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ABSTRACT 
A new numerical method for computing the structure of rapidly rotating fluid bodies in 

general relativity is presented. The method is a Henyey-type relaxation method of the kind 
previously used by Stoeckly in Newtonian theory. It permits the construction of accurate models 
for fluid bodies with various strengths of relativity and various amounts of uniform or differential 
rotation. The method is used to construct sequences of uniformly rotating homogeneous bodies, 
the relativistic analogs of the classical Maclaurin spheroids. The results reveal that, in contrast 
to the Newtonian sequence, most, and probably all, of the relativistic sequences terminate at 
nonzero ratios of proper polar radius to proper equatorial radius where centrifugal and gravita- 
tional accelerations balance at the equator. Other relativistic effects, including those associated 
with the formation of regions within which observers must rotate relative to infinity, are discussed. 
The computational results provide a foundation for a speculative discussion of stability and a 
scenario for the possible evolution of contracting bodies. Emerging from this are suggestions 
that relativistic effects might channel the contraction of a highly relativistic body toward a nearly 
spherical, rather than a disklike, configuration, and that black holes might generally not be near 
the extreme Kerr limit when they initially form. The computational results are also applied 
to uniformly rotating neutron stars in order to obtain rough estimates of their rotational energies, 
their moments of inertia, and the percent by which uniform rotation can increase the maximum- 
mass limit above its nonrotating value. For equations of state yielding a maximum mass ~ 1.3 A/© 
in the nonrotating limit, this latter percent increase is estimated to be ~ 15 percent if attention is 
restricted to completely stable objects and ~ 30 percent if no stability restrictions are imposed. 
Subject headings: relativity — rotation — stars: collapsed 

I. INTRODUCTION 

This is the first of a series of papers devoted to a study of rapidly rotating systems in general relativity with 
significant mass-to-radius ratios 2GM/c2R ^0.1 (G = gravitational constant, c = speed of light), and with 
significant rotational-energy to potential-energy ratios ^0.1 (and hence with rotational velocities v ^ 0.1c). Such 
systems are intrinsically interesting to many; and they can be found in a variety of theoretical models for objects 
such as quasars, the active nuclei of certain galaxies, supernovae, and binary X-ray systems. 

Kerr’s (1963) remarkable analytic discovery, which has turned out to be the generic solution in general relativity 
for stationary rotating black holes, has been exploited to such an extent that, today, a lot is known about the 
properties of black holes. Much less is known about rapidly rotating relativistic sources (e.g., stars, stellar systems). 
No reasonable analytic solutions are presently available for such systems—the post-Newtonian corrections to the 
analytic Newtonian Maclaurin spheroids can be obtained in an analytic but difficult way (Chandrasekhar 1967)— 
and there appears to be little hope for obtaining analytic solutions in the near future. 

Out of necessity, a few groups of investigators have turned to the development of numerical techniques for 
constructing rapidly rotating relativistic sources in equilibrium. Bardeen and Wagoner (1971) specialized the field 
equations to a form appropriate to infinitesimally thin, pressureless disks in uniform rotation. They expanded the 
field equations in powers of a parameter measuring the strength of relativity, and they numerically solved through 
the tenth power of that parameter. Wilson (1972, 1973) and Bonazzola and Schneider (1974) developed numerical 
methods for constructing rotating fluid bodies with various pressure-density relations and various amounts of 
flattening. The steps taken by these latter two sets of workers, while admirable, are open to a certain amount of 
criticism. Wilson’s method, for example, places rather strong restrictions on the distributions of angular momentum 
and entropy in his models. More importantly, as we shall discuss in more detail later, Wilson approximates the 

* Supported in part by the Louis Block Fund at the University of Chicago and by the National Science Foundation under grant 
MPS 74-17456 to the University of Chicago. 

200 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
4 

. .
20

O
B 

RAPIDLY ROTATING FLUID BODIES 201 

boundary conditions guaranteeing asymptotic flatness by certain ad hoc Newtonian-like conditions; and this might 
well lead to significant inaccuracies in highly relativistic models. Bonazzola and Schneider’s method contains 
artificial restrictions that cause it to break down in highly relativistic situations before many interesting rotational 
effects, such as the formation of regions within which observers must rotate relative to infinity, appear. 

