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ABSTRACT 

A detailed dynamical model of the globular cluster M3 is presented. The model is tidally 
limited and includes a realistic distribution of stellar masses. It is used to derive a total luminosity 
function for the cluster from the published luminosity function, and to give estimates of its total 
mass ([3.30 ± 0.15] x 105 M©) and MfLy ratio (1.6 ± 0.2 solar units). The model gives an 
excellent fit to the observed radial distribution of surface brightness and star counts over five 
decades in surface brightness : a good fit is not possible with the corresponding single-mass models. 

Subject headings: clusters: globular — stars: stellar dynamics 

I. INTRODUCTION II. THE MODELS 

The radial distributions of surface brightness and 
star number density are now available for many 
globular clusters. Most of these observed profiles 
extend over three to four decades of surface brightness, 
and most can be well represented by King’s (1966a) 
dynamical cluster models (Peterson and King 1975): 
in these models all stars have the same mass, and the 
velocity distribution has the “lowered Gaussian” form 
of equation (1). For a few clusters, however (including 
47 Tue [Illingworth 1973], M3 [this paper] and Ml5 
[Newell, Norris, and Da Costa, in preparation]), the 
observed surface brightness profiles cover five or more 
decades, and in each case the observed profile deviates 
significantly from the best-fit single-mass model (see 
Fig. 1). 

We have constructed globular cluster models which 
include a realistic mass spectrum. In a globular cluster 
the giants contribute almost all the visible light, while 
the low-mass stars dominate the gravitational field in 
which these giants move. If we know the bright end of 
the luminosity function, and the radial surface bright- 
ness distribution, we can use these dynamical models 
in an iterative procedure to derive a self-consistent 
picture of the cluster’s dynamical structure and its 
mass (or luminosity) function. As part of a continuing 
program on the structure of globular clusters, we 
investigate in this paper the structure and mass func- 
tion of the globular cluster M3, using as initial data 
Sandage’s (1954, 1957) luminosity function and an 
electronographic surface brightness profile generously 
provided by Dr. G. E. Kron and Dr. A. V. Hewitt, 
combined with star counts from King et al. (1968). 
Our main purpose is to show how a dynamical model, 
with the usual lowered Gaussian distribution function 
and a mass spectrum based on the observed luminosity 
function, gives an excellent representation of this 
cluster’s surface brightness profile. 

In a classic paper, King (1966a) described a one- 
parameter set of dynamical models for spherical star 
clusters, based on steady-state solutions of the Fokker- 
Planck equation. These models are spatially limited by 
the tidal field of our Galaxy, have an isotropic velocity 
distribution, and contain the further assumption that 
the stars all have the same mass. In this section we 
present the theory for a set of models in which this last 
assumption is relaxed. 

The relaxation time at the center of a globular cluster 
is a small fraction of its age (see, for example, Peterson 
and King 1975), so stellar encounters will have strongly 
affected the form of the velocity distribution function 
there, driving it toward a Maxwellian distribution. 
However, because the galactic tidal field acts spatially 
to limit the cluster, the velocity distribution function 
becomes zero at the velocity needed to reach the cluster 
boundary, rather than at the value for escape to 
infinity. These effects are described by the steady-state 
solutions of the Fokker-Planck equation subject to a 
finite velocity cutoff, and the lowered Gaussian velocity 
distribution used by King (1966a) is an analytic 
approximation (Michie 1963; King 1965) to these 
solutions. We write this distribution function in terms 
of the energy E since, according to Jeans’s theorem, 
the distribution function must then be the same func- 
tion of E at all points in phase space. 

We assume that the stars of the cluster can be 
grouped into a number of mass classes, each charac- 
terized by a mass and that the number density in 
phase space for each mass class is given by the dis- 
tribution function (cf. King 1966a) 

Et < -mtC; (1) 
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130 DA COSTA AND FREEMAN Vol. 206 

here r and v are (spherical) radius and velocity, at and 
di2 are positive constants related to the number 
and velocity dispersion of stars in this mass class, and 
C > 0 is a constant. The energy Ei for stars of this 
mass class is given by 

Ei = ^rriiV2 + m^{r) , (2) 

where ^(r) is the smoothed gravitational potential for 
the cluster. The boundary of the cluster is given 
implicitly by the equation 

>(r¿) + C = 0, (3) 

and is the same for each mass class, as required by the 
tidal cutoff (King 1962). The total distribution func- 
tion at each point is then the sum of the components 
for each mass class. The density ^ of each mass class 
at any point can now be found by integrating the 
distribution function/¿(r, v) over velocity, 

ftWO = Í v)4iTV2dv ; (4) 
- TfliC 

and the problem is reduced to finding a solution to the 
(nonlinear) Poisson equation 

V2¿ = ^GZiPiir,, (5) 

subject to the boundary conditions </r = —A(A > 0) 
at r = 0 and i/j = —C at r = ru the as yet undeter- 
mined boundary of the cluster. 

