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ABSTRACT 

Numerical calculations have been made for the early stages of collapse of axisymmetric, 
rotating protostars of 1, 2, and 5 M©. The calculations employ a range of values of total angular 
momentum, as well as two types of initial density distribution. The effects of boundary conditions 
are tested by using constant volume and constant surface pressure with identical initial conditions. 
The principal result of the calculations is that in all cases tried the collapse leads to the formation 
of a ring structure in the interior of the cloud, with a local density minimum at the center of the 
cloud. The rings approach equilibrium with a structure consistent with that of previous analytic 
determinations (Ostriker), after which they undergo further gravitational collapse. The collapse 
of a 2 M© cloud, similar to that assumed by Cameron and Pine, does not appear to lead to the 
equilibrium nebula these authors construct. 
Subject headings: nebulae: general — stars: formation 

I. INTRODUCTION 

It has long been recognized that angular momentum 
is an important, indeed crucial, quantity that must be 
considered in a theory of star formation; however, 
detailed numerical calculations with its inclusion 
have been few in number. Lin, Mestel, and Shu (1965) 
undertook an analytic calculation of the collapse of a 
rotating, pressure-free spheroid. Kara, Matsuda, and 
Nakazawa (1973) have calculated cloud collapse, 
including the effects of pressure and rotation, under 
the assumptions that the cloud contracts isothermally 
and that all equidensity surfaces retain spheroidal 
shapes. Larson (1972) has made a full numerical 
calculation of the collapse of axisymmetric rotating 
clouds, including effects of pressure and radiative 
transfer and without any restrictive hypothesis on the 
shape of equidensity surfaces. Larson’s numerical 
grid contained approximately 72 cells. An important 
feature of his results is the development of a ringlike 
structure in the inner parts of the cloud, with a local 
density minimum at the center of the cloud. However, 
Tscharnuter (1975) considered the same problem using 
different numerical techniques and did not find rings. 
Two-dimensional calculations of gravitational collapse 
have also been carried out by LeBlanc and Wilson 
(1970), including the effects of rotation, magnetic 
fields, and neutrino transport. The problem they treated 
concerned the late stages of evolution of a massive 
star, with collapse induced by thermal decomposition 
of iron. 

In this paper we present detailed calculations of the 
evolution of rotating protostars which are assumed to 

start out as gravitationally bound configurations with 
radii slightly less than the Jeans radius. The physical 
assumptions are comparable with those of Larson. 
Physical processes leading to transport of angular 
momentum, such as viscosity, are not included in the 
equations. The grid contains 1600 cells, and the cal- 
culations are performed with the two-dimensional 
hydrodynamic code (with the assumed axial symmetry) 
discussed by Black and Bodenheimer (1975, herein- 
after Paper I). We consider the following questions : 

1. How does the behavior of the collapse depend on 
total mass and angular momentum ? 

2. How do the results depend on the assumed initial 
and boundary conditions ? 

3. Is the occurrence of ring formation, first noted by 
Larson (1972), confirmed? 

4. Do nonaxisymmetric instabilities occur in collaps- 
ing rotating clouds, and do binary systems form 
as a result? 

5. Is the model “solar nebula” calculated by 
Cameron and Pine (1973) consistent with the 
results of hydrodynamic calculations ? 

The physical equations and the parameters for the 
evolutionary runs are discussed in § II. The results are 
presented in § III. In § IV we discuss the results and 
summarize the progress that has been made in the 
resolution of the five questions posed above. 

II. CALCULATIONS 

The physical equations and numerical method of 
solution are discussed in detail in Paper I. We use 
cylindrical coordinates R, 6, and Z and express the 

138 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
6.

 .
13

8B
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equations with respect to a moving Eulerian grid. We 
include the standard hydrodynamic equations of 
continuity, momentum, and energy, and obtain the 
gravitational field by finding the steady-state solution 
of a diffusion equation closely related to Poisson’s 
equation (Peaceman and Rachford 1955; Paper I, 
§ III/). Boundary values for the gravitational potential 
are calculated from the first three nonzero moments of 
the mass distribution. Radiative transfer is treated by 
a standard diffusion approximation, with material 
temperature assumed equal to radiation temperature. 
The solution is obtained by means of an alternating- 
direction implicit technique described in § IIIc of 
Paper I. The radiative opacity for the calculations 
discussed here is due primarily to dust grains; we 
approximate the Rosseland mean opacity by the 
constant value kr = 0.15 cm2 g-1 for all temperatures 
less than 1400 K. The equation of state is discussed in 
§ II of Paper I. The present calculations terminate at 
rather low temperatures, before effects of dissociation, 
ionization, or radiation pressure become important. 
In order to obtain a reasonable comparison with the 
work of Larson, we have adopted for the purposes of 
this paper the simplified equation of state for molec- 
ular hydrogen that he used, with specific internal 
energy given by ^(Ha) = 5Rg77(2/x), where Rg is the 
gas constant and the mean molecular weight fx = 2. 