In hope of stumbling upon new results which may be of some interest, we have developed a new self-consistent 
iterative method for numerically constructing rapidly rotating fluid bodies in general relativity. Our method permits 
the construction of accurate models obeying various equations of state and having various amounts of differential 
or uniform rotation. 

In § II of this paper we write down the fundamental structure equations. In § III we describe our method for 
constructing solutions. In § IV we apply it to study the structure of uniformly rotating homogeneous bodies. We 
have already reported some of our results for these bodies in a brief Letter (Butterworth and Ipser 1975). In future 
papers we shall study the structure and stability of other types of models. 

Concerning our notation and conventions in this series, the metric of spacetime has signature -—b + -b ; 
G = c = 1 ; Greek tensor indices are associated with spatial coordinates and range from 1 to 3, while Latin 
tensor indices range from 0 to 3 ; a comma followed by a coordinate symbol, when used as a subscript, denotes a 
partial derivative. 

II. THE FUNDAMENTAL EQUATIONS OF STRUCTURE 

a) Basic Assumptions 

In this series of papers we shall be interested in perfect-fluid stellar models whose equilibria have the following 
properties: (i) a given model is a nonsingular solution of the fully nonlinear Einstein field equations; (ii) the model 
is stationary, so that a Killing field fills spacetime and is timelike, if not everywhere, at least at large spatial 
separations from the source; (iii) the model is axially symmetric, so that another Killing field 77a also fills spacetime, 
vanishes on a timelike 2-surface (the axis of symmetry), is spacelike everywhere else, and has integral curves that 
are topologically circles; (iv) the Killing fields commute, 

taVar¡b-VaVae = 0, (1) 

where Va is the natural covariant derivative; (v) the model is generally rotating rapidly and differentially, and the 
4-velocity of the fluid is a linear combination of the two Killing vectors (no meridional circulation) ; (vi) the geometry 
possesses a discrete symmetry under reflection through an equatorial plane. 

It follows that the local 2-flats spanned by the Killing vectors, and also the orthogonal 2-flats, are surface form- 
ing (see, e.g., Carter 1973). The line element can then be written as 

ds2 = gabdxadxh = —e2vdt2 + r2 sin2 0B2e~2v(d<p — œdt)2 + e2^~2v(dr2 + r2d62), (2) 

which is essentially the form chosen by Bardeen and Wagoner (1971). The time coordinate i(—cx) < t < +00) 
and the azimuthal coordinate 9(0 < <p < 2tt) are adapted to the Killing vectors in the sense that V°i and Va<p lie 
in the 2-surfaces spanned by the Killing vectors, and 

^ at = = 1 , 

£aVa9>= ^Vat = 0. (3) 

The derivatives Var and Va0 of the radial coordinate r (0 < r < 00) and of the angular coordinate 0 (0 < 0 < tt) 
span the 2-surfaces orthogonal to the Killing vectors. The metric functions v, B, w, and £ are functions of r and 0 
only. Condition (vi) above means that all metric functions are invariant under 0 tt — 0. 

b) The Field Equations and the Equations of Motion 

Many workers have written down the Einstein field equations appropriate to rapidly rotating fluids. In particular, 
Bardeen and Wagoner (1971) projected the field equations onto the tetrad of Bardeen’s (1970) zero-angular- 
momentum observer (the ZAMO, whose 4-velocity Aa satisfies Xar]a = 0), and obtained the following set of equations, 
which we shall use: 

D-(BDv) = ir2 sin2 6B3e-ivDoj-Dw + 4^Be2K~2v ~ + 2/>] ’ (4a) 

D-(r2 sin2 OB^-^Doi) = - I6nr sin 0J32e2c-4v ^ ’ (4b) 

D‘(r sin 6DB) = l&irr sin 0Be2K~2vp , (4c) 
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= -{(1 - ^)(1 + rB-'B,r)* + [/x - (1 - 

x Itf-^Bsr - [(1 - ^)BJtli - IpBJi-p + (1 - ¡^B-'BJ 

+ rB-'B'täp + ^rB~1Br + i(l - 

+ iB-1BJ-v.2 + /x(l - ^B-'BJ - (1 - fj,2)rB~1Bur(l + rB-'BJ 

- pr2(v.r)
2 - 2(1 - ¡J?)rvtllvtr + ^(1 - ^OO,»)2 

- 2(1 - n2)r2B~1Btrvtßvyr + (1 - W'BJr^y - (1 - fx2)(v,„)2] 

