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ABSTRACT 

A method is described for analyzing the arrival times of pulses from the binary pulsar PSR 
1913 + 16, in terms of the orbital elements and their possible secular variations. Estimates are 
given for the times necessary to measure such secular changes and to detect various relativistic 
effects. If measurement errors ~ 1 ms are the dominant source of error and ~ 1000 independent 
observations are made per year, then ~ 5 years of observations are necessary for a dynamical 
determination of the component masses accurate to 10 percent and ~15 years for the possible 
detection of gravitational radiation. Other sources of error are briefly discussed. 
Subject headings: pulsars — stars: binaries 

I. INTRODUCTION 

The binary pulsar PSR 1913 + 16, discovered by Hulse and Taylor (1975), possesses a companion object in a 
bound gravitational orbit. In several recent papers it has been pointed out that because pulsars are very reliable 
clocks, this system presents a unique opportunity for observing a wide variety of Newtonian and relativistic effects. 
In particular, as discussed for example by Wagoner (1975) and Blandford and Teukolsky (1975, hereinafter Paper 
I), there is the possibility of both a dynamical determination of the component masses and a test of general re- 
lativity based on the detection of changes in the apparent orbital period. 

In this paper, we present a discussion of the inferences that might be drawn directly from observations of pulse 
arrival times and estimate the quality and quantity of observations that will be necessary. In § II a timing formula, 
equation (2.46), to which the observations can be fitted is derived. A brief discussion is given of the relationship 
between this analysis and conventional orbit perturbation calculations of celestial mechanics. Our timing formula 
is in a sense merely a parametrization of the arrival times. We show how to measure secular variations in the 
parameters (i.e., in the orbital elements), and which variations are measurable. While we give estimates of some 
effects that should exist, the choice of which theoretical interpretation best explains the measurement of a particular 
secular variation is beyond the scope of this paper. 

In §111 approximate values for the variances of interesting physical quantities appropriate for PSR 1913 + 16 
are calculated. These variances are used to estimate the time necessary to observe particular effects. Some physical 
factors that might complicate the preceding analysis are mentioned in § IV. 

II. DERIVATION OF THE TIMING FORMULA 

Let Tv be proper time as measured by a hypothetical clock on the pulsar. The time of emission of the Nth pulse 
is given in terms of the frequency v (rotation frequency of the pulsar) by 

N = N0 + vTp + vTp
2I2 + vTp

3/6 . (2.1) 

Here N0 is an arbitrary constant while v and v are the first and second time derivatives of the frequency. From 
past experience, we expect to need no higher derivatives in the expression (2.1), although discontinuous frequency 
jumps (glitches) and random noise may occur (see § IV). Our aim is to find the relation between N and the time of 
arrival of the Mh pulse at the Earth as measured by an observer on the Earth. 

The metric in a coordinate system with origin at the center of mass of the binary system is 

ds2 = -[1 + 20 + 0(v*)]dt2 + Oiv^dx^t + [1 - 20 + 0(v*)](dx2 + dy + dz2) . (2.2) 

* Supported in part by the National Science Foundation [GP-40768X] at the Institute for Advanced Study, and [MPS 74-24273] 
at Cornell University. 
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ARRIVAL-TIME ANALYSIS 581 

Here the Newtonian potential is given by 

<!>(»•, i) = <1>1 + í»2 zMi 
I»- - \r - r2{t)\ ’ 

(2.3) 

where the subscripts 1 and 2 refer to the pulsar and its companion, respectively. (We are using units with c = G = 1, 
so that M0 = 1.477 km = 4.925 x 10-6 s). Errors in the line element (2.2) are shown as powers of a typical orbital 
velocity v in the system, where v2, # M/r ^ 10“6. 

The orbital plane of the binary system can be chosen as the equatorial plane of a polar coordinate system re- 
lated to x, y, and z in the usual way, with the x-axis intersecting the orbit at pericenter. The (r, 6, <j>) coordinates 
of the pulsar and companion are 

fi = (ru ir/2, <f>) , r2 = (r2, tt/2, <f> + tt) , (2.4) 

where <f> is the true anomaly and r± and r2 are, in the first approximation, ellipses about the center of mass : 

M2 _ w _ Mi m m _ a(l - e2) 
n = M± + M2 

r. ro = 
M1 + M2 

r — 
\ + e cos <f> 

Here a is the semimajor axis of the relative orbit and e the eccentricity. 
The proper time Tp is related to the coordinate time t by the metric (2.2) : 

(dTv)
2 = -ds2 = dt2[l + 20 - tv2 + 0(v*)], 

(2.5, 2.6) 