All calculations start with a spherical, uniformly 
rotating, gravitationally bound configuration of pure 
molecular hydrogen at an assumed uniform tempera- 
ture of T = 10 K. The initial density is taken to be 
uniform over the sphere except in the special case (2B) 
mentioned below, and fluid velocities U and W in the 
R- and Z-directions, respectively, are taken to be 
zero. A particular evolutionary calculation is specified 
by the following parameters: the total mass M; the 
ratio a of the initial total radius R* to the Jeans length 
Rj = 0A2GMfjil(RgT); and the initial ratio, ß, of the 
total kinetic energy of rotation to the absolute value 
of the gravitational potential energy. In the presence 
of rotation the Jeans criterion is modified to become 
(Larson 1972) 

n ^ 0.42GM 
* - RgT/fx + Er ’ (1) 

for the case of a uniformly rotating configuration of 
uniform density, where ER is the rotational energy per 

unit mass of the configuration. If Mand ß are specified, 
relation (1) leads to the following condition on a if 
collapse is to occur : 

a < 1 — lA3ß. (2) 

In practice, a was set to 0.52 for all runs reported here; 
this is sufficiently small to allow collapse for all values 
of ß up to 0.34. The total angular momentum (cgs) in 
terms of the specified parameters is 

for the case of a uniform sphere in uniform rotation. 
As indicated in Paper I, J is conserved in all calcula- 
tions. 

The initial parameters, properties, and assumed 
boundary conditions of the seven runs to be discussed 
here are summarized in Table 1. Angular momentum 
/, initial angular velocity ou0, and initial density p are 
given in cgs units. Case 2B was calculated with a 
centrally concentrated initial density distribution given 
by p(r) = P(0)(l — r/R*), where r is the distance to 
the center and R* is the total radius. All cases were 
calculated with a constant pressure (equal to the initial 
pressure) on the outer boundary, with the exception 
of case ID in which the volume of the protostar was 
fixed at its initial value. The constant volume condition 
was employed by Larson (1972). 

The closest direct comparison with the calculation 
described in detail by Larson is provided by case ID, 
which employs a comparable boundary condition but 
differs somewhat in other parameters. His calculation 
also starts with a uniform density and uniformly 
rotating configuration at T = 10 K, and with fluid 
velocities equal to zero. The rotational energy and 
initial radius of Larson’s model correspond to values 
of 0.22 and 0.59, respectively for ß and a. His cloud has 
M = 1 Mq with initial density of 4.17 x 10"19 g cm-3. 
A slight compositional difference exists between 
Larson’s models and ours in that his have p, 2.5. A 
comparison with the equilibrium model of the solar 
nebula calculated by Cameron and Pine (1973) is 
provided by case 2B, which employs the same total 
mass, total angular momentum, and initial distribu- 
tions of density and angular velocity as they assumed. 
Again, there are small differences in composition. 

TABLE 1 
Initial Conditions 

Case M¡Mq ß /(g cm2 s-1) woCrads-1) p(gcm"3) B.C. 

IA  1 0.02 6.0(53) 1.52(—13) 1.38(-18) const, pressure 
IB  1 0.08 1.2(54) 3.04(—13) 1.38(-18) const, pressure 
1C  1 0.32 2.4(54) 6.08(-13) 1.38(-18) const, pressure 
1D  1 0.32 2.4(54) 6.08(-13) 1.38(-18) const, volume 
2A  2 0.08 4.8(54) 1.52(—13) 3.45(—19) const, pressure 
2B  2 0.0025 8.2(53) 3.14(—14) 9.96(—19)* const, pressure 
5A  5 0.08 3.0(55) 6.08(—14) 5.52( —20) const, pressure 

* Central density. 
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140 BLACK AND BODENHEIMER 

III. RESULTS 

It was found that the seven cases calculated during 
this work exhibited qualitatively similar behavior, but 
differed in quantitative detail. Consequently, the first 
part of this section is devoted to discussion of the 
principal qualitative features of the collapse, while the 
latter part concerns the differences between the in- 
dividual cases. 

a) General Characteristics of the Collapse 

There are five general phases in the evolution: 
(1) an initial phase, comparable in duration with the 
free-fall time, during which the cloud loses spherical 
symmetry and becomes highly flattened; (2) the forma- 
tion of an axisymmetric, ringlike structure in the inner 
part of the cloud ; (3) a phase during which the ring 
approaches equilibrium; (4) a collapse of the ring upon 
itself; and (5) the ejection of a high velocity “sheet” 
of material from the outer periphery of the ring. The 
total time scale for the last four phases is in general 
shorter than that of the first phase; the last three 
phases occur over a very short time scale compared 
with the total evolutionary time. 

i) Phase I: Flattening 

During the initial phase of the collapse, motion of 
the fluid in the Z-direction (parallel to the rotation 
axis) is similar to that obtained in calculations of the 
collapse of nonrotating clouds. Pressure gradients 
have a significant effect in slowing down the collapse. 
However, since motion of the fluid in the R-direction 
is additionally retarded by the effects of rotation, an 
asymmetry in the density distribution develops. The 
density distribution becomes centrally condensed and 
the evolutionary time scale becomes much shorter in 
the central regions that in the outer regions. After the 
collapse has proceeded approximately one free-fall 
time, the effects of rotation are well marked. The low 
angular momentum material near the rotation axis 
collapses toward the equatorial plane, producing a 
highly flattened structure. On the same time scale, 
however, the lower density material away from the 
axis has not had a chance to collapse to the plane and 
retains a more nearly spherical distribution. The 
overall structure at the end of this phase is a toroidal 
configuration, highly flattened at the pole. A relatively 
small volume approximating a uniform-density, oblate 
spheroid remains at the center (case 2B excepted). 
The rotational energy of this central region is small 
compared with both its internal and gravitational 
energies. The optical depth of the cloud during this 
phase is low enough to permit the full escape of com- 
pressional heat, and the cloud remains isothermal. 

