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ABSTRACT 

We show analytically that contact binary stars coupled by a common convective envelope, the 
Lucy model, are almost invariably unstable when subjected to mass transfer: if either component 
begins to exchange mass, it will continue to do so. A detailed sequence of models is calculated 
which follows the thermal evolution of a 2 Af0 contact binary of normal Population I abundances 
(Y = 0.70, Z = 0.02), starting at nearly equal mass. The initial instability develops into a cyclic 
exchange of mass with the mass fraction oscillating between 0.56 < + Af2) < 0.62 with 
a period of ~ 107 years. The system achieves thermal equilibrium on the average, but individually 
both stars are perpetually out of equilibrium. The instability is of a general nature and such 
oscillating systems can satisfactorily populate the short-period, red region of the period-color 
relation for W UMa stars. 
Subject headings: stars: binaries — stars: mass loss — stars: W Ursae Majoris 

I. INTRODUCTION 
Theoretical models of contact binary stars (CBS) in 

both hydrostatic and thermal equilibrium have been 
developed over the last several years, based on the key 
idea of Lucy (1968a) that the components share a 
common convective envelope in which the entropy 
should be essentially constant. In hydrostatic equilib- 
rium the surface of each star should coincide with the 
same equipotential surface which, in the Roche 
approximation, requires 

Thus the average surface gravity of the two com- 
ponents, ~GM/R2, is nearly equal, and the ratio of 
surface areas is proportional to the mass. If both the 
entropy in the surface convection zone and the mean 
surface gravity are equal, then the envelopes of the 
two stars are similar, and their effective temperatures 
will be equal. Note that this requires a large flux 
of energy from the primary to the secondary. Lucy 
(19686, 1973) has shown that this model satisfactorily 
reproduces the characteristic features of the light 
curves of W Ursae Majoris stars. Primary and second- 
ary eclipse are of nearly equal depth because the 
brightness primarily depends on the visible projected 
surface area; and the anomalous mass-luminosity 
relation, Lee M, reflects the ratio of surface areas for 
equal-temperature stars. Thus the Lucy model repro- 
duces the observational features characterizing the 
surface of CBS. 

However, thermal-equilibrium, zero-age models do 
not satisfactorily populate the short-period domain of 
the period-color relation observationally established 
by Eggen (1967) for W UMa stars. Lucy’s original 
work demonstrated that, even with the surface energy 
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exchange, a fundamental interior structural difference 
between the two stars is also necessary if they are to 
fit into the equipotential mass-radius relation of equa- 
tion (1). His models indicated that agreement could 
be obtained if the more massive component produced 
nuclear energy predominantly by CN reactions while 
the secondary burned by p-p reactions. For short- 
period systems this requires large mass ratios to 
maintain a massive enough primary, and the resultant 
color of the object is too blue. Furthermore, only for 
carefully selected combinations of mass and mass ratio 
will the model be in thermal equilibrium where the 
luminosity radiated from the surface equals the com- 
bined interior energy generation. Systems where both 
components are less massive than the Sun, and there- 
fore both burn by p-p reactions, cannot be explained 
theoretically, but are relatively common among 
W UMa stars (Mauder 1972; Lucy 1973). In fact 
detailed models, based on the Lucy idea (Moss and 
Whelan 1970; Hazlehurst and Meyer-Hofmeister 
1973), indicate that zero-age systems cannot exist in 
thermal equilibrium (except at equal mass) unless the 
metallicity is extreme Population I, say Z ^ 0.04. 
Nonetheless, several lines of evidence strongly suggest 
that W UMa stars represent a long-term “main 
sequence” evolutionary phase which exists from age 
zero (e.g., see Lucy 1968a; Kraft 1967). So theoretical 
models of CBS in hydrostatic and thermal equilibrium, 
employing the Lucy equal-entropy common convective 
envelope, do not account for the short-period W UMa 
stars. 