(2.7) 

or 

= 1 + 3>(»i) - W + 0(v*). (2.8) 

The terms <D and — can be interpreted as the gravitational redshift and the transverse Doppler shift, re- 
spectively. In integrating equation (2.8), we can ignore any overall multiplicative constants, which can be absorbed 
in the definition of v, and any additive constants which can be absorbed in N0. Since 

2 = M2
2 (2 _ 1\ 

1 M1 + M2\r a) 

we find, on dropping constant terms, 

^7; = 1 _ M2 M2
2 1 

dt r Mx + M2 r 

(2.9) 

(2.10) 

Note that O^#*!) is not really infinite; the clock is at the emitting radius of the pulsar and Ox merely contributes a 
constant gravitational redshift. Equation (2.10) is most easily integrated in terms of the eccentric anomaly E, 
which is related to i by 

E — esmE = t¡& + cr, (2.11) 

where 0* = P/27T, P is the orbital period, and the constant a is related to the time of periastron passage. Using 

r = a{\ —eoosE), (2.12) 

we find from equation (2.10) that 

Tp = t — 
M2(M1 +2M2)^e f 

a(M1 + M2) 
M2(M1 + 2M2) 

aiM, + M2) 
0*6 sin E’, (2.13) 

where we have dropped the constant in equation (2.11) and ignored an overall multiplicative constant as well. 
Because of interstellar dispersion, the pulse travels with a group velocity less than unity as measured in the local 

orthonormal reference frame of an observer at rest in the (/, x, z) coordinate system : 

From the line element (2.2), 

dx 
df 

= 1 - € . 

dî = (l + ^)dt , \dx\ = (1 - <h)|¿/x| . 

(2.14) 

(2.15) 
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Therefore 

BLANDFORD AND TEUKOLSKY Vol. 205 

dx 
dt 

1-6 + 20, 

or 

t arr 
=J. 

re(*arr) 
(1 + 6 - 20)|rfjr| (2.16) 

Here is the coordinate time of arrival of the pulse, iein the time of emission, and re the position vector of the 
Earth with respect to the orbit barycenter. To the required accuracy, the integral can be done along a straight 
line joining ^ and re. The integral of 6 gives a term Djf2, where the dispersion constant is as usual 

(2.17) 

and / is the frequency of the radiation. 
The integral of O is responsible for the relativistic time delay across the orbit. In doing the integral, we can take 

the pulsar and its companion to be stationary to leading order, and we can ignore <!>! which simply adds a constant 
term. Then 

f*** /»¿arr ¿7* 

-2I, * m’L m - ^(oi ' 

Since 

x(t) = fiOem) + Hif/arr) ^l(^em)] 5 

the integral is equal to 

2M. iarr tem log ke - »'ll |r + fe - ril + K - fil2 + Kfe - ri) 
ke - »lk + »"(»•e - »D ke - »’ll 

To a first approximation /arr — tem — ke — »'ll- Since re » r±, expression (2.18) reduces to 

2M2 log \r + r>nj 

(2.18) 

(2.19) 

where n = re/re is a unit vector pointing to the Earth or, to high accuracy, to the solar system barycenter. The 
term log (2re) can be ignored since it is very nearly constant. The term r-n is equal to — r sin (o> + <£) sin i, where 
i is the inclination of the orbital plane and œ is the angular distance of the pericenter from the line of nodes measured 
in the direction of orbital motion. Thus the time-varying contribution of the integral (2.19) is 

2M2 
l + e cos <f> 
sin i sin (œ + <f>) 

(The formula for this term derived by Wheeler 1975 is in error.) Therefore, 

(2.20) 

»arr ~ »em = keOarr) “ *'l(»em)| + ß + 2M2 log _ sil^/sin^lf-f J)) ' (2‘21) 

On using the current values of e and oj, we find that the relativistic time delay term has a maximum variation 
in a single orbit of 14 ¡¿s (MJMq) for i = 0° and 98 /xs (MJMq) for i = 89°. This means that it can probably not 
be detected at present. Also, it is comparable with the post-Newtonian corrections to the Keplerian orbit for 
i ^ 89°. We will therefore omit it from the formulae in the remainder of this section. 