ii) Phase II: Ring Formation 

By the end of Phase I, the inner portions of the 
cloud evolve on a much shorter time scale than does 
the cloud as a whole. The central, highly flattened 
region of the cloud continues to increase in mass. After 
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the density in the inner region has increased by a factor 
of ~ 10-100 over its value at the end of Phase I, a 
density maximum begins to form in the previously 
uniform central regions of the cloud. The point of 
maximum density lies in the equatorial plane and away 
from the rotation axis; that is, a ringlike structure 
begins to form in the interior of the cloud. After the 
ring has started forming, the JR-component of velocity 
of material interior to the ring changes sign, and this 
material begins to flow slowly outward toward the 
minimum in gravitational potential which is now 
located at the center of the ring. As a consequence of 
this outward flow of material, the central density 
begins to decrease, and a sharp density contrast 
develops between the ring and the center of the cloud 
(a factor of ~500 in some cases). It is important to 
note that in all cases, ring formation begins prior to 
large-scale flow outward from the center of the cloud. 
Also, the existence of a uniform-density region is not 
necessary for ring formation to occur (see below). 
Once formed, the ring continues to gain mass at an 
increasing rate, while its distance from the rotation 
axis increases somewhat and then becomes well fixed. 
Experiments with different zoning and spatial resolu- 
tion in the numerical grid, as well as with different 
boundary conditions, lead us to conclude that the 
reality of the rings is well established. In all cases, 
except 2B, the ring begins to form while the material 
is optically thin and isothermal at T = 10 K. 

iii) Phase HI: Ring Equilibrium 

The formation and subsequent growth of the ring in 
Phase II is wholly dynamic. However, as the ring 
continues to grow by accretion of surrounding material, 
the translational energy (R and Z motion) of material 
in the ring decreases, and the ring approaches 
equilibrium. Additional evidence that the ring is near 
equilibrium is afforded by a detailed examination of 
the contributions to the momentum equation. Results 
from case ID show that the quantity 

8 s 2^/2 i^i, 
i i 

where the Fi represent the pressure, gravitational, and 
rotational contributions to the inertial equation, is 
typically ^0.05 throughout the ring. A comparison 
with the analytic results of Ostriker (1964) will be made 
later in the paper. Phase III is also characterized by 
the formation of a roughly spherical shock front whose 
strength varies with polar angle, being strongest at the 
pole and rather weak at the equator. The “radius” 
of this shock front is comparable with the distance 
from the rotation axis to the outer edge of the ring. 
Properties of the rings, calculated at times when they 
are well developed but not necessarily at the point of 
closest approach to equilibrium, are given in Table 2. 
The quantities pc and pmax are, respectively, the central 
and the maximum ring densities. The distance from 
the rotation axis to the center of the ring is denoted 
by d. 
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TABLE 2 
Ring Properties 

Case ß Time (yr) d (cm) pc (g cm 3) pm&x (g cm 3) Mring/Mtotai tit (yr)* (equilibrium) 

1A  0.02 6.22(4) 3.4(14) 6.0(-15) 1.5(-12) 0.03 5.68(4) 0.03 
IB  0.08 7.78(4) 2.6(15) 2.0(-16) 1.8(-14) 0.22 5.68(4) 0.10 
1C  0.32 9.52(4) 5.7(15) 1.3(-16) 8.7(-15) 0.32 5.68(4) 0.22 
ID  0.32 1.46(5) 6.0(15) 9.9(-17) 1.7(-15) 0.22 5.68(4) 0.23 
2A  0.08 1.56(5) 4.8(15) 5.8(-17) 3.8(-15) 0.16 1.13(5) 0.09 
2B  0.0025 1.00(5) 9.0(13) 1.0(-13) 2.3(-ll) t 6.68(4) f 
5A  0.08 3.62(5) 1.3(16) 4.3(-18) 3.2(-16) 0.11 2.84(5) 0.10 

* Free-fall time, 
t Ring mass not calculated. 

iv) Phase IV: Ring Collapse 

As noted above, Phase III, which typically lasts 
about 10 time steps, is characterized by relatively 
detailed force balance (small 8) throughout the ring. 
Gravitational forces then begin to dominate over both 
pressure and rotational effects as the result of a strong, 
approximately symmetric, steepening of the potential 
well about the ring center. During this phase, the mass 
and angular momentum contained in the ring region 
increase rapidly. The 8-values for case ID are uni- 
formly ^ 0.05 during Phase III, but a short time later 
the 8-value at the ring center increases to 0.42. The 
time scale for development of this collapse is in all 
cases consistent with the dynamic time scale of the 
ring itself. At approximately the same time, the 
distribution of specific angular momentum immediately 
outside the ring becomes unstable in the R-direction 
(cf. Goldreich and Schubert 1967); that is, it develops 
a local minimum with respect to the ring. Transport of 
material outward should result, on a time scale which 
according to Kippenhahn (1969) is greater than or 
equal to the Kelvin time; this transport was not 
included in the calculation. 

