jiw/uj\ (9) 

where is the velocity residual at time tj. (Because of 
the previous removal of the long-period variability, 
the systemic velocity is set equal to 0 in eq. [8].) 

If we are unable to discover all the terms contri- 
buting to the variability, the residuals will not be 
due solely to observational errors, and it is then quite 
inappropriate to assign weight Wj(= number of plates) 
to the individual velocities. Instead, therefore, we 
assign weight 

W/ = (ct2 + + o*2) , 

where o- = 0.60 km s-1 (eq. [1]) and a*2 is our esti- 
mate of the variance of the contributions of true 
velocity variations to the residuals wy. The contribu- 

tions of observational errors to the residuals can of 
course be reliably estimated since we know a and wy. 
Accordingly, having computed a least-squares solu- 
tion, we may subtract this contribution to obtain : 

a*2 = (2 wm2 ~J52) ^ * (u) 

and this estimate of o-*2 may be used in deriving 
weights for the next least-squares solution. From 
equation (10), we see that w/ æ 1 when a*2 » o-2, and 
that w/ æ Wj when o*2 « o-2. (In the final solution 
given below, a* = 0.89 km s-1, so that undiscovered 
terms are still making a nonnegligible contribution to 
the residuals.) 

The general procedure adopted in obtaining a least- 
squares fit to all the data was as follows: (1) Frequen- 
cies of a few (~2-3) major terms were estimated from 
the 1931 amplitude spectrum and a least-squares fit of 
these terms to the 1931 data was computed. (2) The 
amplitude spectrum of the residuals from the least- 
squares solution was then used to estimate frequencies 
of the next few terms, and these were then included in 
a new least-squares solution. (3) Step (2) was repeated 
until no significant terms remained. (4) The 1932 data 
were now added, and the resulting least-squares 
solution was subjected to the cycle-count test (see 
below) in order to discover errors due to the loss or 
gain of a cycle in the intervening winter. (5) Such 
errors having been eliminated, the 1933 data were 
added, and the resulting least-squares solution was 
subjected to the cycle-count test. (6) Such errors 
having been eliminated from this solution, the 1928- 
1930 data was added, and the resulting least-squares 
was solution subjected to the cycle-count test. 

The final solution is given in Table 5. For the 
purpose of constructing this table, each term is written 
in the form A cos Irfit — t0), and the quantities A, t0, 
and/are tabulated, together with their standard errors. 
In addition, the period l//is given and two quantities, 
log p and d, that relate to tests discussed below. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
6.

 .
4 

9 9
L 

No. 2, 1976 VARIABLE RADIAL VELOCITY OF a CYG 505 

TABLE 5 
Pulsation Periods and Amplitudes 

Period 
(days) 

(1) 

A 
(km s-1) 

(2) 

to 
(days) 

(3) 

/x 103 

(days-1) 
(4) 

log/? 
(5) 

d 
(6) 

100.8. 
49.1. 
40.5. 
35.8. 
24.2. 
18.9. 
18.1. 
15.6. 
14.4. 
12.4. 
11.4. 
10.0. 
9.5. 
7.8. 
7.5. 
6.9. 

0.43 ± 0.08 
0.43 ± 0.10 
0.75 ± 0.11 
0.47 ± 0.10 
0.57 ± 0.08 
0.89 ± 0.09 
0.80 ± 0.08 
0.79 ± 0.09 
0.90 ± 0.09 
0.74 ± 0.08 
1.02 ± 0.09 
0.82 ± 0.09 
0.63 ± 0.09 
0.40 ± 0.09 
0.51 ± 0.09 
0.29 ± 0.08 

-10.0 
36.1 
23.3 

-3.4 
-3.1 

2.1 
13.2 
2.8 

-1.7 
1.8 
0.0 
7.3 

-0.8 
-0.6 

4.9 
4.5 

± 3.2* 
± 1.7 
± 0.9 
± 1.2 
± 0.5 
± 0.3 
±0.3 
± 0.3 
± 0.2 
± 0.2 
± 0.2 
± 0.2 
±0.2 
± 0.3 
± 0.2 
± 0.3 

9.92 
20.38 
24.71 
27.93 
41.31 
53.00 
55.26 
64.13 
69.32 
80.88 
87.53 
99.72 