We now make the assumption that there is full 
equipartition of energy, so 

mpi2 = mp2 . (6) 

We then transform to dimensionless variables. Write 
U = ÿ + C, r = r'rt, Mi = Mi'm1, U = U'of, C = 
C'a!2, at = oc/«!, pi = pi aiMxGi3, and 

cti = a/ exp [- C'(l - mi')]. 

Integrating equation (4) gives the dimensionless 
density for the zth mass class as 

P;(£/) = íW1'2 exp (C) 
x [(27r)3/2 exp ( —mj{/) erf (—mjC/)1'2 

- 25'27t( - mt U)112 - 27/27r( - mtU)3l2/3], 
(7) 

where we have suppressed the primes. Poisson’s 
equation becomes 

'~2|(r2^) =ASMt/)’ (8) 

with the boundary conditions U(0) = — D(D > 0) 
and t/(l) = 0. The number A = 47rGri

2(r1a1m1 exp (C) 
behaves as an eigenvalue because the maximum radius 
rt, which we have chosen as the radial scaling factor, 
and the dimensionless cutoff energy C, must be deter- 
mined at the same time as U(r) (cf Prendergast and 
Tomer 1970; Wilson 1975). 

Equation (8) is solved numerically on a grid of 51 
radial points 0 < xk < 1. The central dimensionless 
potential D, the relative masses mi9 and the relative 
number factors at serve over a large range of values to 
specify a unique solution. For a given set {mi, c^}, 
increasing D (i.e., deepening the central potential well) 
increases the central concentration of the mass class 
containing the most massive stars (always mass class 1), 
while for fixed D and increasing the {aj values also 
increases this central concentration. The central con- 
centration of a model is measured by the parameter 
ß1? which is the ratio of the tidal radius to the core 
radius for mass class 1. This core radius rc L is defined 
by 47rGrCtj:pi(-D) = 9g,2; cf. King (1966a). The 
central concentration of each mass class is defined 
similarly. The number factors a* determine for each 
mass class the relative total mass /x¿, where 

= J Pi(r)4iTr2drj^ p1(r)4nr2dr ; (9) 

Pi is the ratio of the total mass in the /th mass class to 
the total mass in mass class 1. The variation of pt with 
mass class leads to the mass function of the model. 

A model for a particular cluster is constructed by 
varying the number factors {aj and the central poten- 
tial D iteratively until the concentration parameter ß1 
and the relative total masses {/xj equal the values con- 
sistent with the data. A first approximation to the 
required value of ß± comes from fitting a single mass 
class model to the star counts in the outer regions of 
the particular cluster. The output of the model is then 
the run of dimensionless space density with dimension- 
less radius for each mass class. 

We have two numerical checks on our procedure, 
(i) Our models with a single mass class are indis- 
tinguishable from those of King (1966a). (ii) The virial 
theorem is satisfied for all models considered here, to 
better than 0.01 percent of the dimensionless kinetic 
energy. 

To compare the model with observations, the space 
densities are first projected to give surface densities. 
Each mass class is then given a mean magnitude for 
stars of its mass, and the total surface brightness at 
each radius point calculated, allowing for the fact that 
not all the stars in each mass class contribute to the 
light output; some are white dwarfs (see §111). The 
fraction of horizontal-branch stars in each mass class 
must also be specified, along with the horizontal- 
branch magnitude. For completeness a mean white- 
dwarf magnitude is also specified. The output from 
this routine is then a plot of log (normalized surface 
brightness) against log (radius/rc>1), a parameter which 
is a measure of the integrated apparent magnitude, 
and the MjL value (in solar units) for this model. Since 
it is a dimensionless number, the MjL value of the 
model can be compared directly to the MjL values of 
real clusters: this provides an instant check on the 
usefulness of the model. The model surface brightness 
profile is then compared to the observed profile; 
provided the fit is satisfactory, the intercepts on the 
axes in the log (surface brightness) — log r plane 
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determine the central surface brightness and the tidal 
radius. Once these scale factors are known, the 
dimensionless model parameters can be converted into 
dimensional quantities. In particular, we have the 
following conversion formulae. 