Evolution of the ring up to and through Phase 
IV systematically produces progressively stronger 
gradients of quantities in the ring volume. At the end 
of Phase IV, variations in density and angular 
momentum between adjacent zones in the ring have 
become large enough so that numerical results are 
certainly not quantitatively correct, and only future 
work will demonstrate whether the behavior identified 
as Phase V is qualitatively correct. This caveat should 
be borne in mind in relation to Phase V. 

v) Phase V: “Sheet” Ejection 

This phase is characterized by three distinct events : 
a rapid buildup of rotational energy in the ring, ejec- 
tion of mass and angular momentum from the ring, 
and inward motion of the ring. The buildup of rota- 
tional energy occurs over a very short time scale and 
begins with the later stages of Phase IV. During this 
buildup, integral checks on energy conservation show 
that energy does not appear to be conserved, possibly 
as a result of inaccuracies in the checks themselves. 
Immediately following the increase in the rotational 
energy of the ring (all other energies associated with 

the ring, as well as its mass, are also rapidly increasing 
at this point), material at the outer periphery of the 
ring is ejected from the ring and moves outward, 
approximately normal to the rotation axis, at a high 
velocity (£; 1-20 km s_1). The outward flow is con- 
fined to a region only a few zones thick (in Z) ; hence 
the identification as a “sheet.” The vertical thickness 
of the sheet corresponds closely to the Z-extent of the 
ring. The amount of mass ejected is difficult to deter- 
mine, but it may be as much as 10 percent of the ring 
mass in the more rapidly rotating cases. The ejected 
material has a relatively high specific angular momen- 
tum. Certain calculations were continued beyond the 
point of sheet ejection; they indicate that the ring 
subsequently moves closer to the rotation axis. Al- 
though energy does not appear to be conserved during 
the rapid buildup of rotational energy, it is conserved 
quite well once ejection starts. The excess rotational 
energy in the ring appears directly in the kinetic 
energy of the ejected sheet. In several of the cases, the 
kinetic energy gained by the sheet appears to be suffi- 
cient to allow some of the sheet material to escape 
from the cloud. 

b) Comparison of Individual Cases 

Cases 1A, IB, and 1C represent a sequence with 
increasing ß but with otherwise identical properties. 
All calculations were carried out for somewhat longer 
than one free-fall time. As ß is increased, the evolution 
time increases, as rotation is more effective in slowing 
down the collapse in its early stages. Also, with an 
increase in ß, the ring forms at a greater distance from 
the rotation axis and has a larger fraction of the total 
mass and a lower mean density. Escape velocity is 
attained in the sheet ejection process in cases IB and 
1C, but not in 1A. The configurations remain iso- 
thermal throughout the evolution in cases IB and 1C, 
but the densities attained in case 1A are high enough 
so that a small amount of heating takes place in the 
center; at the time of ring equilibrium the maximum 
temperature occurs in the ring and has a value of 
24 K. The density, R-component of velocity, angular 
velocity, and specific angular momentum, as a function 
of distance from the spin axis and in the equatorial 
plane for case 1A, are shown at various evolutionary 
times in Figure 1. Note that the ring radius increases 
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Fig. 1.—{a) Density, in the equatorial plane, as a function of distance from the rotation axis for case IA. {b) Æ-component of 
velocity, in the equatorial plane, as a function of distance from the rotation axis for case 1 A. (c) Angular velocity, in the equatorial 
plane, as a function of distance from the rotation axis for case 1 A. {d) Specific angular momentum JM, in the equatorial plane, as a 
function of distance from the rotation axis for case 1 A. The curves a, b, c, d, e, and f in Figs, la, 16, 1c, and \d correspond to the 
following evolutionary times, respectively: 0, 5.05, 5.71, 6.00, 6.14, and 6.19 in units of 104 years. 
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EVOLUTION OF ROTATING INTERSTELLAR CLOUDS 

slightly as the ring increases in mass and that the ring is 
already defined before the central density begins to 
decrease. Note also that oo is fairly uniform in the 
central region of the cloud, and does not develop a 
local maximum until the ring is well formed. The 
specific angular momentum monotonically increases 
outward at all times represented in Figure 1. We 
discuss these points later in connection with possible 
nonaxisymmetric behavior. Density contours and 
associated velocity plots are shown for case IB in 
Figures 2 and 3 for two different times—at the point 
where the ring is just beginning to form, and when the 
ring has become fully developed. Entries in Table 2 
for cases IB and 1C, and Figure 3, represent post- 
equilibrium configurations, while the entry for case 
1A represents a point very close to equilibrium. 

Cases IB, 2A, and 5A represent a sequence with ß 
fixed at 0.08 and with increasing mass. The ratio of 
evolution time at the point of ring formation to free- 

143 

fall time is the same in all cases. The ring radii are 
approximately proportional to the initial cloud mass. 
The detailed structure of the ring varies somewhat as 
a function of total mass with the low mass rings being 
more sharply peaked than the high mass rings. The 
fraction of total cloud mass contained in the ring, when 
it is close to equilibrium is practically independent of 
total mass. The entries in Table 2 do not reflect this 
fact, since that for case 5A represents a time close to 
equilibrium, while those for cases 2A and 1B represent 
rings which have evolved progressively farther beyond 
equilibrium and have rapidly increased their masses. 
In the last column of Table 2 we give estimated values 
for the equilibrium ring masses for those rings that are 
not in equilibrium. 

Case 2B represents a collapse starting from an initial 
model closely corresponding to that assumed by 
Cameron and Pine (1973) in their construction of an 
equilibrium model of the solar nebula. Our initial 

Fig. 2.—Detailed characteristics of the inner regions of case IB at 6.83 x 104 years. Upper, velocity vectors with length propor- 
tional to speed. Maximum vector length corresponds to 0.52 km s_ 1. Lower, equidensity contours corresponding to /> = a>0, where 
po = 2.08 x 10-16 g cm-3 and a — 0.645 for « = 0, 1,..7. The outermost contour corresponds to p = 4.00 x 10-18 g cm-3. 
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R-AXIS (1010 CM) 
Fig. 3.—Detailed characteristics at the inner regions of Case IB at 7.78 x 104 years. Upper, velocity vectors with length propor- 

tional to speed. Maximum vector length corresponds to 1.17 km s-1. Lower, equidensity contours corresponding to p = anp0, 
where p0 = 7.10 x 10-15 g cm-3 and a = 0.482 for « = 0,1,..., 7. The outermost contour corresponds to p = 1.00 x 10"17 g cm-3. 