+ (1 — fi?)B2e " 4v{^/xr 4(a)>r)
2 + i(l — /x2)r3a>i(1o>>r 

- i/x(l - ix2)r2(<*) ß)
2 + i(l - ix2)riB~1Biroiißco>r 

- i(l - fi2)r2B~ (([r
2(tu>r)

2 - (1 - /x2)(<t>>1()
2]}J . (4d) 

There is also an equation for £jr. But it provides no new information, and we shall not write it down. 
In these equations ^ = cos 0 and D is the 3-dimensional derivative operator in a flat 3-space with spherical 

coordinates r, 0, <p. The fluid variables e and p are the total mass-energy density and the pressure in a frame that 
comoves with the fluid. The physical velocity v of the fluid relative to the local ZAMO is given in terms of the 
angular velocity 

Í1 = uQjut (5) 

relative to infinity via the relation 

U = (Q — (o)r sin 0Be~2v. (6) 

The above equations are supplemented by the generalization of the Newtonian equations of motion. The 
expression 

Tab = (e + p)uaub + gabp (7a) 

for the stress-energy tensor of a perfect fluid, and the components 

(uaub + gab)VcT
bc = 0 (7b) 

of the relativistic equations of motion yield the useful expression 

W‘t(e + pWlS - €'X
a + (e + p)utU<l>Q.'X

a = 0 . 
We note that 

h* = e~v(l — v2)~112 , Ug, = r sin 0Be~vv(l — v2)~112 . 

(7c) 

(7d) 

c) The Behavior of the Metric Potentials at r = 0, the Axis of Symmetry, and Large Radii 

For a well behaved solution, the metric potentials v, œ, B, and £ have vanishing radial derivatives at r = 0 and 
have vanishing gradients perpendicular to the axis of symmetry. In addition, local flatness requires that 

e< = B (8) 

on the axis. Further, the condition of asymptotic flatness implies that the metric potentials have particular expan- 
sions in powers of 1/r at large radii, which we shall use to impose boundary conditions. 

To obtain the asymptotic expansions for v, a>, and B, we first write down the angular expansions 

00 
v = 2 v2i(r)P2i{p), (9a) 

1=0 
oo 

^ = 2 > (9b) 1 = 0 
and 

B= ^ B2l{r)T^2{p) , (9c) 
1=0 
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where /z = cos 0, P^/z) is a Legendre polynomial, and 

Il w “ 2l + ll2l\T(l + f) U ^ } dfji1 U ^ j 

is a Gegenbauer polynomial (Morse and Feshbach 1953) satisfying 

(1 - iz2)!?'2,^ - 3/zr,1'2,* = -/(/ + 2)PZ
1/2, 

% + 1 rf/z(l - /x2)1/2Pi
1/2WPm

1/» =1 if / = ^ 

2V + 1/2 

I 

203 

(10a) 

(10b) 

= 0 if / m . (10c) 

The particular forms of the angular expansions (9) are useful because Ph PUtl, and T)1'2 are eigenfunctions of the 
angular parts of the operators D-D, D-r sin 0D, and D-r'2 sin2 0D, respectively, that appear on the left-hand sides 
of equations (4a)-(4c). We next assume that the radial coefficients in equations (9) have expansions in powers of 
1/r at large r with leading terms given by 

  M/r, (11a) 

cj~2J/r, (lib) 
and 

B ~ 1, (11c) 

where M is the total mass-energy of a model and J is its angular momentum. Substituting equations (9)-(l 1) into 
the field equations (4a)-(4c), we grind away and, before giving up, find 

-P2OO + Í- V6 W + 

í M \ B M P \ 1 b2 + 1 s _ 12r2lM + \-7 + 3¿?0
?r 

+ ^+ [~5 2?° + 15¿?2 5^Jr6 + 

+ {p-2^+ [-f50v2 + ^£2M + ^72M]I+ 

27 6JM 6 L . ^ol TM2 ^ /40 g 32 ,.3 4 \ 7 
F* - — + 5 [8 " — + It*0 7m 5V2) T- 

/18 g , 36 g 2 , 24 r2 176 g , .2 ^ 64 Ä/fi , 96 . . 7 
I P2 "F q B0 + ^ «7 y BqM + ^ M + + 