In this paper we investigate the behavior of a short- 
period CBS which need not be in thermal equilibrium. 
Nonetheless, in contact we expect the Lucy surface 
conditions to be fulfilled. Hydrostatic equilibrium 
requires that the surface radii satisfy equation (1), and 
equal entropy in the outer envelopes is maintained by 
the interchange of convecting elements which occurs 
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with far shorter time scales than are required for 
thermal readjustment. But as a result of nonthermal 
equilibrium the components may secularly expand or 
contract at a thermal time scale, and mass exchange 
can occur. Calculations for a 2 Af© CBS starting with 
equal mass components show that (1) equilibrium at 
equal mass is unstable, and (2) a cyclic mass exchange 
follows in which one component persists as the 
primary but its relative mass fraction oscillates on a 
thermal time scale. An analysis of the initial instability 
producing the transfer of mass indicates that it can 
occur for a large range of initial configurations, at least 
if the components are not appreciably evolved. We are 
led to the conclusion that a contact binary never 
achieves true equilibrium during its main-sequence 
phase; instead, oscillating departures from thermal 
equilibrium cyclically pump mass between the two 
stars. With this interior structure the distribution of 
CBS in the period-color diagrams is understandable in 
terms of a distribution of systems with various values 
of total mass and angular momentum. The difficulties 
of theoretically producing short-period systems in 
exact thermal equilibrium is overcome by the existence 
of an average equilibrium state. 

II. PHYSICAL ASSUMPTIONS AND APPROXIMATIONS 
Following conventional procedure, we calculate the 

structure of each component of the binary as though it 
were a single, spherical, nonrotating star, but two 
forms of coupling are introduced. First, if the stars are 
in contact, we artificially introduce an exchange of 
energy such that the entropy in the surface convection 
zone of each star will be the same. Physically, the 
exchange must result from a circulation of convective 
elements along common equipotential surfaces, where 
the circulation is driven by small pressure gradients 
which will exist if the entropy is not constant. But if the 
exchange occurs in the adiabatic part of each convec- 
tion zone, only its magnitude must be specified, since 
the luminosity effectively does not enter the stellar 
structure equations. 

The second coupling explicitly affects the surface 
boundary conditions. We assume that equipotential 
surfaces in the binary are given by the Roche approxi- 
mation (this requires stars with a pointlike mass 
distribution, synchronously rotating in circular orbit), 
and that a spherical star fills its Roche lobe if its radius 
exceeds the radius, Zf, of a sphere of equal volume. 
Three states exist for the binary. In contact, both stars 
fill their Roche lobe, and their radii must terminate 
on a common equipotential for hydrostatic equilib- 
rium to obtain. In a detached state, neither star fills 
its critical lobe, so any radius less than the critical 
value is permissible. In a semidetached state, only one 
component fills its lobe, and the radius of this star 
must be very nearly //, since material outside H will 
flow onto the companion, driven by unbalanced pres- 
sure gradients. Over the range of interest to us, the 
critical radii can be accurately approximated by 

#1,2 = D 0.38 ± 0.2 log (2) 

(Paczynski 1971), where D is the binary separation, /x is 
the mass fraction in star “1,” i.e., ¡jl = M1/(M1 + M2) 
and the minus sign applies to the critical radius of star 
“2.” With mass-exchange the binary separation can 
vary. We assume conservation of mass and orbital 
angular momentum, /, so that 

D G(M1 + M2)
3 F(1 - M)]2 ' (3) 

Note that minimum separation, but not minimum 
critical radius, occurs at /^ = 0.5. 

In the Appendix we give the explicit form of the 
surface boundary conditions and the method used to 
calculate the transfer of energy, which is zero if the 
stars are not in contact. Because mass is exchanged in 
the calculated models, it is conceivable that any of the 
three states described above will occur during the 
evolution. The formulae in the Appendix have been 
expressed so that no discontinuities exist in the 
coupling conditions. 

III. ANALYSIS OF THE MASS-EXCHANGE INSTABILITY 

In this section we investigate the stability of a 
contact binary subjected to an infinitesimal transfer of 
mass. We assume that no mass exchange will occur if 
both stellar surfaces are at the same potential, a condi- 
tion approximated as í£a/#a = where R and 
H are the stellar and critical radii of the components. 
However, if RA/HA > RB/HB, the surface of A is at a 
higher potential than B, so that an unbalanced pressure 
gradient will force gas from A onto B. The analysis 
considers the variation of the surface potential of the 
components as mass is transferred. 

The variation of the critical radii follows directly 
from the binary model, equations (2) and (3), but the 
variation of the stellar radii is a more complicated 
problem. The detailed evolutionary models of the next 
section automatically follow the time-dependent, non- 
thermal equilibrium adjustment of the stars. Here we 
consider the mass-radius relation for two sequences: 
first, the zero-age main sequence (ZAMS) relation for 
which both hydrostatic and thermal equilibrium hold; 
second, a contact relation for stars with equal entropy 
outer envelopes for which hydrostatic (but not neces- 
sarily thermal) equilibrium holds. 