Now 

ke - »il « »•(, + (rbe - rO-ii, 
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No. 2, 1976 ARRIVAL-TIME ANALYSIS 583 

where rb is the position vector of the barycenter of the solar system and rbe the position vector of the Earth with 
respect to the barycenter. Thus equation (2.21) gives 

^arr ^em + rb + rbe(t arr )-n + 
a± sin /(I — e2) sin (w + (/>) + D 

1 + ecos <b f2 (2.22) 

A coordinate system at rest with respect to the barycenter is related to the coordinate system of the center of 
mass of the binary system by an unknown Lorentz transformation. If the relative acceleration of the barycenter 
and the center of mass is sufficiently small and the separation sufficiently large, the transformation introduces 
only constant factors. We can then take iarr to be the coordinate time of arrival at the Earth in the barycenter 
reference frame (ephemeris time), and set rb equal to zero. Note, however, that these factors introduce intrinsic 
uncertainties ~fb in measurements of the orbital elements. If we expand rb to first order in changes in the direction 
and relative velocity of the solar system barycenter with respect to the binary center of mass, then rb contains a 
contribution [rb*n + (rb x n)2/rb]tem

2/2 (tem being measured from a convenient origin), which might have observ- 
able consequences. For the remainder of this section we shall ignore this term, which is discussed further in § III. 

The third and fifth terms on the right-hand side of equation (2.22) are familiar from ordinary pulsar timing. 
The quantity rbe is assumed to be known from a good ephemeris of the Earth’s motion, and so rbe»n depends only 
on the pulsar’s right ascension and declination and possibly proper motion, which are parameters that will be 
determined from the timing data. The dispersion constant D must also be determined, since/is related to the known 
fixed frequency of observation on the Earth/e by the Doppler formula/ = /e(l — v^n), where ve is the known 
velocity of the Earth with respect to the barycenter. 

We define the infinite-frequency barycenter arrival time as 

t = *arr ~ »SeOarr)• » ~ -0(1 ~ 2»e*ll)//e
2 . (2.23) 

The pulsar position parameters are found from equation (2.23) in the standard manner. (See, e.g., Manchester, 
Taylor, and Van 1974; Manchester and Peters 1972, for explicit expressions.) Note that since ?arr is measured 
by an atomic clock on the Earth, it must be corrected to ephemeris time by an equation analogous to equation 
(2.13) with M2 -> M0, Mi -> M© ^ 0. Thus ¿arr in equation (2.23) should be 

¿arr = ^ sin E@ . (2.24) 

Expanding sin E for small eccentricity gives 

¿arr = 4rr0miC Cl°Ck) + 1.66145[(1 “ ^©2) SHI / + SHI 2/© + fe©2 SHI 3/] ms , (2.25) 

where / is the mean anomaly of the Earth. Equation (2.25) corrects a slight error in the formula given by Clemence 
and Szebehely (1967). 

Substituting equation (2.23) in equation (2.22) gives 

¿ = ¿em + ¿¿i sin /[sin cu(cos E — e) + (\ — e2)112 cos w sin E], (2.26) 

where we have substituted the eccentric anomaly ^(¿em) for the true anomaly. The quantity tem is related implicitly 
to Tp by equation (2.13). We can get an explicit expression by defining a new eccentric anomaly E: 

E - esinE = Tp/0> + o-. (2.27) 

Since by equation (2.13), tem = Tp[\ + 0(v2)], we have Ë = ^[l + 0(v2)\ and so equation (2.13) gives 

¿em = Tv + ysmE, 

where 

^ M2
2(M1 + 2M2)0>e ' 

7 ~ + M2)
2 

Thus equation (2.26) becomes, to the same accuracy, 

t — Tp + «(cos E — ^) F (jS + y) sin E, (2.30) 

where 

a = x sin w , ß = (1 — e2)1,2x cos co , x = sin /. (2.31) 

(2.28) 

(2.29) 
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584 BLANDFORD AND TEUKOLSKY Vol. 205 

We can turn equation (2.30) into an explicit expression for Tp by defining another eccentric anomaly E': 

Ef - e sin E' = t/0> + <j. (2.32) 

To zeroth order Tp = t and Ë = E'. Thus to 0(v), 

But 

and so 

Tp = t — a(cos E' — e) — (ß + y) sin E'. 

Tp - t - e cos E’)(E - E'), 

E-E' = - 
«(cos E' — e) + (ß + y) sin E' 

^(1 - ^ cos E') + 0(v2), 

Thus equation (2.30) gives 

Tp = t dc(cos E' — e) - (ß + y) sin E' — 
(a sin E' — ß cos ^^[«(cos E' — e) + (ß + y) sin E'] 

^(1 - e cos E') 

Substitute equation (2.33) in equation (2.1) and find (on dropping the primes) 

v(a sinE — ß cos jQlc^cos E — e) + ß sin E] 

(2.33) 

N = N0 + vt - va(cos E - e) - v(ß + y) sin E - 
^(1 — e cos E) 

+ vt2/2 - v/[«(cosE-e) + ßsinE] + ^3/6 , (2.34) 

where we have omitted some negligible terms proportional to v and V. 
At this point it is worthwhile relating the above procedure to the conventional concepts of celestial mechanics. 