density distribution approximates their “linear 
sphere,” a model in which density decreases linearly 
with distance from the center. The results are qualita- 
tively similar to those of the other cases discussed 
here. Despite the low value of/3(~2 x 10“ 3) and the 
linear rather than uniform density distribution, ring 
formation proceeds in the usual manner. The ring 
radius of 9 x 1013 cm is smaller, and the density 
higher, than in the other cases. Consequently, some 
heating takes place in a very small mass fraction in 
the central regions. The density distribution near the 
end of the calculation does not resemble that in the 
Cameron-Pine model. In fact, the region interior to 
1 AU contains very little material and has low tem- 
perature compared with that at the center of their 
nebula. 

The effect on the collapse of using different boundary 
conditions is demonstrated by cases 1C (constant 
surface pressure) and ID (constant volume). The 
process of ring formation and the resulting mass and 
radius of the ring are virtually identical in the two 
cases. The differences in ring properties listed in 
Table 2 are due to the fact that the ring in case 1C 
has evolved beyond the equilibrium point, while that 
for case ID is close to equilibrium. The evolutionary 
time scale for case ID was somewhat longer, and the 
distribution of material and the fluid velocities in the 

outer regions did differ in the two cases. The ring 
radius for case ID is consistent with the results of 
Larson (1972) ; his value of 5 x 1015 cm is intermediate 
between the values we obtain for ß = 0.32 and ß = 
0.08, consistent with his assumption of ß = 0.22. 
Figure 4 illustrates the equilibrium ring properties for 
case ID. We conclude that ring formation and 
evolution of the inner regions is relatively insensitive 
to the change in surface boundary conditions. 

A rather narrow range of initial conditions is 
represented in the work reported here. All the con- 
figurations were initially uniformly rotating, so that 
the dependence of the results on the assumed initial 
rotation law is unknown. All calculations assumed 
that the fluid was initially at rest. We have made 
calculations of the collapse of a nonrotating cloud, 
employing the zero velocity initial condition, and have 
compared the results with those of a parallel calcula- 
tion in which the fluid was assumed to be initially 
flowing inward in free fall. The general features of 
collapse were identical in the two calculations, differ- 
ing only in time scale and minor quantitative features. 
However, the effect of free-fall initial conditions 
should be explicitly determined for the collapse of 
rotating clouds. The effect of the initial density distri- 
bution on the collapse is also unclear. Case 2B was 
run with an initial density distribution which decreased 
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R-AXIS (10® CM ) 

Fig. 4.—Detailed characteristics of the inner regions of case ID at 1.46 x 105 years. Upper, velocity vectors with length propor- 
tional to speed. Maximum vector length corresponds to 0.90 km s-1. Lower, equidensity contours corresponding to /> = anpQ, 
where p0 = 9.58 x 10-16 g cm-3 and a = 0.551 for /z = 0, 1,.. ., 7. The outermost contour corresponds to p = 4.50 x 10“18 g cm-3. 
The fraction of total cloud mass contained within the outermost contour is 0.44. 

linearly from center to surface, while all other cases 
were initially uniform in density. The conditions of 
case 2B are not directly comparable with any of the 
other cases, so we have not isolated the effect of the 
initial density distribution. Future experiments will 
address this point. It is clear, however, that ring form- 
ation occurs even when the initial density distribution 
is not uniform. 

IV. DISCUSSION 

For the purpose of the ensuing discussion, it is 
convenient to consolidate the five specific phases in 
the collapse (see § Ilia) into three broader categories— 
namely, (a) ring formation, (b) ring equilibrium, and (c) 
postequilibrium ring evolution. We discuss each of 
these in turn, and conclude with a discussion of other 
questions concerning the evolution of the entire cloud. 

a) Ring Formation 

It is tempting to attribute the formation of rings to 
one of the many instabilities associated with rotating, 
self-gravitating systems. The analysis of these in- 
stabilities is quite difficult, and most efforts to date have 
concentrated on equilibrium systems. In particular, 
analysis (cf.Bardeen 1971) of the sequence ofMaclaurin 
spheroids (uniformly rotating, uniform-density con- 
figurations in hydrostatic equilibrium) shows that as 
the ratio ß is increased, these configurations become 
secularly unstable to nonaxisymmetric perturbations 
{ß = 0.137), dynamically unstable to nonasymmetric 
perturbations {ß = 0.274), secularly unstable to axi- 
symmetric perturbations (ß = 0.36), and dynamically 
unstable to axisymmetric perturbations {ß = 0.46). 
Ostriker and Bodenheimer (1973) showed that 
sequences of differentially rotating polytropes exhibit 
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secular and dynamic instability to nonaxisymmetric 
perturbations at about the same ß values as the 
Maclaurin sequence. It is generally supposed that 
the instability at ß = 0.274 leads to fission, and that 
the instability at /? = 0.46 results in the formation of 
a ring. 

There are, however, difficulties in applying existing 
analyses to the situation pertaining here. The forma- 
tion of rings during the collapse is a wholly dynamic 
process, and it has not been shown that the equili- 
brium analyses may be generalized to nonequilibrium 
configurations. Also, these stability analyses refer to 
integral properties of the entire cloud, whereas ring 
formation involves only a portion of the cloud. 