105.01 
128.96 
133.54 
145.72 

± 0.07 
± 0.08 
± 0.05 
± 0.08 
± 0.06 
± 0.04 
± 0.05 
± 0.04 
± 0.04 
± 0.04 
± 0.03 
± 0.04 
± 0.06 
± 0.09 
± 0.06 
± 0.10 

-6.6 
-4.6 

-12.6 
-6.0 

-10.9 
-21.7 
-19.5 
-18.6 
-24.4 
-17.1 
-28.1 
-18.6 
-11.9 
-5.0 
-7.8 
-2.8 

2.1 
2.4 
0.8 
3.2 
1.3 
2.1 
1.6 
4.1 
4.0 
1.9 
2.6 
1.1 
4.9 
3.4 
4.9 
1.3 

* The origin of time is JD 2,426,600. 

c) Tests 

Before discussing the implications of this solution, 
we must investigate the statistical significance of the 
amplitudes of the individual terms, the reliability of 
their frequencies, and the stability of each term’s 
amplitude and phase. 

i) Significance of the Amplitudes 

An immediate impression of the significance of the 
amplitudes is available from their standard errors, but 
one must not overlook the fact that amplitudes, being 
nonnegative, do not follow a normal distribution even 
if they are due to observational errors that are nor- 
mally distributed. In this circumstance, however, 
and bi are normally distributed; consequently, in the 
limit of large sample size, the probability that errors 
will give an amplitude V^2 + b?) exceeding A is 
exp (—A/lo/), According to this formula, the 5 per- 
cent level of significance occurs when A/<ja = 2.45, 
and the 0.1 percent level when A/ga = 3.72. Fifteen of 
the 16 terms in Table 5 therefore have amplitudes that 
are significant at the 0.1 percent level. 

Although the above discussion clearly establishes 
the high significance of all 16 terms, it is of interest to 
apply also a test that is not restricted to large sample 
size. Such a test is provided by the theory of multi- 
variate linear hypotheses, which is applicable to this 
problem if we regard the frequencies as exactly known. 
In our case, we wish to test, for each term, the hypoth- 
esis that ai = 0 and èz = 0. If adopted, this hypoth- 
esis causes R (eq. [9]) to increase from R0 to RH, and 
the significance of this change may be evaluated from 
the ratio F = — M)(RH — R^/Rh, where J is the 
number of observations and M is the number of 
parameters (32). Now, it may be shown (see, e.g., 
Hamilton 1964, chap. 4) that F is distributed as 
FVl,V2 with = 2 and v2 = J — M9 and from this one 

may prove (cf. Lucy and Sweeney 1971) that the 
probability of observational error giving F > F is 

p = (Ro/RhY , (12) 

where ß = i(J — M). Accordingly, if p « 1, we must 
reject the hypothesis and accept the amplitude as being 
significant. 

The probabilities from equation (12) are given in 
column (5) of Table 5, and they clearly confirm the 
high significance of the amplitudes. 

ii) Cycle-Count Test 

Because of the absence of observations in the winter 
months, the least-squares solutions are vulnerable to 
errors in which one complete oscillation is added or 
lost during the winter. Accordingly, at several stages 
in the analysis, this possibility was tested for by 
changing a term’s frequency f to /* ±/*, where 
/* = 1/365.25, and then computing the least-squares 
solution with all frequencies fixed. This was done for 
all the terms one at a time, so that, with 16 terms, the 
solution of 32 linear least-squares problems is required. 
In fact, this test was often carried out with /z also 
changed to±/*/2and to/z ± /^./3. From the results 
of such calculations, the frequencywas regarded as 
suspect if one of the above changes led to less than a 
significant increase in R. For such a case, a full least- 
squares solution (i.e., with the frequencies also varying) 
was computed and the indicated change adopted if it 
gave a smaller R. The final solution is such that the 
changes f ± fjm for m =1, 2, 3 give increases in R 
for all terms. 