Equation (2.34), together with equations (2.31) and (2.32), defines 

N = N(t; N0, v, v, v, x, co, e, &, o,y) . (2.35) 

The actual orbit of the pulsar will not be an ellipse because of relativistic corrections and various other perturba- 
tions. It can, however, be described by an osculating ellipse: the six parameters of the elliptic orbit are allowed to 
vary slightly in such a way that the elliptic relations and their first time derivatives are still valid. Equations for 
the variation of the parameters produced by arbitrary perturbations can be found in standard treatments of 
celestial mechanics. For example, Brouwer and Clemence (1961) use the set of parameters (a, e, i, a, œ, Q), where 
Q is the longitude of the ascending node. Note that our timing formula does not depend on Q, which is therefore 
not measured by an analysis of pulse arrival times. The relation between our parameters x and 0* and the con- 
ventional a and / is 

x = 
a sin i 

1 + MjMz 9 (2.36) 

r73/2 
(2.37) (Mi + M2)

112 

Secular variations à,é, ..., can in principle be determined from the timing formula (2.35) by the replacements 

X-> X + Xt , CO -> (0 + cbt, 

e->e + êt, 
(2.38) 

A secular term à merely modifies the apparent unperturbed value of ^ and is therefore not measurable by the 
observation of pulse arrival times. The reason for the factor 1/2 in front of is that we defined 0* by 

E — e sin E = + a , 

whereas the actual definition is equation (2.37) and (cf. Brouwer and Clemence 1961) 

£ - e sin £ = (Mi + MJ112 f a-
3l2dt + a . 

(2.39) 

(2.40) 
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No. 2, 1976 ARRIVAL-TIME ANALYSIS 585 

If we let a ^ a + át in equations (2.37) and (2.40), we find 

E - esinE = + o-. (2.41) 

Thus the factor \ is necessary for P = IviP to be interpreted in the conventional manner as an anomalistic period 
change. 

Return now to equation (2.35), and suppose we have a first guess No™, va), i>(1), ... for the parameters. This 
defines the “computed” values 

The “observed” values 

= N(y, N0
a), v(1), • • •). (2.42) 

N = N(t; N0, v,...) (2.43) 

depend on the true values of the parameters; the residuals R(t) (in seconds) are defined by 

-vwR(t) = N - Na) = m 
dN0 

^ dN 

1
SA'»+ är 

s„ + ...+ ^ 
L oy 

8y , (2.44, 2.45) 

where 8N0, 8v,..8y are estimates for the corrections to the parameters. These corrections can be found by a 
least-squares fit to the residuals (with appropriate weights), and then used to provide a new first guess for the 
parameters. The residuals are computed in equation (2.44) using the full expression (2.34) for N. To solve equation 
(2.45) for the corrections 8N0, 8v,..8y, however, it is only necessary to keep the largest term in each partial 
derivative since the procedure is iterative. Thus equation (2.45) becomes 

R(t) = -8N0/v - t8v¡v - t28ï/(2v) - t38¡}/(6v) 

+ [sin ai(cos E —e) + (l — e2)112 cos œ sin E]8x + x[cos w (cos E — e) — (1 — e2)112 sin œ sin Æ’JScu 

— [If'sin is + x sin a> + (1 — e2) “ll2xe cos w sin E]8e + W(E — e sin is — g)8^/^ — W8a + sin E8y , 
(2.46) 

where 

W = x[sin (i) sin E (1 — e2)112 eos cj eos E]¡{\ — e cos is). (2.47) 

Additional terms resulting from errors in the pulsar position and proper motion can be added to equation (2.46) 
(Manchester, Taylor, and Van 1974). 

Note that of the terms on the right-hand side of equation (2.46), only sin E8y is of relativistic origin. The re- 
mainder are purely Newtonian. As discussed below, the term y sin is cannot be distinguished from ß sin is in 
equation (2.34) except over a time scale long enough for œ to change significantly. At present only the combination 
ß + y can be measured; and in fitting equation (2.46), 8y must be set equal to zero. 

