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ABSTRACT 
We show that the flatness of the “singles” two-point correlation function found by Turner and 

Gott is an artifact of the selection criteria used to define a “single” galaxy. Thus their method 
cannot be used to distinguish a true field from a cluster population of galaxies. 
Subject heading: galaxies: clusters of 

I. INTRODUCTION 
The description of galaxy clustering in terms of correlation functions has been discussed extensively by Peebles and 

his co-workers in a recent series of papers (see Peebles and Groth 1975, and references therein). From catalogs of 
galaxies they have determined the two- and three-point correlation functions which give the “excess” probabilities 
(above those expected for a Poisson distribution) for finding two- and three-galaxy configurations. Totsuji and 
Kihara (1969) and Peebles (1974) find that over a wide range of separations the two-point correlation function can 
best be fitted by a power law of the form 

w(x) « Ax~b, ô ~ 0.8 , (1) 

where x is the angular separation of the two galaxies and ^4 is a constant which depends on the limiting magnitude of 
the catalog. Peebles’s interpretation of equation (1) is that clustering exists on all scales from 50/r1 kpc to Sh~l Mpc 
with no preferred scale {h is Hubble’s constant in units of 100 km s-1 Mpc"1)- Although w{x) completely specifies the 
pairwise clustering of galaxies, a complete description of groups of galaxies requires the three-point and higher order 
correlation functions. 

Several lists of groups of galaxies already exist (Burbidge and Burbidge 1961; Holmberg 1964; Karachentsev 
1966; de Vaucouleurs 1976). The selection of group members is generally based on criteria like apparent proximity 
of galaxies on the sky, galaxy types, and similarity of magnitudes, diameters, and velocities. Turner and Gott (1975) 
suggest a scheme for picking out group members on the basis of purely objective statistical criteria. Using the Zwicky 
catalog to a limiting magnitude, 14.0 mag, they put each galaxy into one of two classes depending on the presence 
or absence of a neighboring galaxy within a chosen fiducial angular scale a. Galaxies which have one or more neighbors 
within a are called “associated”; those without a neighbor within a are called “singles.” For the particular selection 
angle a = 45', Turner and Gott find that the correlation function ws of the “singles” with all other galaxies in the 
sample is very nearly zero on all scales greater than a. Because Turner and Gott claim they have no a priori (mathe- 
matical) reason to expect such a result, they conclude that their class of “single” galaxies constitutes a true field 
population and that the “associated” galaxies may be identified as group members. 

Our purpose is to show that (i) ws can be uniquely expressed in terms of correlation functions for the overall sample 
and (ii) the flatness of ws is almost certainly a necessary mathematical result of the selection criteria. 

Our ignorance of the higher-order correlations prevents us from establishing the result (ii) above rigorously. How- 
ever, we shall present two arguments to show that this result probably holds for the actual distribution of galaxies. 

The results of Turner and Gott are not, therefore, inconsistent with the results of Peebles and co-workers who 
discuss only a single population of galaxies. The apparent lack of preferred clustering scales demonstrated by the 
overall two- and three-point correlation functions (Peebles and Groth 1975) suggests that statistical methods based 
on angular separation alone cannot be used to assign a particular galaxy to a physically distinct population. 

II. ANALYSIS 
a) Definitions and Basic Equations 

In order to derive a relationship between w8{x) (the “singles” correlation function) and w(x) (eq. [1]), we express 
these functions in terms of probability statements. We then use the calculus of probabilities to derive relationships 
among these statements (see, for example, Feller 1968). We refer to points on the sky by two-vectors relative to 
some origin O. The quantity x = \x\ is the angular separation of the points O and x measured along the great circle 
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passing through them. We shall restrict our attention to small enough areas of sky that all vectors may be regarded 
as Cartesian. 

We define the propositions: 

0 : a galaxy at O 

Oa: a “single” galaxy at O 

X, Fi . . . Fat.* a galaxy in d2x at x, at yi . . . and d2t/y at t/w 

<i>a : no galaxies in the disk of radius a centered at O . 