/9 . r 5 1 [96 g r , 28 _ , 96 r3 , 15 5 . 10 . ,.2l 1 
\r® + \5 - 2 ‘°2^j r® — [45 *2^ + 7 v2JM + ^7 + B0co2 - y oj2M j -p 

(12a) 

7P3Qi) 
dfi + 1J7 + 

dPM 
dfi 

+ 

B ~ $ll2(l + ^)ro1,2W + (i)1'2 + (5)1,2 ff + • • • • 

(12b) 

(12c) 

In these equations, the constants M, /, v2u B2b and <*>21 are analogues of Newtonian multipole moments. Like 
Newtonian moments, the total mass-energy M and the angular momentum J can be evaluated in terms of integrals 
extending only over the matter distribution: 

M = J (-2rt‘ + Ta
a)(—g)ll2drd0d(p 

= J |JBe2;-2v^e +
1^

1^ + 2pj + 2r sin dcoB^-^ ^ * ^j'-2 sin edrd6d<p , (13) 

= J Tabr,»dS“ 
spacelike 3-surface 

J 
B2e^-iv ^ +_P^ r3 sin2 6drd0d<p : (14) 
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where g is the determinant of the metric tensor. The moments v2i and d>2i, however, cannot be evaluated in such a 
way. This is because the exterior geometry acts explicitly as a source for these moments and it complicates the 
process of obtaining solutions. The moments B2i can be evaluated in terms of integrals extending only over the 
interior of the fluid. Equations (4c), (10c), and (12c) imply that 

§2l = -l67r(2/7r)1/2(4/ + 2)“1r"(2Z+2) f £V*'-2v>V/2i+3(l ” ^Y^T^dr'd^ . (15) 

d) Equations of State, Rotation Laws, and Integrated Forms of the Equations of Motion 

In order to construct explicit equilibrium models, one must provide (i) equations of state 

p = p(n, s, Z() , e = e(n,s, Z¡) , (16) 

where n is the number density of baryons, s is the entropy per baryon, and Z* are the fractional abundances of the 
different nuclear species; (ii) instructions for determining essentially the distributions of s and Z* throughout the 
fluid ; and (iii) instructions (the rotation law) for determining the distribution of angular velocity Q or of the angular 
momentum per baryon, 

j = 
(g+p) 

n 
(17) 

In this series of papers, we shall be especially interested in choices of equations of state and rotation laws that 
enable us to directly integrate the equations of motion (7c). A couple of examples of what we have in mind here are 
the following. 

Suppose, in a first example, that the distributions of entropy ^(xa) and of the fractional abundance Z{{xa) are 
determined uniquely by the distribution of baryons n{xa). Then equations (16) yield equations of state of the 
barytropic form 

e = e(p), n = n(p), (18) 

and the integrability condition for the equations of motion (7c) is the rotation law 

u0u*=j/<!> = F(a), (19) 

where JP(D) is a specifiable function of Q and 

<D = (e + ^/(m/*) (20) 

is the so-called injection energy, i.e., the energy required to inject a zero-angular-momentum baryon from infinity 
into the star. In the Newtonian limit (r sin 0)2Q, so that equation (19) is the relativistic generalization of the 
Newtonian statement that the angular velocity is constant on cylinders when the equations of state are barytropic. 
In the present example, the equations of motion (7c) integrate to the form 

In (1/wO + f dp'/(€' + /) - p F(Q')dQ' = ln ß1/2 , (21) 
Jo Jn 

where QA is the constant value of Q on the symmetry axis and ß is the value of e2v at the pole of the star. Note 
that equations (6), (8c), (19), and (21) determine p (and hence e) and Ü in terms of ß, and the metric potentials. 
Hence specification of equations of state, i^ü), Q¿, and ß determine a unique model (assuming it exists). A special 
rotation law is that of uniform rotation, 

D = constant. (22) 