To investigate the response of a system in which 
the mass of component B, of mass fraction /x = 
Mb/(Ma -1- Mb) is increased, we define a stability 
parameter 

y’ = In (Ra/Ha) - In (Rb/Hb) , (4) 

and consider its derivative with respect to In ¡i. 
Rearranging terms in equation (4), we find 

dy „ = 

dlnp Sh ~ (5) 
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with 

d\n 
^ Jln/i 

= 0-457 
(1 - ,xll - 0.277{log [Ml - M)]}2] ’ W 

0 d In (Rb/Ra) 
B d\nn 

_ dhi fx d\n 7?a . 
d ln Mb 1 — ¡xd\n MA ^ ^ 

The expression for SH follows from equations (2) and 
(3). For a system initially in equilibrium, -1'/ = 0. So, 
ifS* ^ Sji) 3, positive increment to the nmss of stnr B 
leads to additional mass exchange from A to B, since 
the surface potential of A will exceed that of B after 
the exchange. 

First consider the case for components of equal 
mass. Such a system is in thermal equilibrium and can 
satisfy all the conditions described in §§ I and II, yet 
no equal mass W UMa stars are found in nature. For 
P — 0.5, Sh — 0.914, and the ZAMS relation near a 
solar mass is Æ oc M°-8. We find 

‘S'zams = 0.91 — 1.60 = —0.69 (stable) . 

In other words, if mass were transferred from A to B, 
the surface of B would shift to a higher potential 
relative to A so that the mass would flow back to A. 
However, the additional consideration of energy ex- 
change from primary to secondary results in a much 
shallower mass-radius relation for stars in contact 
than for detached ZAMS stars. Lucy (1968a, Fig. 2) 
presents the mass-radius relation for stars with equal- 
entropy surface convection zones. Note that while two 
stars of equal mass can be in thermal equilibrium, in 
general the surface luminosity of two unequal com- 
ponents will not match their combined energy genera- 
tion rate. Also, after mass transfer, the stars in contact 
should have a common entropy in their outer envelope, 
but the entropy will not be what it was at equal mass. 
Nonetheless, the contact relation near a solar mass is 
R oc M° 13, so that 

^CONTACT = + 0.91 — 0.26 = +0.65 (unstable). 

Although the radius of component A shrinks after 
losing mass, the new ratio of stellar to critical radius 
for A exceeds the similar ratio for B. Consequently the 
surface potential of A is above that of B, and the mass 
transfer is self-sustaining. 

The problem is slightly more complicated if the 
contact system is initially in equilibrium at some non- 
equal mass ratio, as must be the case if W UMa stars 
are not in a perpetual state of mass exchange. Equation 
(6) can, of course, be evaluated for any /x (but note 
that the approximate relation, eq. [2], is accurate to 
2% or better only for 0.23 < /x < 0.95, which includes 
the observed mass ratios of most W UMa stars). As 
previously mentioned, detailed models do not succeed 

in producing contact binary stars of zero age and 
normal metallicity which are in thermal equilibrium. 
However, we assume, following Lucy, that such 
systems at least require that one component should 
burn via CN reactions with R oc M°*5 while the 
secondary burns by p-p reactions with R cc M° 13, 
where the mass-radius relations are again from Lucy 
(1968a, Fig. 2). We evaluate S for two initial mass 
fractions p = 0.24, 0.75) and find: SH = (0.65, 1.95), 
SR = (0.30, 0.89). In either case the system is unstable 
for mass transfer onto component B, regardless of 
whether B is the primary or secondary! 

One is invited to substitute values for some other 
initial configuration, but the conclusion seems to be 
that for stars near a solar mass the contact mass-radius 
relation is too shallow to inhibit mass-exchange. It is 
primarily the shallow relation, R ce M01, of the 
secondary which generates the instability. If the mass 
of each component exceeded 1.3 M0, and if a suffi- 
ciently deep convection zone remained, then the 
system would be stable in this approximation. But for 
both stars less than 1 M0, the system is unstable at all 
mass ratios of interest, and for transfer to either the 
primary or the secondary. This result might not be 
valid once both stars have evolved so that their mass- 
radius relations have been appreciably altered. 