a) Mass of cluster: 

M(Mg) = IS^^o.,, (10) 

where rt is the tidal radius in parsecs, «^i2)0,r)1/2 is the 
central velocity dispersion (in km s "1) along the line of 
sight of the stars of mass class 1, and £ is the dimension- 
less mass of the cluster given by £ = À JJ Eipi(r)47rr 2Jr. 

b) Central density: 

d0(M0 pc-3) = (11) rt 

where 8 = = 0) is the dimensionless central 
density. 

c) Escape velocity from center of cluster: 

(üe)o = (2D<r1
2>0,r)

1'2 , (12) 

where D is the dimensionless central potential. 
Now we discuss the construction of a model for the 

cluster M3. 

III. MODEL FOR M3 

Figure 1 shows the surface brightness profile for M3 
(NGC 5272): this profile comes from photoelectric 
photometry by King (19666), electronographic pho- 
tometry by Kron and Hewitt (unpublished), and star 
counts by King et al. (1968). The curves in Figure \a 
are single-mass models (labeled with their value of 
c = log rt¡rc), chosen independently to fit best the 

inner and outer parts of the profile. In Figure 16, the 
curve is the single-mass model which gives the best eye 
fit to the profile over the whole five decades of surface 
brightness data. It seems clear that an adequate 
representation is not possible with a single-mass model 
of this family, which provides the motivation to con- 
struct a more realistic model for this particular cluster. 

First we need to adopt a mass function for M3. 
Sandage’s (1954, 1957) observed luminosity function 
for the inner part of the cluster was extended to fainter 
magnitudes by fitting to it the normalized solar 
neighborhood luminosity function from Widen (1973). 
This complete luminosity function was then split into 
10 groups: groups 1 and 2 contain all stars above the 
main-sequence turnoff, groups 3 and 4 are the remain- 
der of the Sandage luminosity function, and groups 5 
to 10 are the extension (see Fig. 2). For each group the 
mean Mv was calculated, and a representative mass 
assigned as follows. 

From the results of Simoda and Iben (1970), Iben 
(1971), Copeland, Jensen, and Jorgensen (1970), 
McCluskey and Kondo (1972), and Harris, Strand, 
and Worley (1963), an Mbol(mass) relation was derived 
for various stellar ages, assuming the He abundance 
Y = 0.30 and the metal abundance logZ = —3.3 
(Sandage 1970). The adopted age was 10 x 109 years, 
which gives the giant mass as 0.83 M0. Masses were 
then assigned to the main-sequence groups using 
bolometric corrections derived from a mean relation 
constructed from the data of Johnson (1966), Harris 
(1963), Vardya (1970), and Greenstein, Neugebauer, 
and Becklin (1971). We could then calculate the rela- 
tive total mass for the “visible” stars of each mass 
class from the number of stars in each class; before 
proceeding, however, there are two comments, (i) 
These relative total masses do not include the mass 

Fig. 2.—Luminosity function for M3. <I> is the number of stars between Mv — 0.1 and My + 0.1. Curve A is for the entire 
cluster, curve B is the Sandage function, and curve C is the extension of B based on the normalized solar-neighborhood luminosity 
function. The 10 mass classes are also shown. 
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distribution of the white dwarfs in the cluster, (ii) The 
adopted luminosity function pertains to a circular 
region of radius 8' centered on the cluster’s nucleus, so 
it underestimates the relative number of lower mass 
stars, which are less centrally concentrated than the 
more massive giants. We must include these two points 
through an iterative procedure in the model construc- 
tion. 