This test encourages belief in the reliability of the 
frequencies. However, when the frequencies of so 
many terms have to be determined from observing 
runs that are shorter than the beat periods of neigh- 
boring frequencies, the complexity of the possible 
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errors is such that it is quite unlikely that all errors have 
been eliminated from the frequencies in Table 5. 

iii) Stability 

A basic assumption in our least-squares search for 
discrete pulsation modes is that their amplitudes and 
phases remained fixed from 1928 to 1933. We now test 
this assumption by dividing the 312 velocities chrono- 
logically into two equal groups and, for each group, 
solving by least-squares for the amplitudes (au bf) 
corresponding to the frequencies f given in Table 5, 
assuming these to be known exactly. For each term, 
therefore, this pair of least-squares solutions gives two 
independent points and their error ellipses in (a, b)- 
space. Obviously, the hypothesis of amplitude and 
phase stability must be rejected if the separation of 
these points is too large to be attributed to the uncer- 
tainties in the amplitudes. 

Now, to a reasonable approximation, the error 
ellipses are circles, and the radii of the circles are equal 
for a given term. Accordingly, on the hypothesis of 
stability, the two points for each term may be regarded 
as independent random choices from the circular 
normal distribution function, 

j/ L\ 1 I (ß - à)2 + (ô - ô)2\ „ 
*) = w exP {- ■ -2^ L) ’ 63) 

where ä and b are the true amplitudes. Adopting this 
function therefore as our model for the probability 
density function (pdf) of amplitude errors, we may 
draw pairs of points {aX9 b^) and (ay9 by) randomly 
from this pdf and thereby compute the pdf of the 
statistic d = D/a, where D2 = {ax — ay)2 + {bx — by). 
This calculation has been carried out using a random 
number generator, with the result (from 5000 pairs) 
that the expectation value of dis ~ 1.87, that d > 3.55 
occurs with probability ~0.05, and that d > 4.45 
occurs with probability ~0.01. Thus, if we adopt the 
5 percent level of significance, the hypothesis of 
stability for a given term is rejected if d > 3.55. 

We now illustrate the use of this test by giving the 
details for two terms. For the 40.5 day term, we find 
that ax = —0.82 ± 0.16, bx = —0.32 ± 0.15 for the 
first group of observations; and that = — 0.89 ± 
0.14, by = —0.41 ±0.14 for the second group. These 
then give D = 0.114 and a = 0.148 (a is taken to be 
the square root of the mean variance for the four 
amplitudes), so that d = D/a = 0.77. The corre- 
sponding figures for the 9.5 day term are ax — 
0.45 ± 0.13,6* = 0.07 + 0.13;anday = 0.81 ± 0.13, 
by = —0.60 ± 0.13, which give D = 0.641 and a = 
0.13, so that d = 4.93. 

The quantity d is given for each term in Table 5, and 
the distribution of these values is compared in Table 6 
with the expected distribution on the hypothesis of 
stability. From the individual values, we see that this 
hypothesis is rejected for four terms at the 5 percent 
level of significance (d > 3.55), and for two terms at 
the 1 percent level (d > 4.45). In view of this modest 
rejection rate, it seems not unreasonable to believe 
that all terms are in fact stable; the rejected terms 

TABLE 6 
Distribution of d 

Interval Observed No. Expected No. 

0- 1    1 3.2 
1- 2........... 5 6.3 
2- 3    4 4.5 
3- 4...  3 1.6 
4- 5   3 0.3 
>5   0 0.1 

should therefore be interpreted as indicating that the 
final solution is not free from error. 

v. DISCUSSION 

In view of the results of § IV, it is not unreasonable 
to conclude that the semiregular variability of early- 
and intermediate-type supergiants is indeed due to the 
simultaneous excitation of many discrete pulsation 
modes and to believe also that the amplitudes and 
phases of these oscillations are stable. The following 
questions then arise: Which modes are being excited? 
What is the mechanism of excitation? Are these 
oscillations related to other dynamical phenomena 
occurring at the surfaces of these supergiants? What 
are the implications of the multiple-periodicity of these 
stars? We therefore conclude this paper with a brief 
discussion of each of these questions. 

a) Identification of Modes 

As reasonable parameters for a Cyg, we adopt 
Mboi = — 8, = 12 9H0, and Æ = 140 RQ. Because of 
observational uncertainties, this choice may be des- 
cribed as being consistent with Blaauw’s (1963) 
absolute magnitude calibration of the MK system 
{Mv = —7.5 at A2 la), with Groth’s (1961) deter- 
mination of a Cygni’s atmospheric parameters 
(reff = 9170 ± 500 K, log g = 1.13 ± 0.2), and with 
the predictions of stellar evolution theory under the 
assumption of negligible mass loss. 