When the law (19) is specialized to (22), equation (21) is specialized to 

^(1^)++/) = ln^2. (23) 
Jo 

A chosen constant value of O and equation (23) determine p uniquely in terms of the metric functions. 
Now suppose, in a second example, that the configuration is isentropic (s = constant) and the Zf either are 

constant or are determined uniquely by the baryon density n. Suppose further that the rotation law is of the form 

j = F(Û). (24) 
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Then equations of the form (18) are again valid, and equation (8b) integrates to 

<D - p F(£l')dQ.' = Heß112 , (25) 

where QA and ß are defined as before and /zB is the rest mass per baryon. In this example also, specification of 
equations of state, F(Cl), and ß determine a unique model (assuming it exists). 

III. THE METHOD OF SOLVING THE STRUCTURE EQUATIONS 

a) An Outline of the Method 

Our method of constructing models is a generalization of Stoeckly’s (1965) Newtonian method. First an initial 
approximation v, o>, B, £, Ü, ^ to a solution is obtained in one way or another. This approximation is imagined to 
differ by small amounts Sp, 8oj9 • •, from the desired solution. Equation (4a) is expanded to first order in 8v, and 
a Poisson-like linear partial differential equation for 8v is obtained, with source terms that involve only the initial 
approximation v, cu, • • - , and that are nonvanishing for all r < oo. This linearized equation and another one ob- 
tained by imposing boundary conditions in a way explained below are replaced by difference equations on a finite 
grid in the (r, 0)-plane. The difference equations are then solved for the values of 8p at the grid points, and v is 
replaced by v + Sv in the approximate solution. Next the chosen equations of state, rotation law, and integrated 
equations of motion are used to obtain new distributions of angular velocity and matter. After this, similar pro- 
cedures, involving recomputation of Q and p at each stage, are followed to obtain new approximations for a>, B, 
and All of the above steps are iterated until (hopefully) convergence is achieved and the changes in quantities 
at the grid points drop below some desired upper limit. 

b) The Linearized Versions of the Field Equations and of the Asymptotic Boundary Conditions 

One obtains the linearized field equations for 8v by replacing v in equation (4a) with v + 8v and expanding to 
first order in 8v. The result is 

B8v>rr + 

where 

and 

(2^ + 5,r)8v r + I D28v + 

+ [2(1 - ^ywe-^.r)2 + («V)2] - 4^ ! je-
2^(g +

l
P)ft v2) + 2p]}]8*' 

= - BV'tr - (2 f + 5 r)v,r - I + 1(1 - !,2)r2B^ 

x [(<or)2 + (1 - ¿¿2)'">J2] + 4TrBe2<-2*[(£ +f^l
vt V2) + 2p\ ’ (26) 

¡j. = cos 6 (27) 

B>2f= (3/S/x)[(l - m2)3//^] . (28) 

Certain terms on the left-hand side of equation (24) arise from the changes in e, p, and v that are associated with 
a change 8v in v. For the examples of § lid, these terms are determined by equation (6), the equation of state (18) 
the rotation law (19), (21), or (23), and the integrated equations of motion (21), (23), or (25). It turns out that the 
inclusion, or “relaxation,” of these matter terms is crucial to the successful convergence of our iterative method of 
solution. One obtains the linearized field equations for Sco and 8B from equations (4b) and (4c). The results are 

Sw.rr + B r — 4v>r j Swr + D28(j) 

- \lp - (1 - ^ + 16^2í~2v¿[íe V-0*;2 ~] 8(0 

= - “.rr - ^Çr 
+ \BS~ ~ ~2 D/a) 

+ 1677e^-2v(e +
]

P^2 -> (29) 
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SBirr + j SB,r + p DU*8B - £ SB.» - ¿ (Bp)8B 

= —-®,rr — - B, - y2 D*B + £ B'U + IbnBe^p . (30) 

Equation (4d) is already linear in £, and we shall use it (and eq. [8]) in unaltered form to find £ in terms of the other 
metric potentials. 