IV. THERMAL EVOLUTION OF A 
2 Mq contact binary 

Since earlier detailed models of zero-age CBS sug- 
gest that it is impossible to form systems of unequal 
mass in both hydrostatic and thermal equilibrium 
without a highly enriched metallicity, this study was 
undertaken to investigate what response would occur 
if a pair of stars with normal abundances were forced 
into contact. In particular, would the binary contrive 
to separate, or would some equilibrium state be 
achieved ? The calculations begin with a contact 
system of 1.97 M0 with a mass ratio of 1.01, so that 
the system is nearly in thermal equilibrium at the 
start. The orbital angular momentum is 6.14 x 1051 

cgs, resulting in a contact configuration with a period 
of 6.6 hours. Solution of the models follows the normal 
Henyey relaxation scheme, but with a simultaneous 
solution for both stars coupled by the surface bound- 
ary conditions and an energy exchange as described 
above. The numerical code is that of Eggleton, as 
described in Eggleton (1971) and Eggleton, Faulkner, 
and Flannery (1973). Evolution of the composition 
was not evaluated since the total time span covered 
by the models is ~3 x 107 years. The composition is 
X = 0.70, Z = 0.02, and the convective mixing length 
is 1.5 times the pressure scale height. 

a) The Cyclic Mass Exchange 

The cyclic instability resulting from the combined 
binary plus stellar evolution is most easily described 
in terms of the variation of radii versus mass-fraction 
of the primary—star 1—as shown in Figure 1. Two 
pairs of fiducial curves are plotted in Figure 1: the 
ZAMS mass-radius relation, and the critical radii for 
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•45 .50 .55 .60 .65 .70 
Mj/íMj + Mg) 

Fig. 1.—Evolution of the radii of the components of a 2 M0 
contact binary as a function of mass fraction in the primary. 
Four fiducial curves are drawn: ZAMi>2 are the thermal 
equilibrium radii and Hi,2 the critical Roche radii of the 
components. The evolution starts near (jl — 0.5 with the stellar 
radii near equilibrium, but both are greater than their respec- 
tive critical radii, so the system is in contact. The system 
evolves to the right, i.e., mass transfer onto the primary until 
contact breaks near p = 0.6 because the binary is separating. 
(See the text for further discussion.) 

both components. These curves display a reflection 
symmetry about ^ = 0.5, since primary and secondary 
simply interchange at this point. Note that the critical 
radius of the secondary, H2, decreases until # 0.56, 
when the effects of increasing binary separation 
dominate over the decreasing logarithmic term in 
equation (2). 

The evolution begins near /z = 0.5 with R/H > 1 
for both stars; the initial models are ZAMS stars of 
0.98 and 0.97 MQ. When placed into contact, the mass- 
radius relation of the stars is perturbed by the 
energy-exchange such that mass is transferred to the 
primary and the system evolves to the right in Figure 1. 
A single star, at zero age, losing mass at a constant 
rate would rapidly decrease in radius, and then evolve 
along a mass-radius relation essentially parallel to, but 
below, the ZAMS relation. This behavior, in response 
to removal of a star’s outer layers, occurs because 
thermal energy is absorbed as the star’s interior 
attempts to expand, which results in an overall 
decrease of the surface radius. An analogous behavior 
occurs for a single star receiving mass at a uniform 
rate: following a rapid initial expansion, the star 
evolves along a sequence parallel to, but above, the 
ZAMS mass-radius relation. In a contact binary the 
star’s response to mass loss is drastically altered. The 
injection of energy into the secondary slows the radius 
decrease, while the primary is relatively deflated by 
loss of energy. By adjusting the rate of mass transfer, 
the system can achieve surfaces in hydrostatic equilib- 
rium, i.e., Ri/i/i = Rz/Hz- During this initial phase 

both components increasingly depart from thermal 
equilibrium, as will be described below, and the 
system evolves smoothly with the primary’s mass 
increasing. 

But the situation cannot persist. The binary is 
increasingly separating, so that eventually, near 
¡i ^ 0.6, the critical surfaces migrate upward to 
coincide with the stellar surface. If the full energy- 
exchange required to maintain equal entropy in both 
envelopes could be transported even as the connecting 
throat shrinks to a point, then the next iota of mass 
transfer causes the system to detach, and the energy 
exchange terminates. A new phase ensues as the 
separated stars attempt to adjust to their ZAMS 
equilibrium radii: the secondary recedes inside its 
Roche lobe, while the invigorated primary swells. 
Immediately mass overflows onto the secondary, and 
the direction of mass transfer reverses. The system is 
now evolving back toward equal mass. 