With these parameters, a Cygni’s mean density 
P = 4.4 x \0~6pQ, so that its pulsation period for the 
fundamental radial mode is P0 = 14.3 days, if Q0 = 
0.03 days. This estimate of P0 is comparable with the 
periods of the six terms of largest amplitude in Table 5, 
but it is markedly shorter than the periods of several 
other terms with highly significant amplitudes. Now, 
if we regard reff and Qo as known, then P0 oc £0-25g- o.s^ 
so that large changes in L and g are required if P0 is to 
exceed the periods of all observed terms, as it must if 
the latter are to be interpreted as radial pulsations. 
The necessity of such changes is avoided, however, if 
we contemplate the possibility that nonradial modes 
are excited, for there is then no upper limit to the 
spectrum of discrete eigenperiods. With this inter- 
pretation, the large-amplitude terms with periods ~P0 
will be low-order p- and g-modes. 

Support for the belief that nonradial oscillations 
dominate the list of observed terms comes from the 
tendency of these terms to occur in close pairs, which 
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suggests the effect of rotation in lifting the degeneracy 
of the eigenfrequencies of such oscillations with respect 
to the order m of the surface harmonic 
The resulting frequency splitting is given by 

A/= (1 - C^hîVr/ttR (14) 

(Ledoux 1951), where vR is the star’s rotational velocity 
and Ci is a constant depending on the eigenfunction 
for the undistorted star. Taking / = m = 2, C2 = 0.15 
(Ledoux 1951), and A/ = 0.005 day-1, which approxi- 
mates the observed splitting for four pairs of terms, we 
obtain vR = 10.4 km s-1. Since this is in the range 
expected for a Cyg on the assumption of conservation 
of angular momentum during its evolutionary expan- 
sion (see, e.g., Rosendhal 1970), it lends strong support 
to the hypothesis that nonradial pulsations dominate. 

Further progress in identifying these modes clearly 
requires extensive calculations of the periods of non- 
radial, nonadiabatic oscillations for realistic models of 
« Cyg. 

b) Excitation 
For realistic models of the envelope of a Cyg, 

extensive nonadiabatic pulsation calculations have 
been carried out in a search for the source of excitation. 
The helium ionization zones wefe found to contribute 
to excitation but never by an amount sufficient to 
overcome dissipation in deeper layers. In fact, no 
self-excited nonradial or radial oscillations were dis- 
covered even when extreme variations of the param- 
eters were explored. 

This failure to discover the excitation mechanism 
might tempt one to question the interpretation of the 
semiregular variability as a pulsation phenomenon. 
There are, however, other pulsating variables (e.g., the 
ß Cephei stars) for which the excitation mechanism has 
not yet been identified with certainty. 

c) Surface Motions 
In addition to the semiregular variability in velocity, 

spectroscopy provides the following further evidence 
of dynamical activity at the surfaces of these super- 
giants : From equivalent widths, curve-of-growth 
analyses yield rather large values (~ 10-20 km s-1) for 
the microturbulence parameter (see, e.g., Wright 1957). 
From line profiles, on the other hand, even larger 
velocities are inferred; consequently, an additional 
large-scale velocity field must be postulated, and this 
is commonly referred to as macroturbulence. Finally, 
P Cygni profiles at Ha demonstrate the presence of 
radial outflows of matter from these stars. 

If these various dynamical phenomena are related, 
we might expect this advance in our understanding of 
the semiregular variability to further our understand- 
ing of these other surface motions. An obvious possi- 
bility is to identify macroturbulence with the surface 
motions generated by the superposition of these 
numerous nonradial oscillations. A definitive test of 
this idea will be possible when the modes have been 
identified since the time-dependent line profiles could 
then be calculated and the macroturbulence predicted. 
In advance of this identification, numerical experi- 
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ments of this kind have been carried out (Lucy 1976) 
with results that confirm the idea’s plausibility. 