In order to solve equations (26), (29), and (30), one must impose, in particular, the boundary conditions (12a)- 
(12c) associated with asymptotic flatness. There is a problem involved in imposing the conditions (12a) and (12b) 
at some finite value of r. It involves the fact that, as we mentioned, the “multipoles” v2i and cb2i (I ^ 1) cannot be 
expressed in terms of integrals extending only over the matter distribution. Wilson (1972) ignored this fact and, 
carrying the expansions for v and o> only to 0(r~3), chose to approximate v2 by a Newtonian-like integral extending 
only over the fluid and selected in an ad hoc manner. The accuracy of such a way of imposing boundary conditions 
might be questioned, at least in highly relativistic situations. 

Our method essentially lets the computer decide on the values of the multipole moments in a manner that is 
entirely consistent with the field equations. We achieve this by reformulating the boundary conditions (12) in a 
certain way. We focus first on the metric function v. Recall the angular expansion 

v(r, f) = 2 v2i(r)p2i(p-) (31) 
Z= 0 

and the expansion (12a) for the v2l in powers of 1/r. For reasons that will become clear, we seek an expression which, 
like (12a), states that v falls off as a power series in 1/r, but in which the constants v2i have been eliminated in 
favor of the v2l(r). We obtain the desired form and its linearized version by taking the derivative 

v,r(r> p) — 2 
1 = 0 

and using the facts that, to 0[(M/r)5], 

V.» ~ - 2 & £ - 3Í + [i - 1 Í, + f .p] " 

V2, 
M 

6 J 

v2l,r(r) ~ -(2/ + 1)^ for / > 2, 

(32) 

(33a) 

(33b) 

(33c) 

Combining equations (32) and (33), and linearizing, we have 

álv(r, m) + 2 ~ ^ èv2i(r)p2i(p) Sv2(/-)P2(^) 
z = o r / r 

+ 3? - g V - 1A + f ,*)£] 

+ ^(r) + 2 fa - (Í ^ + y /2) » (34a) 

where it is to be noted that 

f+1 
v2i(r) = i(4/ + 1) J dfi v(r, i¿)P2l(p) . (34b) 

This is the desired linearized form of the boundary condition for v. As we shall see, once a grid of points has been 
set up in the (r, 0)-plane, the v2l(r) can be approximated by a linear combination of the values of v at the various 
grid points. This boundary condition can then be imposed in the same way, involving the difference-equation 
approximations spelled out below, as the linearized field equations. 

We obtain the linearized version of the boundary condition for o> in a similar manner. If, for convenience, we 
define quantities a>2Z

+(r) by 

9 f*) = 2 )^2z0¿) 9 i=o 
(35) 
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7 

^ + 

, 2/ 6JM ^ [48 r,.2 18 j* ^ l' [40 rS ,. 32 rjl.3 , . 5 ^ 
^oV) — p" p- + 7M —+ w21 ^5 + j 7M3 + Jv2 — ^Mo>2 

+ + yJÄo2 + - ™JB0M
2 + ÿ/M4 - ^7Mv-2 

¿2
+(0 = ^-2 + (9Jv2 - y Mô52j i - Jy/£2 + y/3 + 28/Mv2 + y (50 - 2M2)¿2 - 5Æ4J y + ■ 

"'4t(r) = + • • • ’ 

and so on. The linearized boundary condition for a> becomes 

hœ^r, v) + 2 áo>2¡t(r)P2¡(M) - I-| + I ^ 1 M2) i 

+ [l ^ “ (Â M2 ~ T ^°) p] w}s^2V) + ^ [1 + 5P2(m)] 

ä -a,,r(r^) - 2 
¿=0 r 

(36a) 

(36b) 

(36c) 

+ ■| + 2 + (5* - r? + [5? - (n- T 

- ^ [1 + 5^0*)] ™ + 6/^ - 4? (SM2 - 3P0) fë + 8(4M2 - 550)^ 1 “>/(>•) rM 12 
r" 5 

/ 
r6 

~ ,/M 
/•7 

+ [-iy Po2 + ^y P0M2 - ^ M4 - ™J2 + J^3 P2 + f (32P2 + 5J2)P20t)] ^ 

^ T 3 129 M /9 31 M\ _ , ,1 / , 
+ [lO 84 r \2 4 r j

P2(M)J r4 ^2(0 ’ 

where 

A2(r)= 2(1 - 2M/r>2(r). 