In the reversed mass-transfer phase the binary is 
semidetached, but the secondary’s radius never 
becomes less than about 0.86 of its critical radius. 
With the important exception of the mass exchange, 
the secondary is essentially decoupled from the binary. 
As described for a single star, the radius of the 
secondary eventually evolves along a track parallel to, 
and above, its ZAMS value. The rate of mass loss 
from the primary adjusts so that the stellar radius of 
the primary equals the critical radius. If the rate were 
smaller, the star would swell outside its lobe, stimula- 
ting more rapid mass transfer. If the rate were larger, 
the star would shrink inside its critical lobe, completely 
shutting off the exchange. 

Again, the phase of reversed mass transfer cannot 
persist since the separation of the binary is decreasing. 
The increasing radius of the secondary eventually re- 
establishes a contact configuration, and energy is once 
again transferred to the secondary. This forces the 
direction of mass transfer to reverse, and the cycle is 
ready to repeat. 

b) Nonthermal Equilibrium of the Components 

Once the mass transfer begins, the stars cannot 
adjust rapidly enough to maintain thermal equilib- 
rium. This is seen in Figure 2, which plots the variation 
of luminosity with radius for each component just 
prior to the first breaking of contact. The asterisk 
plotted for each star represents the ZAMS surface 
radius and luminosity appropriate to the star’s mass, 
and the C denotes the base of the surface convection 
zone. The primary and secondary are undersized and 
oversized, respectively, as a result of the energy 
exchange which directly affects the entire structure of 
each star’s convection zone, even though it is physically 
applied at the critical radius. However, very little 
energy is absorbed or released in the outer convection 
zones; it is the relative compression (expansion) of the 
outer 75 percent, by radius, of the primary (secondary) 
where large departures from thermal equilibrium 
occur. The secondary swallows nearly its entire 
interior luminosity in expanding its outer regions, 
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Fig. 2.—The luminosity distribution as a function of radius 
for both components just prior to the initial breaking of con- 
tact when the mass transfer rate is dMi/dt ä +1.6 x 10" 8 M© 
yr-1. The equilibrium (ZAMS) surface luminosity and radius 
for stars of the same mass are indicated by the asterisks. C 
marks the start of the surface convection zone, and energy 
exchange occurs at the critical radii. Note that thermal energy 
is released (absorbed) in the outer 70% of the primary 
(secondary). 

while the compression of the primary produces a 
20 percent enhancement of luminosity—prior to the 
surface energy exchange—relative to its nuclear energy 
generation rate. 

The nonthermal equilibrium features of the cycle 
have important effects. In Figure 3 we plot the varia- 
tion of luminosity with time during the thermal 
evolution. It is the energy liberated by the primary, 
nuclear plus thermal, which controls the evolution of 

Fig. 3.—Luminosity as a function of time. Li + L2, Lu and 
L2 are the total and individual surface luminosities, while AL2 
is the energy transferred into the secondary from the primary. 
Thus the interior luminosity of the primary, just before energy 
exchange, is L± + AL2. 

the binary; just prior to the initial breaking of contact 
the secondary supplies only ~ 2 percent of the surface 
luminosity. As the mass transfer reverses, the interior 
state of the primary switches from compression to 
expansion, and the absorption of energy produces a 
sudden drop of 30 percent in the surface luminosity. 

The inability of the primary to achieve its equilib- 
rium radius drives the oscillation. The primary 
attempts to expand throughout the cycle. In the semi- 
detached phase the expansion is short-circuited by 
Rpche-lobe overflow. In the contact phase the expan- 
sión is slowed by the energy transfer which, however, 
self-stimulates additional expansion by the return 
mass transfer. In turn the nonequilibrium of the 
secondary regulates the cycle. When the energy 
exchange ultimately is unable to pump the secondary 
sufficiently to maintain mass transfer to the primary, 
the contact breaks. During the semidetached phase, 
dumping of mass onto the secondary forces the 
system back into contact. Nuclear, as well as thermal, 
energy sources are utilized to drive the oscillation. 

c) Observational Characteristics of the Cycle 

We turn to a discussion of possible observational 
features of the models. Bear in mind that only one 
complete loop of the cycle has been calculated. While 
construction of models for one more loop would have 
been feasible, it seemed likely that nothing substantial 
would have been learned without following at least 
several more loops which would have been prohibi- 
tively expensive. Basically, the complete cycle lasts 
~107 years and contains two phases of nearly equal 
length. Figure 4 plots the mass-transfer rate as a 
function of time. Except for the brief periods when the 
sign reverses æ 1.5 x 10_8Moyr"1. The 

Fig. 4.—Absolute values of the mass transfer rate onto the 
primary as a function of time; the sign is indicated by + or —. 
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associated rate of change of period is about \p~ ^dp/dt)] 
ä 1.7 x 10“8 yr“ Vi.e., 5 x 10_4syr"1 at a period 
of 7.5 hours. A relatively large literature exists 
regarding period changes in W UMa stars. Period 
changes are found of even larger magnitude than 
predicted by this study, but the changes are rarely 
monotonie. Thus there appears to be substantial 
“jitter” in the period which makes it difficult to sort 
out a secular trend. 