The secular variations (2.38) can be incorporated by making the replacements 

&c -> + t8x , 8w 8üo + t8œ , 

8e -> 8e + t8ê , 80>-> 80> + \t8& , (2.48) 

in equation (2.46). 
One already has good first guesses for the parameters V0, v, x, w, o>, e, and o from analysis of the velocity 

curve (Hulse and Taylor 1975). An initial guess of zero should be adequate for the smaller quantities ÿ, x, 
and ^ at present. Should nonzero values of these smaller quantities be “measured,” it is important that any such 
values be tested for statistical significance and that the resulting fit be successfully predictive. 

HI. VARIANCE ESTIMATES 

We now derive some estimates of the accuracy with which the parameters of § II can in principle be determined 
in a long series of measurements of the infinite-frequency barycentric arrival time defined in equation (2.23). 
One method of doing this would be numerical simulation using equation (2.46); but as the future frequency and 
accuracy of the observations are at present unknown, a simpler analytic treatment is sufficient. It is convenient 
for analytic work to fit the residuals to a slightly different set of independent parameters: 

/ T ■ • Z7S , [a sin £ - ß cos S2 *(0 = 8K + (cos E - e)8a + sin E8V + [ l - ecos E \ W ” Í(a sin E — ß cos E) sin E 
l — e cos E 

+ a\8e, (3.1) 
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SK = —8N0/v — tSv/v — t2Sv/(2v) — t38v/(6v), 

8r] = 8ß + 8y, 

= -8a + (t/0>)80>l0>. (3.2) 

We now make several simplifications to reduce the calculation of the covariance matrix to manageable form. 
First, we regard the observations over the total time interval T (~5 years) as being split up into segments of 
duration d such that 

0>«d«T. (3.3) 

Estimates of 8K, 8a, 8rj, 8E/^, and 8e obtained in every interval d are then to be used in a secondary fit to estimate 
the complete set of parameters. We assume that the observations of barycentric arrival times are made at regular 
intervals at a rate each observation having constant variance e2 and zero covariance. If we now minimize the 
X2 for ñd observations in a time interval d, the best fit for the parameters in equation (3.1) is obtained from the 
solution of the simultaneous linear equations 

1 

2 

as — ßc 

(c-er (c - e)s 

2 («■? - ßc)s 
D -j 

l — ec 

symm. 

— (as — ßc)s 
1 — ec 

8K 

— (c — e)(as — ßc)s 
l — ec 

— a(c — e) 8a 

— (as — ßc)s2 

1 ec 
— as 

[ — (as — ßc)s 1 at 
1 - " ] T 

p*; - ßef + ajS 

as — ßc 
ec 

St) 

8Z/01 

Se 

Ri(c - e) 

(3.4) 

where c = cos E, s = sin E, and Rt = R(ti), each evaluated at the time of the zth measurement. The summations 
can be approximated by the product of the number of observations and the time average over an orbital period, 
i.e., 

2f(E) ^ U Jp/(£)(! - e cos E)dE + 0(01d). (3.5) 

In carrying out the averaging, a, ß, e, and are kept constant. 
Averaging the matrix of coefficients of 8K, 8a, 8tj, SLffi and 8e in equation (3.4), we find for the covariance 

matrix of these five parameters 

V = 
ñd 

1 -3e/2 

i + 2e2 

symm. 

0 

-ß/2 

a/2 

/i(e) 

— 3a/2 

2ae 

0 

f2(e) 

m J 

(3.6) 
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m = a2[l - (1 - ^)1/2]/^2 + ß2[{\ - - l]/e2, (3.7) 

hie) = 2aß[l - e2/2 - (1 - e2y2]le*, 

Me) = «2[(1 - ^2)3/2 - 1 + 3e2/2 + 2e*]/e* + j82[l - e2f2 - (1 - e2)1/2]/e4 . 

The matrix inverse in equation (3.6) is cumbersome and not very illuminating in general. We therefore introduce 
a further approximation and ignore secular changes in the orbital elements. We substitute the present values of 
e = 0.615, a = 0 (since oj = 180°), in equation (3.6) and find 

"17 17 0 12/ß 0 “ 

19 0 13/ß 0 

symm. ll/ß2 0 

6.4/j82_ 

From equation (3.8) we can read off the variances 

varíSÁ") = ll€2/nd, 

var(Sa) = 19e2/nd, 

var (8r¡) = 2e2/ñd, 

(3.8) 

(3.9a) 

(3.9b) 

(3.9c) 

var (32/^) = 1 \{e2/ß2){nd) "1, (3.9d) 

var (8e) = ÖA^/ß^irid)-1, (3.9e) 

where the current value of ß is —1.85 s. Note that Srj and 8e each have zero covariance with any of the other 
parameters in this approximation. Neglecting the secular term d> has produced fractional errors ~(<bT)2 ~ 
(T/l 5 years)2 in the estimates (3.9). 