We can examine, nevertheless, whether the epoch 
of ring formation is associated with instability charac- 
teristics. It is likely that high local values of ß and/or a 
critical degree of flattening are necessary, but not 
sufficient conditions for instabilities to arise. It was 
pointed out in § Ilia that the early phase of collapse 
leads to the formation of a highly flattened, disklike 
structure in the center of the cloud. The ring eventually 
forms in this region. However, the values of ß in these 
disks are small, typically less than 0.1, indicating that 
ring formation is not characterized by locally high 
values of ß. The ratio of polar to equatorial radii, 
a3lau of the disklike region may be used as an in- 
dicator of flattening. The first axisymmetric dynamical 
instability of Newtonian Maclaurin spheroids occurs 
when a3/ai = 0.04652. However, the a3/ai ratios in 
cases IB and ID at the time of ring formation were 
0.237 and 0.325, respectively, much larger than that 
required for the dynamical ring instability. It would 
appear that ring formation is not a manifestation of a 
classic ring instability. Also, the fact that the 
ratio at the onset of ring formation is not the same in 
cases IB and ID suggests that ring formation does not 
depend on a critical ajax value in the inner regions of 
the cloud. 

The question arises as to whether ring formation is a 
result of a gravitational instability. The mass of the 
inner regions in which the ring forms is roughly equal 
to the mass of the equilibrium ring. Using the insta- 
bility condition expressed in equation (1), we may 
estimate the mass required for instability. As this 
involves an assumption of spherical shape, the 
resultant mass will only be approximately correct. We 
find that the mass limit A/* for instability is 

Af* = 5.21 x 10- 
\RgTlf, + ERf 1/2 

Mc o > (4) 

where the symbols are as defined earlier in the paper. 
Using the density ( ~ 10 “16 g cm - 3), temperature 
(10 K), and ER value which pertain to case ID, we 
find Af* = 0.25 Af0> in good agreement with the mass 
(~0.22 Mq) of the equilibrium ring for this case. The 
critical mass A/* is roughly proportional to p-1/2, 
suggesting that if a gravitational instability is the 
cause of ring formation one would expect A/* for case 
IB (p = 3 x 10_16gcm_3) and case 1A (p = 
2 x 10~14gcm~3) to be 0.14 A/q and 0.02 Af©, 

respectively. The values of T at the time of ring forma- 
tion are identical in these cases, and the values of ER 
are similar, so that the AT* oc p~1/2 scaling should be 
reasonably valid. The masses of the equilibrium ring 
in these two cases are ~0.1 Af0 and 0.03 Af0, respec- 
tively, again in good agreement with the critical mass 
for instability. Although much more detailed work 
needs to be done on the question of ring formation, our 
results are consistent with formation as a result of a 
gravitational instability. 

tí) Ring Equilibrium 
Ostriker (1964) has analytically calculated integral 

properties and structural characteristics of equilibrium, 
isothermal, self-gravitating rings whose thickness is 
small compared with the distance d of the ring from 
the rotation axis. He finds that equilibrium is only 
possible if the mass per unit length of the ring has 
the value (M/L)e = IRgEj^G). The rings which form 
in cases IB, 1C, ID, 2A, and 5A are isothermal; 
however, the properties of the gravitational field in the 
ring formation region differ somewhat from those 
employed by Ostriker as a consequence of the pre- 
sence of a flattened distribution of matter external to 
the ring. 

As noted previously, the ring in case ID was in- 
vestigated in detail and found to be close to hydrostatic 
equilibrium. The calculated M/L value of this ring is 
1.2 x 1016gcm-1 compared with Ostriker’s equili- 
brium value of (M/L)e = 1.24 x 1016gcm_1. The 
estimated uncertainty in the numerical M/L ratios is 
50 percent. The M/L values derived from Table 2 
for cases IB, 1C, and 2A are larger than the equili- 
brium values. An examination of the detailed force 
balance for these cases shows that they were beyond 
the equilibrium phase when the mass was calculated. 
The total angular momenta of the rings are within 
~25 percent of the analytical values from Ostriker’s 
study. The estimated uncertainty in the numerical 
/-values is 65 percent. 

In addition to the integral characteristics, Ostriker’s 
analysis yields the detailed structure (i.e., density 
profile) of an isothermal ring. He shows that the 
characteristic minor radius of the ring Ar, within 
which one-half of the ring mass is contained, is uniquely 
determined by the mass per unit length of the ring and 
the peak density p0 in the ring. Ostriker’s expression 
applied to case ID yields Ar = 1.5 x 1015 cm. The 
value of Ar determined from the density contours of 
case ID is 2.14 x 1015 cm in the indirection and 
1.0 x 1015cm in the Z-direction, giving an average 
Ar ^ 1.5 x 1015 cm. The ellipsoidal cross-section of 
the numerical ring as contrasted to the circular cross 
section of the analytic ring is consistent with the differ- 
ence in gravitational fields between Ostriker’s case and 
ours. In summary, the integral properties and detailed 
structure of the equilibrium rings formed during the 
collapse are in good agreement with those of the 
analytic rings calculated by Ostriker. 

An important question concerning these equilibrium 
rings is whether they are stable against nonaxisym- 
metric perturbations (NAPS). Using the numerically 
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determined internal and rotational energies of the 
rings in cases IB, 1C, ID, 2A, and 5A, and the virial 
theorem, we find the average ß value for these rings 
to be 0.25 ± 0.05. The value of ß obtained from 
application of Ostriker’s formulae is approximately 
0.24. This value is close to that (0.26 ± 0.02) at which 
the Maclaurin sequence and the sequence of differen- 
tially rotating polytropes become dynamically un- 
stable to NAPS. There is, however, no evidence that 
suggests that rings will become unstable to NAPS at 
the same value of ß as do the Maclaurin and poly- 
tropic sequences. 