A possibly important problem with these models is 
that during the semidetached phase the light curve is 
not in agreement with those found for W UMa stars. 
However, during the contact phase of the cycle with 
the period and luminosity increasing, the surface 
conditions are those of the Lucy model, for which 
theoretical and observed light curves are in satisfactory 
agreement. 

During the semidetached phase the period decreases, 
and the luminosity is essentially constant following a 
rapid decrease. The envelopes are no longer coupled by 
energy exchange. The secondary’s radius is never less 
than ~0.86 of the critical radius, so the degree of 
detachment is quite small. However, the effective 
temperature of the secondary is 1000 K less than that 
of the primary for a brief time and typically is 500 K 
cooler. If we simply assume that the observed bright- 
ness of each component is given by its surface area 
multiplied by the blackbody flux, Æ, appropriate to 
its temperature, then the ratio of observed flux at 
secondary and primary eclipse, for an orbital inclina- 
tion of 90°, is 

Ls= I  
LP 1 + (7V*i)2[W - 1] ' 

At 5500 Â the difference ranges between ~0.25 and 

0.35 F-magnitudes during the semidetached phase. The 
difference rarely exceeds 0.05 mag for W UMa stars; 
and ß Lyrae binaries, for which substantial differences 
do occur, are rare at such short periods. Thus the 
eclipse light curves for one-half the cycle’s duration 
do not tally with observations, a point to which we 
will return in the discussion. 

Finally, consider the behavior of the models in the 
period-color diagram, Figure 5. As has been tradi- 
tional in work on CBS, we use the transformation 

o T, (3.970 - log Te) 
B~v = 531  

(Eggen 1961). The diagonal solid lines in the figure 
define the region populated by W UMa stars (Eggen 
1967) and the dashed-line trapezoidal region corre- 
sponds to zero-age systems as selected by Lucy (1968«). 
The curve labeled L corresponds to thermal equilib- 
rium models found by Lucy—though, as mentioned, 
more detailed calculations find it impossible to produce 
such systems without Z > 0.04. The dotted curve, 
labeled ZAMS, is the locus of points for equally 
massive stars just in critical contact, as found by the 
author for Z = 0.02. 

The curve labeled F is the trajectory of the models 
calculated here. For the semidetached phase a mean 
color is plotted, since the temperatures are not equal. 
The curve starts at the color appropriate to 1 M© on 
the ZAMS relation, but at a shorter period since the 
stars are initially closer than just marginal contact. 
Through the cycle the curve oscillates over a region of 
size 0.06 in log (Period) and 0.5 in i? — F. 

Above F there is a vector symbol which represents 
a correction displacement which should be applied to 
account for effects of uniform synchronous rotation. 

systems of unequal mass originally calculated by Lucy. F is the trajectory followed by the 2 M© contact binary calculated here. 
The symbol above F represents corrections which should be applied to account for the rotation of the stars. 
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The levitational effects of rotation lower the equilib- 
rium central temperature of a star; consequently the 
luminosity is reduced. Also both the surface area and 
equatorial radius are increased. For a rotational 
parameter 

a 
2aj?r^ 
3 G M 

3 1 
~ = 0.07, 

the tabulated results of Faulkner, Roxburgh, and 
Strittmatter (1968) indicate 

A log Te ä —0.013 (A log B — V~ +0.05) 

and 

A log i? ~ +0.01 (A logP - +0.015) 

at 1 Mq. Application of this correction shifts F into 
the populated region. It is interesting to note that the 
rotational corrections are larger for shorter period 
systems, not only because they rotate more rapidly 
but also because lower mass stars are less centrally 
condensed and have less concentrated nuclear burning. 
The increasing correction may offset the shallower 
slope of the ZAMS relation relative to the populated 
region. 

v. DISCUSSION 

The analysis of § III strongly suggests that the 
mass-exchange instability is ubiquitous among CBS. 
Although we have presented detailed calculations of 
the resultant cyclic behavior for only one model 
system, the thermal instability associated with rapid 
variations of mass seems likely to produce a similar 
cycle in most cases. The inability of a contact system 
to achieve true thermal equilibrium forces the system 
into an oscillatory state in which average equilibrium 
can be achieved over the cycle. No particularly con- 
straining values for the chemical composition, mass, 
or mass ratio are necessary in this model. Given a 
system with a total mass, angular momentum, and 
mass ratio such that the system is in contact, evolution 
forces the system to remain very nearly in contact 
because the mass-transfer reverses direction before the 
system can separate sufficiently to detach. Viewed in 
this way the distribution of systems in the period-color 
diagram shows the current location of a distribution 
of systems with varying total mass and angular 
momentum in various phases of their mass-exchange 
cycle. 