If a large number, ^ — T/d, of measurements of one of the above parameters, 8y say, are made regularly within 
the observing period T, then their individual variances given in equation (3.9), a2 say, can be used in variance 
estimates of secondary fits to determine the complete set of parameters. The variance estimates in linear and 
quadratic fits to Sj are as follows: 

i) If 8y is fitted to 

8y=8y0 + t8y, (3.10) 

then 

var (8y0) = 4ít2/^/', var (8y) = \2G2/JrT2 . (3.11) 

ii) If 8y is fitted to 

+ Sjo + (3.12) 

then 

var (8y0) = 9(r2l4Jr, var (Sÿ) = 45<j2/J^T^ . (3.13) 

hi) If 8y is fitted to 

8y = 8y0 + t8y + it28y, (3.14) 

then 

var (8y0) = 9a2/Jr, var (8y) = 192<j2/J^T2 , var (8y) = 720a2/J^T4^. (3.15) 

We now consider in turn some physical quantities that might be deducible from the observations. 
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588 BLANDFORD AND TEUKOLSKY Vol. 205 

i) i- 

A value for the frequency derivative can be obtained from successive measurements of SK. If we set r = 0 
then by using equations (3.2), (3.9a), and (3.15) we obtain ’ 

vaf (8v/v) ä 720 x ne2/(nT5) (3.16) 

independent of d. Define an apparent age rv = \vjv\ ; then, since v is known, 

[var(rv)]
1/2 ä lO^.aT^ñg-1'2?;-5'2 years, (3.17) 

where e_3 is measured in milliseconds, tv7 in units of 107 years, ñ3 in units of 1000 observations per year, and Ty 
in years. The values ñ3 = €_3 = 1 are appropriate for numerical estimates based on current techniques. 

Since rv is already known to exceed 108 years (Taylor et al. 1976), it is unlikely that v will be measurable. 

Ü) <x) 

A variance estimate for the apsidal motion can be determined by considering successive measurements of Sa 
and Sj8. Since tan ío = a/ß', where jS' = ß(l — e2)~112, we find 

So = COS2 u)(ßa/ß' - aSß'/ß’2) . (3.18) 

On making replacements as in equation (2.48), we see that the same equation holds with So, 8a, and 8ß' replaced 
by 8ô, Sä, and Sß'. Taking the unperturbed value of o to be tt and noting that cov (Sa, Sß') = 0 (ignoring the 
small term Sy), we obtain from equations (3.18), (3.9b), and (3.11) 

var(Sô) = var (Sc*)//!'2 + 0(ùT)2 x 12 x l9e2l(nT3ß'2) . (3.19) 

Inserting numerical values gives 

[var (Sô)]1/2 £ 10-2e_3ñ3~
1,27’¡/~

3/2 degrees per year. (3.20) 

Changes in ó with an associated time scale t¿ = |ó/ü| are detectable after a time T provided that 

T(ö « 30Ty5/2ñ3
1^2e„3 ~1 years. (3.21) 

Note that the general-relativistic prediction for the apsidal motion is 

ó = 3M2/[ai(l — e2)^] = 2.10[(M! + M2)/AiQ]2/3 degrees per year , (3.22, 3.23) 

where we have substituted the known orbital parameters in equation (3.22). The observed value of ó = 4.24 
degrees per year (Taylor, private communication) gives 

Mj + Af2 = 2.85A/© , (3.24) 

1975)ded that the °ther pOSSible sources of aPsidal motion are negligible (Will 1975; Roberts, Masters, and Arnett 

iii) y 

The measurement of y is important because it provides an independent relation between Mx, M2, and a1 
However, as pointed out in Paper I and by Brumberg et al. (1975) (cf. also Groth 1971 ; Hunt 1971), the directly 
measurable quantity is t; = ß + y and the value of y can be isolated only in the presence of apsidal motion. 
Since 

8^ = (1 — e2yiz cos w$x — x(l — e2)1/2 sin coSco + Sy , 

we find on making the replacements (2.48) 

St) = —(1 — e2)1,2Sx: + Sy, 

St) = -(1 - e2)ll2Sx + x(l - e2)ll2w8a>, 

St? = (1 - e2)ll2w28x + 2x(l - e2Yl2<h8w, 

where we have used a> = tt + <ht. Similarly, 

8a = —x8oj, 8& = — jcSai — ü)8x. 