The existence of scaling laws between ring parameters 
and initial characteristics of the cloud would be most 
useful. Larson indicates that the ring radius d is 
roughly proportional to the cube of the initial angular 
velocity, ojp, of the cloud. Our results are consistent 
with a scaling of that form between cases 1A and IB. 
However, the ¿/-value in Case IB (ß = 0.08) is approxi- 
mately a factor of 2 smaller than the ¿/-value in case 
IC (ß = 0.32), rather than the factor of 8 expected 
from the œ0

3 scaling. The scaling appears to break 
down when coQ is such that the initial model is close to 
centrifugal balance, as is case 1C. For a fixed value of 
ß, however, the ¿/-value of the rings scales approxi- 
mately linearly with the mass of the cloud. As equili- 
brium rings are only possible for a specific value of the 
ratio M/Clird), this scaling implies that the fraction 
of the total cloud mass which is involved in the ring is 
independent of the total mass of the cloud (for fixed 
a, ß). This fraction is ~ 10 percent for ß = 0.08 and 
a = 0.52. More work is needed to establish the genera- 
lity and detailed nature of the scaling relations, with 
emphasis on a wider range of a- and /3-values. 

c) Postequilibrium Ring Evolution 

Although the equilibrium phase just discussed is a 
quantitative characteristic of ring evolution, it is 
short lived. Ostriker’s work shows that once the M/L 
value of the ring exceeds the critical value, equili- 
brium is no longer possible and the ring must collapse 
upon itself. This behavior is in fact observed. The 
gravitational field gradients steepen markedly inside 
the ring, concentrating most of the ring mass and a 
great deal of angular momentum into a small number 
of zones. This process occurs on a time scale compar- 
able with the free-fall time of the ring. 

Within a few free-fall times after the collapse of the 
ring has begun, the phenomenon of “sheet” ejection, 
discussed in § III¿z occurs. Any realistic discussion of 
the postequilibrium ring evolution must consider 
two problems: (1) at what value of ß does an equili- 
brium ring become unstable to NAPS, and (2) is the 
phenomenon of sheet ejection real or is it a numerical 
artifact of the calculation ? 

Let us suppose that sheet ejection is numerical in 
origin. If future stability analyses of equilibrium, 
isothermal rings show that they are unstable to NAPS 
at ß = 0.25 ± 0.05, the rings would be expected to 
fragment along their length. Stability analysis may 

show that a higher ß-value is required. However, as 
the rings collapse, ß increases, and fragmentation 
could still occur, although an equilibrium stability 
analysis would no longer apply. Thus the likely post- 
equilibrium ring evolution, in the event that sheet 
ejection is a numerical effect, is fragmentation into 
two or more distinct condensations, a suggestion that 
has been made by Larson (1972). 

If the phenomenon of sheet ejection is real, frag- 
mentation is not the inevitable fate of the ring. Several 
evolutions are possible. Even if the rings are dynami- 
cally unstable to NAPS at ß = 0.25 ± 0.05, the 
instability will manifest itself on a free-fall time scale, 
the same time scale as sheet ejection. In this case, 
sheet ejection and fragmentation could be concurrent 
phenomena. If the ß-value for instability against 
NAPS is higher than the ß-value for equilibrium rings, 
the evolution could be quite complex. As noted 
earlier, the ß-value of the ring will increase as the ring 
collapses upon itself. However, once sheet ejection has 
occurred, it removes a great deal of the rotational 
energy of the ring. This “relief valve” effect may pre- 
vent the ring from ever reaching the critical ß-value at 
which fragmentation occurs. Those rings whose 
evolution was followed beyond sheet ejection moved 
inward—that is, sheet ejection moves angular momen- 
tum out of the central regions of the cloud and moves 
mass inward. These possible evolutions are only 
meant to serve as indicators of the complexity of this 
phase of evolution. The exact nature of the evolution 
is an open question, probably requiring three-dimen- 
sional hydrodynamic calculations for its resolution. 

d) Further Questions Concerning the 
Evolution of the Cloud 

An alternative to the formation of a binary or 
multiple star system is of course the formation of a 
rotating nebula out of which planets and a single star 
might form. The most detailed model of such a hypo- 
thetical nebula is that of Cameron and Pine, which 
follows earlier work by Cameron (1969). These 
authors assume that the nebula was initially a uni- 
formly rotating cloud with œ0 x 7 x 10~14 rad s-1 

and radius ~1017cm. They do not calculate the 
dynamic collapse from this initial model, but simply 
assume that the initial rotating sphere flattens to a 
thin disk while preserving the angular momentum 
distribution of the original sphere (cf. Mestel 1963). 
Our case 2B is nearly identical to the initial model 
postulated by Cameron and Pine. As we have not 
followed the collapse to the point where all of the 
mass in the cloud has come into equilibrium, we cannot 
specify the final state in any detail. However, our 
results do show that the final equilibrium configura- 
tion (if one exists) will not be that calculated by 
Cameron and Pine. For example, the adiabatic p-T 
relation obtained in the center of the cloud as a result 
of our calculation is quite different from the one that 
they assume. In addition, there is a problem associated 
with obtaining a central condensation (the star) in the 
nebula. The time scale for the instabilities that occur 
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in the cloud is likely to be shorter than the time scale 
for transport of angular momentum outward. Unless 
the instabilities themselves result in transport of 
angular momentum (an interesting possibility) the 
inner portions of the cloud may well break up before 
the central condensation has a chance to occur. One 
might think that the problem could be resolved if the 
initial cloud had very low angular momentum so that 
rotational effects would not stop the collapse until the 
inner portions had reached stellar dimensions. How- 
ever, an elementary calculation shows that the equili- 
brium radius of the nebular material outside the central 
object would be far too small to account for the orbits 
of the outer planets in the solar system. That is, if one 
assumes an initially uniformly rotating cloud, an 
angular momentum low enough to permit formation 
of the Sun would be too low to account for the outer 
planets. Thus, in order to understand the formation 
of the solar system, it seems necessary to appeal to 
either (1) an efficient mechanism which removes 
angular momentum from the central parts of the cloud 
before instabilities occur, or (2) a set of initial condi- 
tions—in particular, a distribution of angular 
momentum—quite different from that studied here. 