In terms of the above propositions, we define the overall and “singles” two-point correlation functions:1 

n[\ + w{x)]d2x = P{X\0} , (2a) 

n[\ + ws{x)]d2x= P{X\Os} , (2b) 

where n is the mean surface density of galaxies. We assume that the sample is statistically homogeneous; i.e., all 
correlation functions are assumed to be independent of the chosen origin O. We shall also assume throughout that 
the magnitudes of all correlation functions decrease monotonically at large separations. From equations (2a) and 
(2b) we have the basic relation 

i + wM. = p{*«\°x} m 
l + w(x) PI^IO} ’ ^ ' 

since Os = Oi>a. In general, relation (3) involves all correlation functions including the unknown four-point and higher 
order functions. 

b) First Argument 

For £)£> a we may approximate equation (3) using the following scheme. First we note that P{$a\OX} —> |0} 
as x —► oo because, in the limit of large separation, the presence of a galaxy at x cannot affect the probability of a 
configuration of galaxies occurring near O. Second, we make the reasonable assumptions (a) that P{$a\0X} depends 
on x only through w(x) for x^> ay and (b) that P{$a\0X} is analytic in w(x). We may then write 

^P{$ ]0} ~ 1 ^w('x^for * » “ ’ « 1 ; (4a) 

/(«) = ln m I OX} I w(x) =o . (4b) 

(A justification for the approximations in eqs. [4] is discussed more fully below.) We note that / will in general be 
negative for some range of a because, for a positively correlated sample, the presence of a galaxy at x decreases the 
probability that the region around O is empty. Finally from equations (3) and (4) we have 

ws(x) « [1 + f(a)]w(x) (x»a) (5) 

for w(x) <3C 1. Thus, ws(*) at large angular scales depends on the selection angle a. Regardless of the particular form 
of w(x), the “singles” correlation functions is asymptotically flat [in the sense that \w8(x)/w(x) \ —> 0 as |x| —> oo] 
for any value of a such that 1 + /(a) = 0. 

In order to justify the approximations in equations (4), we must be more specific about the dependence of P{<i>a|0} 
on higher order correlation functions. We make the ansatz: 

P{X\ Fj... Fat} « n[l + Nw(x)]d2x for yi. . . yv « w(x) « 1 . (6) 

Equation (6) is consistent with the asymptotic behavior (under the specified conditions) of the two- and three-point 
correlation functions found by Peebles and Groth (1975) and is the most natural generalization of their results given 
that the objects under consideration form a self-gravitating system. Our ansatz (6) is mathematically equivalent to 
the statement 

P{Yi. . . Fat|X; n} « P{Fi... YN + bn} ior yi. . . yN « *, w(x) « 1 , (7) 

where 8n = nw(x), and the functional dependence of probability statements on the density, n, is denoted explicitly 
by the expressions following the semicolons in equation (7). After some tedious manipulation it follows from equation 
(7) that 

P{<i>a|0X; n) « P{4>a(0; n + bn) for x» a, w(x) <<C 1 . (8) 

1 The notation “P{X|Oj” means “the probability that X occurs given that 0 occurs.” The notation OX refers to the intersection 
(i.e., the conjunction) of propositions 0 and X; i.e., OP\A\ 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
5L

.1
21

F 

L123 No. 3, 1976 USE OF CORRELATION FUNCTIONS 

Substituting equation (8) in equation (3) gives an expression of the form (4) with 

/(*) =-^-inmiO;«} . (9) 

In Figure 1 we plot the function /(a) + 1 as given by equation (9) for 

P{$a|0} = exp (-nfa>x[\ + w{x))d2x) . (10) 

Here w(x) is given by equation (1). We use the density n ~ 0.2 per square degree and A « 0.8 appropriate for 
Turner and GotFs sample. 

Equation (10) approaches the actual distribution when w(a)mra2 <<C 1. Although this inequality is only weakly 
satisfied for the parameters of interest, in view of the results shown in Figure 1, we expect that the zero of/(a) + 1 
required to make ws(x) flat (cf. eq. [5]) will be approximately the selection angle a = 45' used by Turner and Gott. 

c) Second Argument 
The first argument, although suggestive, might be criticized on the basis of our ansatz for the unknown higher 

order correlation functions. Thus, it is of some interest to explore the dependence of our conclusion (the flatness of 
the “singles” correlation function is a consequence of Turner and Gott’s particular selection angle a) on the adopted 
form of these higher correlations. We now do this by expressing ws exactly in terms of the known lower order correla- 
tion functions while simply ignoring the higher order correlations as follows. 