(3.25) 

(3.26) 

(3.27) 
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Thus 

8y = 87) - 8rj/cb2 - 2(1 - e2)ll28âl<b, 

and so the dominant contribution to the variance is 

var (Sy) æ var (StO/oj4 = 90e2/(«d>4T5) , 

589 

(3.28) 

(3.29) 

where we have used equations (3.13) and (3.9c) and set x = 0. (Note that we need only fit to eq. [3.12] as the linear 
coefficient 8r) is separately determined from measurements of Sa.) Equation (3.29) differs by a factor 2 from 
equation (14) of Paper I because of a different definition of e. 

We can rewrite equation (2.29), using equation (3.24), as 

y = 2.07 x IO" 
\M0) \

l + 2.85Mq) 
(3.30) 

Since 

1.02Mo < M2< 2.S5Mq , (3.31) 

(eq. [10] of Will 1975), we expect 

2.88 x 10-3s < y < 1.18 x 10-2s. (3.32) 

If = M2 = 1.41M0, then y = 4.42 ms. A 10 percent measurement of the masses (assumed similar) requires 

8M 1 [var (Sy)]1/2 

M ^ 0.1 , 

or 

5e_32/5«3“1/5 years, 

iv) X 

(3.33) 

(3.34) 

From equations (3.26) and (3.27), we find 

8x = -(1 - e2yll28r) - <b8a. (3.35) 

If x is to be determined simultaneously with y, then 

var (8x) x (I - e2)'1 var (St)) ^ 384e2(l - e2)-1/^3) , (3.36) 

where we have used equations (3.9c) and (3.15). If we define rx = \x/x\, a 10 percent measurement of rx requires 

< 0.1x:[var(Sx)]"1/2 ^ 200«31/2r2/
3/2e_3“1 years. (3.37) 

v) 

The measurement of is important as it may provide a test of general relativity. Using equations (3.2), (3.9d), 
and (3.15), we obtain for d>T « 1 

var (S^) = ^4 var (SS/^) l$5O0>*e2/(ß2nT5) . (3.38) 

If we define = |^/^|, a 10 percent measurement of requires that 

T^ 0.1^[var(S^)]_1/2 x 5 x 105€_3~1n3
ll2Ty

512 years. (3.39) 

If T0> arises solely from gravitational radiation, the general-relativistic prediction is (Wagoner 1975) 

i rvi ^(M1 + M2\ -^ . .U 0.51 (M1 4- M2\ -1/31-1 m 

"-104x 10 (-V“) “"'['-liinl-Tír') J years- ^ 

If A/i = M2 = 1.42M0, T0> = 3.7 x 10s years. To measure this to 10 percent accuracy requires that 

T > 15e_32,5«3~1/5(T<2j/5 x 108 years)2/5 years. (3.41) 
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Eardley (1975) has pointed out that if the Dicke-Brans-Jordan theory of gravity is correct, then can be less 
than 107 years as long as the companion is not a neutron star of the same mass as the pulsar. The time required 
to test this prediction is ~ 3 years. 

Note that the observing time required to measure a period change has the same dependence on e and ñ as the 
time to measure y. Thus, with the assumptions we have made, the component masses will be measured before the 
effects of gravitational radiation are detected, independent of changes in the rate and accuracy of arrival time 
measurements. 

In the discussion following equation (2.22) it was pointed out that iarr contains a contribution proportional to 
¿em2- It can readily be seen that this contributes an artificial amount [iv#i + {rb x n)2/^]“1 to (cf. Shklovsky 
1969; Brumberg ei al. 1975). 

vi) è 

Using equations (3.9e) and (3.11), we obtain 

var (Sé) = ne2/(ß2nT3) . (3.42) 

A 10 percent measurement of re = \e/ê\ requires that 

re < O.l^var(8ê)]"1/2 ä 400€_3"1«3
1/27i3/2 years. (3.43) 

Note that re due to gravitational radiation emission (~ 109 years) is completely unobservable. 

vii) Relativistic Time Delay and Post-Newtonian Terms 

In § II an expression was derived for the relativistic time delay. Unless i ~ 90°, the amplitude of this term is 
typically ~20 ju,s. Post-Newtonian corrections to the elliptic orbit are also typically of this magnitude and would 
have to be included. With existing timing accuracy (e ~ 1 ms), it is not appropriate to include the time delay 
term in the fitting equation (2.46). However, it is of interest to see what improvement would be necessary to make 
its detection feasible. We estimate the variance in a measurement of M2 using this term by comparison with the 
variance estimates in equation (3.9), assuming that the variance after time d is the average of variances of Sa 
and St?: 

var (M2) _ 10c2 

M2
2 ~ (20/xs)2«r ‘ 

Thus the time required for a 10 percent mass measurement using this term is 

T £ 25006 .g2^“1 years. 