e) Some Remarks on Axial Symmetry 

One of the fundamental assumptions employed in 
the calculations discussed here is that the collapse is 
axisymmetric. It is reasonable to inquire whether this 
assumption is responsible, at least in part, for the ring 
structures found here, and whether this assumption 
is likely to be valid. 

Lynden-Bell (1964) has pointed out that collapsing 
systems are only likely to maintain axial symmetry if 
pressure is important throughout much of the collapse 
and if density increases markedly toward the center. 
Both of these conditions obtain in the collapses 
studied here. More recent work (Stewart 1975) has 
shown that differentially rotating, equilibrium con- 
figurations may be unstable to NAPS, and that the 
instability leads to highly turbulent flow. As can be 
seen in Figure 1 c, differential rotation is well established 
in case 1A after a time of 5 x 104 years; similar be- 
havior occurs in the other cases studied here. One 
effect of the turbulence is to transfer angular momen- 
tum from the interior to the exterior regions of the 
cloud. Could this transfer mechanism, which is not 
included in the equations governing the dynamics, 
remove sufficient angular momentum from the ring- 
forming regions of the cloud to prevent ring formation, 
and give rise instead to a central condensation? A 
typical time scale for significant transport of angular 
momentum by turbulent viscosity is r ^ L2/vturh, 
where L is the scale size of the system and vturb is the 
kinematic viscosity due to turbulence, given roughly 
by vturb ^ cs//3 (cs and / are, respectively, sound speed 
and mixing length). Therefore r ^ 3L2lcsl, or as 
L > l9 T > 3L/cs. Characteristic values of these param- 
eters for case 1A yield r ^ 1.5 x 105 years, and a 
more realistic estimate of / would increase r by at 
least a factor of 2. This time is significantly longer 

than the total evolution time to ring formation. Thus, 
although turbulent transport of angular momentum 
may be important in certain contexts, it does not seem 
fast enough to have significant influence on ring forma- 
tion during the collapses studied here. Furthermore, 
unlike the configurations which were studied by 
Stewart, the differentially rotating configurations 
generated by collapse are not in equilibrium. 

Although the arguments given above must be con- 
sidered tentative, they indicate that ring formation is 
likely to proceed even if the assumption of axial 
symmetry is relaxed. Known nonaxisymmetric in- 
stabilities do not appear to operate on a sufficiently 
short time scale to have significant effects on the 
collapse dynamics up to the time of ring formation. 
However, once the ring has approached equilibrium, 
it is likely that it is subject to nonaxisymmetric breakup 
as suggested by Wong’s recent (1974) stability analysis 
of equilibrium toroids. 

/) Summary 

The results of numerical hydrodynamic calculations 
show that the collapse of a rotating, axisymmetric 
cloud which conserves angular momentum leads to 
the formation of a ring structure in the interior of the 
cloud, confirming the result of Larson (1972) for clouds 
of 1 Mq. The general result holds true also for masses 
of 2 and 5 M©, and for a considerable range of values 
of angular momentum. For a fixed value of ß, if one 
considers the rings at the point of closest approach to 
equilibrium, the ring distance d is roughly propor- 
tional to the total mass, and the ratio of ring mass to 
total mass is independent of total mass (the value is 
about 10% for ß = 0.08). For fixed mass and decreas- 
ing values of angular momentum J (or, equivalently, 
decreasing ß at fixed a), rotational effects are delayed 
until higher values of central density are reached; the 
mass fraction contained in the ring and the ring dis- 
tance decrease. If J is reduced far enough, the central 
regions become optically thick before ring formation 
occurs, but the general result is not affected. The 
properties of the ring are unaffected by a change in 
surface boundary condition from one of constant 
pressure to one of constant volume. The foregoing 
conclusions apply to calculations in which the initial 
density is assumed to be uniform throughout the cloud. 
However, if the initial density is assumed to decrease 
linearly with distance from the center, ring formation 
still takes place. More comprehensive studies of the 
effects of initial conditions have yet to be made. A 
calculation using the parameters and initial conditions 
appropriate for the Cameron-Pine model solar nebula 
gives results for the density distribution (ringlike) and 
the temperature-density relation in the inner regions 
which are not in agreement with that model. Further- 
more, the occurrence of nonaxisymmetric instabilities 
may cause the cloud to break up and (speculatively) 
form a binary or multiple star system long before such 
an equilibrium is reached. Three-dimensional hydro- 
dynamic calculations and a stability analysis of equili- 
brium rings should result in further progress regarding 
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quantitative treatment of mechanisms for angular 
momentum transport, such studies are necessary for 
an understanding of the conditions under which binary 
systems, on the one hand, or planetary systems, on 
the other, are formed. 
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