It would not be surprising if many details of these 
models were in error due to the many simplifying 
approximations, but the basic effects (energy exchange 
in contact producing an instability which allows mass 
transfer to occur, followed by binary separation which 
ultimately forces the mass transfer to reverse direction) 
seem likely to be present at all levels of refinement. 
Several authors have found that convective energy 
exchange is efficient enough to transport the necessary 
large-energy flux to the secondary (Hazlehurst and 
Meyer-Hofmeister 1973; Biermann and Thomas 1973), 

but no detailed physical model exists which would 
allow a better computation of how the flux is modu- 
lated as the degree of contact narrows. Also, use of the 
Roche approximation for the critical radii, and by- 
passing the problems associated with the interaction 
of rotational and orbital angular momentum, which 
actually control the variation in the binary separation, 
could substantially alter the overall time scale of the 
cycle and the degree of separation during the semi- 
detached phase. Finally, we have neglected the hydro- 
dynamic aspects of the mass exchange which are 
particularly important in the semidetached phase. The 
treatment used here is equivalent to assuming that the 
gas flows with negligible velocity and arrives with 
exactly the same thermodynamic properties as the gas 
at the surface of the star. However, the infall energy 
of the accreted gas during the semidetached phase 
would increase the luminosity of the secondary by 
~ 10 percent. The possible development of a rotating 
equatorial rim which might even continue to allow 
circulation of convective elements during this phase is 
not an unreasonable possibility. For these reasons we 
are not particularly discouraged by the uncharacteristic 
eclipse light curves which are found in the semi- 
detached phase. Rather it seems more appropriate to 
stress how very close to contact the stars do remain 
throughout the cycle. 

These calculations suggest two alternative explana- 
tions for the existence of two equally numerous sub- 
classes of W UMa stars. Ruciñski (1973) has recently 
summarized some of the observationally distinguishing 
characteristics of the classes, referred to as types A and 
W. Type A systems are generally of earlier spectral 
type, higher luminosity, and have a deeper common 
envelope, i.e., the components are in contact to a 
greater degree. Type A systems are also less active 
photometrically and spectroscopically, and show more 
constant period change phenomenon. It is tempting to 
associate the more active, fainter, and erratic type W 
systems with the semidetached phase of the cycle. 
However, there is also evidence that the two classes 
are characterized by differing mass ratios, with type A 
systems having a larger fraction of mass in the primary. 
If so, that would rule out such a position since the 
cycle proceeds over the same mass ratios. Therefore a 
second interpretation might associate the entire cyclic 
phenomenon with systems of type W, with type A 
systems representing a later, perhaps calmer, phase of 
evolution. 

In the realm of speculation it is extremely interesting 
to consider the ultimate evolution of a CBS. In this 
regard the most important aspect of these calculations 
is that one component remains the primary throughout 
the cycle—the mass ratio does not entirely reverse. 
This star should evolve much more rapidly than the 
secondary. As the luminosity of the system increases 
with time, the average mass fraction in the primary 
would probably grow because the mass-exchange from 
the secondary could be pumped for even larger excess 
radii of the secondary. This would allow the system a 
larger volume for expansion. If a rapid expansion of 
the primary occurs, as it commences ascent of the giant 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
5.

 .
21

7F
 

224 FLANNERY Vol. 205 

branch, the system might not be able to adjust rapidly 
enough for the binary to accommodate the swelling, 
so that the secondary would be swallowed. In this case 
large mass flow into a circum-binary disk might occur, 
or the star would contain two revolving cores inside 
the envelope. The possible merger of the two cores, 
one of them degenerate, would certainly present 
interesting possibilities. On the other hand, it is 
possible that the giant phase is bypassed. Mixing by 
meridional circulation currents is usually unimportant 
for solar mass stars which are slow rotators. The 
mixing time scale is rm ~ R/Vm with 

r _ 2 œ2R3 w LR2 

mX 3 GM X MGM 
10~5cm s-1, 

which gives a mixing time of only 2 x 108 years since 
a) - 102 o)q. The problem of such mixing is not well 
understood, however (see Strittmatter 1969). Without 
additional comment we simply point out that homo- 
geneous evolution without a giant phase would have 
implications for the possible formation of blue 
stragglers and, ultimately, cataclysmic variable stars 
from W UMa binaries. 