(37a) 

(37b) 

Although equation (15) shows that coefficients B2i in the boundary condition (12c) for B can be evaluated 
directly by an integral over the matter distribution, we shall treat (12c) in the same way as we treat (12a) and (12b). 
Thus, defining the quantities B2if(r) by 

£(r> aO = 2 ^2if(r)P2i(a0 ? 
1=0 

we have 

B0\r) = 1 + i!k + lk + Lë±\ 
\r2 3 r4 35 r6/ 

VM-80 + i&) + 

p4t(0 = ^§+ ’ 

(38) 

(39a) 

(39b) 

(39c) 
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and so on. The 

SÆ.rfo /*) + 2 
1 = 0 

linearized boundary condition for B becomes 

(2/ + 2) Kr) 

-I 
QL±^ß2lKr)PM^.Bjp _3_ 

16 
(40) 

c) The Difference Equations and the Procedure for Solving Them 

In our method we approximate the linearized equations by difference equations on a finite grid in the (r, 0)-plane. 
The metric functions are assumed to be even functions of ¿t, so a grid covering the range 0 < ¡jl < l will suffice. 
Our grid is that of Stoeckly (1965). It consists of a chosen number, L, of radial spokes emanating from the origin 
at the Gauss-Legendre quadrature values ^ = 0, ^2, ../¿L of associated with the integer L (see, e.g., Kopal 
1961). A chosen number, /, of grid points are uniformly spaced at chosen radial intervals Ar along each spoke. 
(The outermost grid points should ideally always lie far outside the stellar surface.) The coordinates of a particular 
grid point are r = hkr, p = where 1 < A < /, and 1 < l < L. 

The difference equations result from approximating r and ¡jl derivatives—we shall always assume that a function 
of fi is even in p unless noted otherwise—by certain linear combinations of the function’s values at various grid 
points. 

Consider first the approximation of n derivatives. Following Stoeckly (1965), assume that a function/is approxi- 
mated with sufficient accuracy by the expansion 

f(r, ix) x 2f2V(r)PM - (41) 
l' = 0 

Each radial function has the Gauss-Legendre quadrature approximation 

AAr) = K4/' + l)f; dixf(r, ,x)P2l,(ix) 

~ K4/' + 1) 2 /OiVGO • (42) 
m = l 

Here the weighting functions Hm, for m > 2, are to be assigned twice their usual values, since only quadrature 
points at nonnegative ¡jl are used. The approximation (42) becomes exact when the integrand f(r, h)P2V(ij,) is an 
even polynomial in ¡jl of degree < 2(2L — 1) — 2. Hence (42) is exact for 0 < /' < L — 1 if /(r, /x) is an even 
polynomial in ¡x of degree <2L — 2, i.e. if equation (41) is exact. Equations (28), (42), and the derivatives of (41) 
yield the desired approximations 

/.»O'» Mi) ~ 
L 

Flmfi?) Mm) ? 

Fm = 2 K4/' + W^rJjxdPAtXm), 
l' = l 

(43a) 

(43b) 

Dffir, ft¡) = 2 Gimf(r, /O , (44a) 
m = 1 

G,m = -2 + 1)(4/' + l)HmPMP2r(pm) ■ (44b) 
l'=l 

Turn now to the approximation of radial derivatives, the explicit forms of the difference equations, and the 
procedure for obtaining solutions. There are two different cases here, and we consider them separately. 

i) The Case for Which the Density Drops Smoothly to Zero at the Stellar Surface 

Here every quantity of interest is at least C<2) everywhere; and the basic way chosen to approximate a radial 
derivative is to fit the usual sort of Lagrangian polynomial to a quantity and then to differentiate the polynomial. 
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One such way to approximate radial derivatives by forward difference formulae when A = 1 and central formulae 
when 2 < A < / — 1 (it turns out that derivatives at A = / are not required) is this: 

A = 1 

/,r(Ar, ¿0 x (l/6Ar)(—11 f1A + 18/2j¡ - 9/3>¡ + 2/4>¡) , (45a) 

/„(Ar, x (l/Ar2)(2/1>¡ - 5/2,, + 4/3,, -/,.,), (45b) 

where we have introduced the notation 

fh,i = fQikr, fj,,) . (46) 

(Recall that a comma subscript denotes a derivative only when followed by a coordinate symbol.) 