The number of white dwarfs was estimated by fitting 
the Salpeter (1955) initial luminosity function as 
modified by Sandage (1957) below the turnoff point 
and assuming that all stars more massive than the 
current giant mass have become white dwarfs. The 
mean white-dwarf mass was taken to be 0.6 Af0 
(Wickramasinghe and Strittmatter 1971; see also 
Trimble and Greenstein 1972; Shipman 1972): for the 
first iteration we assumed that they were uniformly 
distributed between 0.83 Af© and 0.4 M©. The upper 
limit was chosen for computational convenience 
(0.83 A/© is the mass for the most massive class 1); 
from the references above, however, it is seen to be a 
realistic upper limit because there are few more 
massive white dwarfs. At the lower limit, the number 
of main-sequence stars of this mass is already so much 
larger than the number of white dwarfs that the white 
dwarfs do not contribute significantly to this mass 
class. To construct the first model, the relative total 
masses derived from the Sandage/solar neighborhood 
luminosity function were adjusted for this uniform 
white-dwarf distribution. This model {model A) already 
fits the luminosity profile significantly better than the 
model of Figure lb. 

The relative total masses ^(A) for the lower mass 
classes in model A are too small because they are based 
on the adopted luminosity function, which holds only 
for the region r < 8' ^ 0.2rÉ (for all models, compari- 
son with the observed luminosity profile gave rt æ 40'). 
To correct this deficiency, we calculated from model A 
the fraction f{A) of each mass class within 0.2rt. From 
these fractions, we then chose the relative total masses 
/Xj(B) for the next modzl {model B) so that its popula- 
tion within the region r < 0.2^ conforms to the mass 
function /¿i(LF) derived from the adopted luminosity 
function and the associated uniform distribution of 
white dwarfs, i.e., 

/¿¿(B) = /¿¡(LFyyXA). (13) 

This procedure was repeated once to construct model 
C: 

^(C) = MLFMB). (14) 

The relative total masses /x^B), /¿¿(C) did not differ 
significantly. 

At this stage we have a dynamical model for which 
{¡¿i} is known and which has a uniform distribution of 
white dwarfs between 0.83 M© and 0.4 A/©. We do 
not yet know what fraction of each mass class con- 
sists of white dwarfs; to estimate these fractions, we 
now vary white dwarf distribution subject to these 
constraints : 

{a) The surface brightness profile calculated from 
the model fits the observed profile. 

(b) Let Ni be the number of stars in the ith mass 
class from Sandage’s luminosity function, be the 
number of stars within 0.2^ calculated from the model, 
and X* the fraction of white dwarfs in this mass class. 
We want to find a set of fractions such that 
(1 — x^rii/Ni has the same value (within about 1%) 
for each mass class, with the constraints that the total 
number of white dwarfs is fixed and that their average 
mass is 0.6 Af©; i.e., = 0.088 (0.088 of the 
total number of stars are white dwarfs) and Sx^imj/ 
SXjWi = 0.6 Af©. 

(c) The model MjL ratio agrees with the MjL 
calculated from the mass of the cluster (derived from 
the luminosity function) and the total luminosity of 
the cluster (derived from the integrated apparent 
magnitude and the distance modulus). 

Constraint {a) is already satisfied, since it determines 
the value of the concentration parameter ß± for the 
models. We were able to find a set of white-dwarf 
fractions Xj to satisfy constraints {b) and (c). Table 1 
compares the numbers of stars in the first four mass 
classes (these correspond to the observed part of the 
published luminosity function) for the luminosity 
function and for the model, and Table 2 gives the 
detailed parameters for the final model. The two esti- 
mates of Af/Ly described in (c) above differ by only 
0.04, which is insignificant. 

We now know the total number of non-white-dwarf 
stars in each mass class, so we can construct the 
luminosity function for the cluster as a whole. The 
extended Sandage luminosity function was used to 
define the distribution of stars within each mass class. 
The discontinuities at the boundaries of each mass class 
were smoothed by averaging to produce a continuous 
curve, while taking care that the number of stars in 
each mass class did not change. The resulting total 
luminosity function is shown in Figure 2, together 
with the extended Sandage function. The mass of the 
stars at the peak of the function is approximately 
0.25 Af©. Figure 3 shows how well the model repro- 
duces the observed surface brightness profile over five 
decades in surface brightness. 