First, we express w8{x) as an infinite series involving correlations of all orders. We divide the disk of radius a into 
a large number, N, of annuli with radii Xi (<a). Then in the previous notation 

m|0} = P{XhX2,...XN\0) , (11) 

where X/: is the negation of the proposition Xi that a galaxy be in the ith. annulus. By considering various combinations 
of the propositions on the right-hand side of equation (11) in the usual way, (e.g., considering the propositions as sets 
in a Venn diagram and using the analogy between probabilities and areas), the probabilities may be expressed as 

P{$a|0} = 1 - ¿PÍX.-IO} + § ¿ PiXiXilO} - .... (12) 
i 

Next, we pass to the continuous limit (large N) by replacing the discrete sums in equation (12) by integrals: 

P {4>a 10} — \ — nS [1 + w(x))d2x 
1*1«* 

+ Wf f [1 + w(x) + w(y) + w(x - y) + z(x, y^cPxdïy    (13) 1*1, li/I«* 

In the above expression, we have also replaced probability statements by their corresponding definitions as correlation 
functions; z(x, y) being the three-point correlation function defined in analogy with w(x). Similarly, one may express 
P{4>a|OX} in a series which, when combined with P{<I>a|0} in the form (13) according to (3), gives the required 
exact series expression for ws(x) in terms of correlations of all orders. 

Setting all correlations of fourth order and above to zero gives the “singles” correlation function shown in the solid 
curve of Figure 2. Here, we have used an overall pair-correlation function of the form (1) with ^4 = 0.8 and ô = 1 in 

Fig. 1.—Behavior oíf{<x) -f 1 for P{<E>a|0| given by equation (10) 
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Fig. 2.—^Singles” correlation function î^s(x) for galaxy distribution derived from the two-particle correlation function w(x) displayed 
in the upper dashed curve (see eq. [1]) and the three-particle correlation function of the simple form suggested by Peebles and Groth (1975), 
the fourth and higher order correlations being set to zero. The w(x) curve {dashed) shown here is the pair correlation function for all galaxies 
according to equation (1) with A = 0.08 and 5=1. 

order to facilitate evaluation of the integrals, together with a three-point correlation function of the form 

2(x,y) = w(x)w(y) + w(x)w(x — y) + w(y)w(x — y) . (14) 

This is the form found by Peebles and Groth (1975) to represent the actual distribution of galaxies. The selection 
angle a has been chosen to make the dominant terms in w8(x) vanish at large x. From Figure 2, it is apparent that 
ws(x) can be made very small in comparison with w(x) over most of its range (x > a). It is also apparent that the 
value of a is fairly close to the value 45' used by Turner and Gott and suggested by our first argument. 

Because the series expression for w8 alternates as correlations of higher order are included, we may hope that its 
convergence is fairly rapid. Inclusion of a positive fourth order correlation function would increase the value of a 
required for asymptotic cancellation. Of course, it is not expected that all correlation functions above some level 
are zero for the actual distribution of galaxies. Nevertheless, neglecting the fourth and higher order correlations, we 
have found a selection angle a which differs little from the one derived on the basis of our first argument. 

in. CONCLUSIONS 
a) The result w8 ^ 0 for x > 45' found by Turner and Gott is probably a consequence of the particular selection 

angle chosen. Thus, in spite of the apparent separation of the galaxy population into two classes, their results are 
consistent with those of Peebles and his coworkers. 

b) The “singles” population defined by Turner and Gott cannot necessarily be regarded as a true field component 
of the galaxy population : a similar separation could have been achieved given any underlying form of galaxy clustering 
with no preferred scale. In order that the “singles” population represent a physically unclustered component, one 
requires that it be uncorrelated with itself and uncorrelated with the “associated” component. The “singles” compo- 
nent selected by Turner and Gott will not in general satisfy these requirements (cf. eqs. [4]). The vanishing of w8 is 
an artifact of the selection process and does not necessarily imply the vanishing of these correlations. The autocor- 
relation of “singles” with themselves should be checked for the Turner-Gott sample. 

c) We feel that statistical selection methods based on angular separations cannot be used by themselves to isolate 
galaxies into physically distinct field and cluster populations. Some supplementary criteria, based perhaps on mag- 
nitudes, redshifts, or diameters, must be used, though, no doubt, Turner and Gott's “associated” component con- 
tains a larger fraction of the galaxies which lie in physical groups than does the “singles” component. 

We thank Marc Davis, Richard Gott, Jim Peebles, Paul Schechter, and Ray Soneira for helpful and entertaining 
discussions. This work was done during the Cambridge Workshop on Galaxy Formation sponsored by the Gravity 
Research Foundation. 
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