(3.44) 

(3.45) 

Provided that none of the additional sources of timing error discussed below interfere with this effect, we see that 
an improvement by a factor ~ 20 in the timing accuracy will be required to measure this term in 10 years of regular 
observations. 

IV. DISCUSSION 

The fitting procedure outlined in § II and the variance estimates given in § III have been derived on the assumption 
that the pulsar behaves as a clock whose phase is adequately described by a cubic polynomial. If this is correct 
and the apsidal motion and period change are predominantly relativistic, then equations (3.34) and (3.41) indicate 
that with existing timing accuracy and a feasible rate of measurement of arrival times (i.e., e ~ 1ms,« ~ 1000 yr_1) 
the masses of both components and the effect of gravitational radiation can be detected within ~ 10 years. Should 
the system prove to be more complex (e.g., because of dynamical perturbations of a third body or spin-orbit 
interactions with a rapidly rotating companion), then the secular changes described by equations (3.21), (3.37), 
and (3.43) might in addition be detectable. 

However, previous experience with the timing of pulsars and consideration of effects peculiar to the binary 
pulsar suggest that there may be noise components and secular drifts in the arrival times that are more important 
than measurement errors. In this case the variance estimates of § III will be significantly increased. 

Probably the most important sources of noise are intrinsic to the pulsar. Several (single) pulsars display significant 
phase residuals after subtracting the best fitting polynomial to the barycentric arrival times (Groth 1975 ; Manchester 
and Taylor 1974). In Groth (1975) five years of arrival times from the Crab pulsar are analyzed, and it is shown 
that the majority of the noise component is well described by a random walk in frequency for which the diffusion 
coefficient is ~0.5 x 10“22 Hz2 s-1. At present in observations of PSR 1913 + 16 using the Arecibo radio tele- 
scope, it takes approximately 10 days to sample a complete orbit, and this probably represents an estimate of 
the intermediate time scale, d, introduced in § III. Adopting the Crab pulsar diffusion coefficient, we find that the 
corresponding phase residual of PSR 1913 + 16 after 10 days is ~0.5 ms, which is comparable with the equivalent 
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standard errors in estimates of the orbital elements indicated by equation (3.9). On this basis of this estimate we 
conclude that with careful analysis of the data, frequency noise need not seriously affect the determination of 
orbital parameters and their secular variation. It will, however, limit the accuracy with which the timing age can 
be measured in exactly the same fashion as for the Crab pulsar. Nevertheless, the only reliable estimate of the 
relative importance of intrinsic pulsar noise will be one that is empirically determined after several years’ continuous 
observation. Similar remarks apply to possible glitches in PSR 1913 + 16, and timing errors introduced by 
Doppler shift of the emitted frequency, Galilean aberration, and geodetic precession (Smarr and Blandford 1976). 
Another noise component that may be detectable is that predicted by Eardley (1975) on the basis of the Dicke- 
Brans-Jordan theory provided the companion is not a black hole. 

An additional source of spurious time delay might result from a variation of the dispersion measure. At 430 MHz, 
the total time delay arising from interstellar dispersion is ~4 s. If as much as 10-4 of the dispersion arises from 
within the binary orbit as a result of interaction with the companion star, this will also increase the variance 
estimates of § III. Such an effect (although unlikely) might be detectable by looking for a modulation of the dis- 
persion measure with the orbital period. In addition, long-term changes in the dispersion measure may complicate 
the analysis. 

By comparison with measurement errors, ephemeris and clock errors are probably negligible. 
However, there is as yet no evidence that any of these possible noise components has an amplitude sufficiently 

large to affect the application of the timing formula derived in § II. In fact, the fitting procedure described in § II 
has been used successfully in analyzing a sequence of arrival times from PSR 1913 + 16 (Taylor et al 1976). 
The measured variances of the quantities ^ sin /, e, ^ a, œ, and œ are all in agreement with the estimates 
presented in § III. This suggests that at least there is no serious additional time delay, with an orbital periodicity 
(e.g., arising from dispersion within the orbit). The principal result of § III is then that it is feasible to measure the 
mass of a neutron star and detect the effects of gravitational radiation. In view of the importance of these obser- 
vations, we would urge that PSR 1913 + 16 be monitored as frequently and as accurately as is possible over the 
next 10 years. 

We would like to thank E. J. Groth, W. H. Press, J. M. Rankin, L. Smarr, and J. H. Taylor for valuable dis- 
cussions. R. B. thanks the Berkeley Astronomy Department for hospitality and support while part of this work 
was carried out. 
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