IV. DISCUSSION 

There is some evidence (Oort and van Herk 1959; 
Woolf 1964) that the horizontal-branch stars of M3 
are less centrally concentrated than the red giants, 

TABLE 1 
Comparison with Sandage Luminosity Function for Bright 

Stars within 8 Arcmin of Cluster Center 

No. of Stars No. of Stars 
within as Given from 

Fraction of rlrt = 0.2 Sandage 
Stars within excluding Luminosity 

Mass Class r¡rt — 0.2 White Dwarfs Function 

1.. .     0.89 5130 5100 
2..   0.86 9690 9680 
3.    0.81 10625 10565 
4.. ..  0.75 20080 20075 
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Fig. 3.—Comparison of the surface brightness profile of model C with the observed points. The central surface brightness /0, 
the core radius of mass class 1, rc,i, and the tidal radius rt are indicated. The dotted line is the background level for the star counts. 

indicating perhaps that the horizontal-branch stars 
have lost mass in post-red-giant evolution and have 
relaxed to the distribution characteristic of their new 
mass. So in constructing the theoretical profile of 
Figure 3, the horizontal-branch stars were assumed to 
be equally distributed between mass classes 3 and 4, 
giving a mean mass for these stars which is 80 percent 
of the red-giant mass. In an attempt to test this 
assumption, a second theoretical profile was con- 
structed, this time assuming that the horizontal- 
branch stars were distributed in the same way as the 
giants. However, the difference between the two 
profiles was small and the fit to the observational data 
not significantly different. In constructing both these 

profiles, a mean Mv of 0.8 was assumed for the hori- 
zontal-branch stars, corresponding to a distance 
modulus of 14.83 (Sandage 1970) for the cluster. 

Table 3 lists the parameters of M3 derived from the 
model. The uncertainty in the cluster mass arises 
because the model gives the mass of the cluster as 
(4.01 x 105)mg, where mg is the mean mass of the 
stars of mass class 1. Mainly because of the uncertainty 
in the age of the cluster, the value of mg is uncertain by 
about ± 0.04 Mq. We have not included any uncer- 
tainty in the cluster mass resulting from the extension 
of the Sandage luminosity function used, or indeed for 
any uncertainty in the Sandage luminosity function 
itself. However, the excellent agreement between the 

TABLE 3 
Parameters of M3 

Mass of cluster Mc,           (3.30 ± 0.15) x 105 M0 
Integrated apparent magnitude mv  6.34 
Distance modulus (m — M)&vv,v      14.83 
Mass to light ratio M/Lv.....’       1.6 ± 0.2 (solar units) 
Mean stellar mass       0.33 M© 
Adopted mass of cluster giants       0.83 M© 
Mean horizontal-branch star mass.       0.67 M© 
Adopted mean white-dwarf mass  0.60 M© 
Core radius rc>1        0'60 or 1.6 pc 
Tidal radius rt        41' or 110 pc 
Central density d0        880 M© pc-3 

Central escape velocity (ve)0     18.4 km s"1 

Central line-of-sight velocity dispersion of giants «fi^o.r)1'2.    3.7 km s_ 1 
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model surface brightness profile and the observed 
profile and between the two estimates of MjL des- 
cribed in the previous section (constraint [c]) suggest 
that the results are not seriously in error. 

As a check on the mass and tidal radius observed 
here, the limiting radius r]im imposed on the cluster at 
its present position by the tidal galactic field was 
calculated. The limiting radius is given (King 1962, 
eq. 12) as: 

riim = RG(Mclß.5MGr*, 

where RG is the present distance of the cluster from the 
galactic center and MG = 1011 M© is the mass of the 
Galaxy. Then taking the distance between the Sun 
and the cluster as 9.2 kpc and assuming that the Sun 
is 10.0 kpc from the galactic center, we find that 
Rg = 12.5 kpc at the galactic latitude and longitude 
of the cluster. Then using Mcl from Table 3, we find 
that rlim = 122 pc, while the tidal radius is 110 pc. 
This agreement between the two figures is possible 
only if M3 is currently near perigalacticon. Using 
similar arguments and other data, Peterson (1974) 
gives the distance between the present position and the 
perigalacticon for M3 in the Schmidt (1965) model of 
the Galaxy as* only 200 pc; we conclude that the 
cluster’s mass and tidal radius as given in Table 3 are 
not inconsistent with its present position in the Galaxy. 

The uncertainty in the M/Ly value for M3 given 
here reflects both the uncertainty in the mass and in 
the distance modulus of the cluster. The value, 1.6 in 
solar units, agrees well with the work of Illingworth 
(1973), who used the single mass models of King 
(1966<z) and central velocity dispersions derived from 
coudé spectra of the integrated light to derive mass and 
M/Ly values for 10 centrally concentrated globular 
clusters. He finds M/Ly values ranging from 0.9 to 2.8, 
with a median value of 1.5. 