The amplitude spectrum (Fig. 4) appears to indicate 
that the excitation mechanism no longer overcomes 
dissipation for periods shorter than ~6.5 days. If this 
were true, however, the near equality of this period 
and the critical period (estimated to be 8.4 days in 
§ II) below which atmospheric waves become pro- 
gressive would be an accidental coincidence. Rather 
than accept this, it is surely preferable to suppose that 
oscillations continue to be excited at shorter periods 
but that they fail to produce detectable variations in 
radial velocity because of their progressive character. 
As mentioned earlier (§ II), such waves would con- 
tribute to microturbulence, and this leads therefore to 
the suggestion that the high microturbulence of these 
supergiants is due to progressive atmospheric waves 
excited by the same mechanism that excites the 
standing oscillations of longer period. It is of course 
also tempting to attribute the radial outflows to the 
effect of these progressive waves on the tenuous outer 
layers of these stars. 

d) Implications 

If a Cyg is typical of the early- and intermediate- 
type supergiants, then each of these highly luminous 
stars is such that the diligent application of a 50-year- 
old technology is capable of yielding a set of accurate 
pulsation periods whose number exceeds the number 
of parameters governing its structure. Such sets of 
periods would therefore provide an extraordinarily 
stringent test of stellar evolution theory. Moreover, 
since models of these stars are not homologous under 
variations of such parameters as mass, luminosity, and 
mean molecular weight, a fit to an observed set of 
periods will require not only that stellar evolution 
theory be correct but also that these parameters have 
been correctly chosen. There is, therefore, the possi- 
bility of using such periods for the theoretical deter- 
mination of the distances, masses, and compositions of 
these supergiants. 

The realization of these possibilities would bring 
about such a giant step forward in the precision of 
stellar astrophysics that thought should be given to the 
initiation of long-term observing programs to monitor 
the variable radial velocities of many such supergiants. 
From a good observing site (e.g., a space observatory), 
light variability could also be monitored with the 
necessary precision (~ 0.003 mag), and this would be 
of considerable interest since there may be many modes 
excited that produce negligible variations in radial 
velocity. Moreover, from a good site in the Southern 
Hemisphere, Magellanic Cloud supergiants could be 
included in such an observing program. 

I would like to thank K. H. Prendergast and 
G. W. Preston for useful discussions and encourage- 
ment. This work has been supported by the National 
Science Foundation under grant GP-30927. A grant 
of computer time at the Goddard Institute for Space 
Studies, NASA, is also acknowledged. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
6.

 .
4 

9 9
L 

508 LUCY 

REFERENCES 
Abt, H. A. 1957, Ap. /., 126, 138. 
Blaauw, A. 1963, in Basic Astronomical Data, ed. K. Aa. 

Strand (Chicago: University of Chicago Press), chap. 20. 
Groth, H.-G. 1961, Zs. /. Ap., 51, 231. 
Hamilton, W. C. 1964, Statistics in Physical Science (New York: 

Ronald Press), chap. 4. 
Lamb, H. 1945, Hydrodynamics (New York: Dover), p. 541. 
Ledoux, P. 1951, Ap. J., 114, 373. 
Lucy, L. B. 1976, paper read at IAU Colloquium No. 29, 

Budapest, 1975 September. 
Lucy, L. B., and Sweeney, M. A. 1971, A.J., 76, 544. 

Osaki, Y. 1971, Pub. Astr. Soc. Japan, 23, 485. 
Paddock, G. F. 1935, Lick Obs. Bull, 17, 99. 
Petrie, R. M. 1962, in Astronomical Techniques, ed. W. A. 

Hiltner (Chicago: University of Chicago Press), chap. 3. 
Rosendhal, J. D. 1970, Ap. J., 159, 107. 
Underhill, A. B. 1960, in IAU Symposium No. 12, Aerodynamic 

Phenomena in Stellar Atmospheres, ed. R. N. Thomas, p. 68. 
Wright, K. O. 1957, in Transactions of the IAU, Vol. 9, ed. 

P. Th. Oosterhoff (Cambridge: Cambridge University Press), 
p. 739. 

L. B. Lucy: Department of Astronomy, Columbia University, New York, NY 10027 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