VI. CONCLUSIONS 

Two fundamental results are shown in this study of 
unevolved contact binary stars coupled by a common 
convective outer envelope at equal entropy—the Lucy 
model. First, the system is unstable against mass 
exchange, even if the system is initially in thermal and 
hydrostatic equilibrium. Second, the mass exchange 
sends the stars into a cyclic mass-transfer loop, during 
which the individual components never achieve 
thermal equilibrium instantaneously, but the system 
can achieve an average thermal equilibrium. Through- 
out the cycle the binary remains very close to a contact 
configuration, so that the system is trapped in contact. 
Compared with the constrained range of CBS which 
are allowed in thermal equilibrium, a broad range of 
configurations is possible for the oscillating systems; 
in particular, the short-period, red contact systems are 
allowed. 

It is a pleasure to record that discussions with 
Martin Schwarzschild were of great help in over- 
coming difficulties associated with rapid thermal 
changes in the model calculations. I have also benefited 
from discussions with Schwarzschild and Leon Lucy 
on the general subject of contact binary stars. 

APPENDIX 

COUPLED SURFACE BOUNDARY CONDITIONS AND ENERGY EXCHANGE 

In § II we outlined the physical conditions which couple the components of the binary. Here we describe the 
actual formulae used in the numerical solutions. It is useful to express the conditions so that no sharp discontinuities 
in the boundary occur between the three states. Such discontinuities slow, or altogether prevent, numerical con- 
vergence when the star is in transition between two phases. 

We evaluate the energy exchange required to produce equal entropy in the two convective envelopes from the 
condition that the effective temperatures of the two stars will be equal. Let and L2* be the luminosities of the 
stars just below the region of energy exchange; then 

AL, =/ 
X,* + I2* 
A2 + R2

2 (Al) 

where/is a factor, described below, which varies from unity in contact to zero out of contact. The transition from 
1 to 0 occurs smoothly as the radius of the star at lower surface potential becomes less than 1.005 of its critical 
radius, i.e., as the contact becomes exceedingly marginal. The exchange of energy, ALi in the primary, —ALi in 
the secondary, is entirely applied at the first mesh point outside the star’s critical radius. Both AL and the two 
mesh points are explicitly evaluated from the previous model; they are not varied during the iteration. Sufficiently 
small time steps are taken that the delayed adjustment of ALX does not influence the results. 

The coupled surface boundary conditions are 

Mi = M1°H-^Aí, (K2) 

Ml + M2 = M, (A3) 

where A/0 is the mass of star 1 in the previous model. At is the time step, and M is the invariant total mass of 
the binary. As an approximate expression for the transfer of mass, which is solely meant to embody the boundary 
conditions described in § II and is not meant as a true physical model of mass exchange, we assume that if one 
star rises higher in the coupled potential, gas will flow at the sound speed through the area by which one component 
exceeds the other. This in turn is approximated as 

^ V*)1,2[x2 - xi] ; (A4) 
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and for / = 1, 2 

Xi = RilH, for RxlH, > 1 
(A5) 

= 1 RJH, < 1, 

where Rk, pk,Pk are the surface radius, density, and pressure of the component k with the larger x parameter. 
Note that X2 — Xi == 0 for a detached configuration, and the sign produces transfer from 2 to 1 if star 2 has a 
higher surface potential. The factor R2(pP)112 is such that a departure from the two radii terminating exactly on 
an equipotential (RJHx = R2IH2) of A* = 10“3 produces a mass transfer rate of 10"8 M0 yr-1. This sensitivity 
also demands a high degree of convergence in the models, which is necessary in any case to follow the nonthermal 
equilibrium evolution. Having defined xu we complete the prescription for the coupling conditions by defining 
the factor/in equation (Al), 

Xm - 
0.005 

/= 1, <* > 1, 

= ^[1 — COS (ttcc)] , 0 < C£ < 1 , 

= 0 , oc = 0 , 

where x™ is smaller of the two x-values. This factor produces a smooth cutoff in the transfer of energy when the 
region of common overlap between the two components is less than 0.005, as measured by the ratio of stellar to 
critical radius for the star at lower surface potential. 
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