Figure 4 shows the mass function of the cluster as 
derived from the model. There is no evidence for the 
deficiency in low-mass stars as has been suggested for 
globular clusters (Ostriker, Spitzer, and Chevalier 
1972; Tayler and Wood 1975). It also suggests that 
the present mass function of this cluster, a Population 
II object formed at an early stage in the evolution of 
the Galaxy, conforms to the Salpeter initial mass 
function of Population I which has dN = m~2 3dm. 
However, much significance should not be placed on 
this particular result, since the original extension of 
the luminosity function was based on the solar- 
neighborhood luminosity function from which the 
Salpeter “law” is derived, but there can be no doubt 
that M3 does contain large numbers of low-mass stars. 
The reason for this can perhaps be explained this way. 
The dependence of escape rate on stellar mass in a 
globular cluster is small (King 1966c); only those stars 
with masses much less than the average stellar mass 
escape significantly faster than stars of average mass. 
In our model of M3, the average mass is small 
(0.33 M0), so only the very low-mass stars could be 
expected to be significantly depleted. This may explain 
the low relative total mass of mass class 10 in the 
model. 

According to the model, M3 contains a total of 
1.0 x 106 stars; more than half of them have masses 
below 0.5 M©, 8.8 percent of them are white dwarfs, 
and 0.05 percent are horizontal-branch stars. It is 
interesting to note that the region r/r¿ < 0.2, from 
which the Sandage luminosity function was derived, 
contains 54 percent of the total number of stars and 
60 percent of the total mass, but 91 percent of the 
total Flight! This clearly shows the degree of central 
concentration of the massive stars which contribute 
most of the light from the cluster. The effects of equi- 
partition are also illustrated in Figure 5 which shows 
log (surface density of stars) against log (radius) for 
each mass class. The more massive stars are strongly 
concentrated toward the cluster center, while the low- 
mass stars are almost evenly distributed throughout 
the cluster. Figure 5 also illustrates the decrease in 
stellar density as the tidal radius is approached, the 
effect being similar for each mass class, since the tidal 
force of the Galaxy removes stars from the cluster 
independent of their mass. 

Figure 6 shows the effects of equipartition on the 
surface density/number density and surface density/ 
luminosity ratios with radius. A significant feature is 
the marked radial variation of the surface density-to- 
surface brightness ratio I!(r)//(r), and in particular its 
low central value: 2)(0)//(0) = 0.4 compared with the 
mean value of MjL = 1.6 for the whole cluster. 
Peterson and King (1975) have recently shown how 
important cluster parameters, such as the density, 
relaxation time, and escape velocity at the center of a 
cluster can be derived from 2(0), rc, and the concen- 
tration parameter c. It appears now that the low cen- 
tral value of 2/7 is more appropriate for estimating 
2(0) from the observed central surface brightness 7(0). 
We should, however, emphasize that although MjL ^ 
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Fig. 4.—The mass function of M3. The logarithm of the 
number of stars in each mass class is plotted against the 
logarithm of the adopted stellar mass of the mass class. 
Squares give the number of white dwarfs in each mass class ; 
dots, the number of non-white dwarf stars. The broken line 
has the slope of the Salpeter function. 

V 

MASS FUNCTION OF M3 

-0-8 -0*4 
Log M(Mq) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
6.

 .
12

 8D
 

-2-4 -1-6 -0-8 0- 

Log r/r t 

Fig. 5.—Distribution of stars of each mass class with radius. Ordinate is the logarithm of the surface density of stars of each 
mass class normalized so that the central surface density of mass class 1 is 1.0. 
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Fig. 6.—Variation of average stellar mass and mass-to- 
light ratio with radius. Solid curve, the ratio of surface density 
to surface number density S(r)/V(r); broken curve, the ratio 
of surface density to visual surface brightness E(r)//(r). The 
straight lines represent the averages over the entire cluster. 

1.6 seems to be a typical value for the mass-to-light 
ratio for a whole cluster, the value of 2(0)//(0) will vary 
significantly from cluster to cluster, depending on the 
degree of central concentration of the cluster. 

In conclusion, it appears that the globular cluster 
M3 can be well represented by a tidally limited model 
in which the stellar distribution is fully relaxed and not 
deficient in low-mass stars. Whether this conclusion 
applies to other clusters is a question that can only be 
answered by further study of these interesting objects. 
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