2 < A < / - 1 

ftr(hAr, fr) ^ (l/2Ar)(-fh_ltl + /fc + 1,z) , (47a) 

f,rr(hAr, ¡¿i) x (l/Ar2)(/^_i>r— 2fhti + fh + lfi) • (47b) 

It is now straightforward to combine equations (26), (34), and (42)-(47) to obtain difference equations for 
Svhtl when 1 < A < /, /^ < /xz < /xL. Defining 

and 

a = Bjh + %ArBtr 

RHS(v) = Ar2 x (right side of eq. [26]) , 

we find the following for various values of A: 

(48) 

(49) 

A = 1, r = Ar, ix — ^ 

(lB -^aj +2(1 - ¡j?)r2Bze~ivAr2Do)• Dio - AirBe^ ^ 

+ 2 [#G'm + (1 - f*2)X,uFim]8vi,m ~ (5B - 6a)Sv2,I + (4B - 2ä)hv3A — (B — fa)8r4>! = RHS(r) . (50a) 
m 

2 < A < / — 1, r = hAr, ¡x = ^ 

(B - a)SVh.ul + ^-2B + 2(1 - ^yB^-^A^Dco-Dto ->r^e2; + ^ ~ + 

+ ¿2 [BGlm + (1 - ^)B,ßFlm]8vKm + (B + a)8vh+ltl = RHS(r) . (50b) nm 

h = I — 1, r = AAr, ¡x = jxi 

where 

“"^^-1,1 + t2 ^lrrfivh,m + + ~ ~^rv
yr —^ lmyh,m 

[4-(M 
+ 2Ar ' B'2 + 

(4B0
2 48/2)p] 

J2) ’ (50c) 

Cim =- Hm 2 k.21' + 1)(4/' + 1)^,^,)^,^)-14h^ P2(iM)P2(+m) ■ (50d) 
v=oz / r 

In these equations, derivatives of v, B, and w are understood to be approximated by the same formulae used to 
approximate derivatives of 
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Equations (50) provide I x L coupled equations for the I x L quantities §vhti. We should note that € = /> = 0 
for grid points lying outside the guessed location of the surface. This effectively takes care of the boundary condition 
at the surface. Concerning the demand that the solution be well behaved at r = 0, it turns out that, just as Stoeckly 
noticed in his Newtonian calculations, an explicit boundary condition is not needed at r = 0. (In fact, we have not 
even placed a grid point at r = 0.) The reason appears to be this: the approximation of v by a Lagrangian poly- 
nomial fitted to the grid-point values of v implies that v is finite at r = 0 if it is finite at the various grid points; 
hence the scheme implicitly picks out the well-behaved solution near r = 0. 

The equations for the 8a)htl come from equations (29), (35), (37), and (41)-(47). Defining 

b = 4/A + 3J?-1Ar£y - 4Anv (51) 

and 
RHS(o>) = Ar2 x (right side of eq. [29]) , (52) 

we find the following: 

A = 1, r = Ar, 

Sa)lti 
(2 - T *) + ¿ [(c 

+ 2 {Giro + [—2/x + (1 — /t2)(A — 4)]Fjm}8co1>m 
m 

+ (-5 + 3b)8a>2a + (4 - + (-1 + I^So.4,! = RHS(a>) 

2<h<I — l,r = hhr, /* = /¿¡ 

(53a) 

(l - + {-2 + lôïrArV^A 

+ ¿ 2{Glm + [-2M + (1 - ^)(b - 4)]Fim}S<üh>m + (l + ^äa,fc+1,, = RHS(a>). (53b) 

h = I — l, r = hkr9 p = ¡¿i 

~2 ^ 2 Dimhcx)h'm + 2 Scoh + 1j 

= -A/-W, - ^2 

+ Ar-j 6/p-y (8M2 - 3B0) /6 + 8(4M2 - 5B0)J^ 

r 144 s 2 , 704 s 256 ,206 r2 ^ 232 0 ^ 2 ( J J 
+ —y- V + — B0M

2 - — M4 - yy-72 + yö5£2 + 3 (32B2 + 5J2)P2(fx) 

where 

2^(4/' + 1)(2/' + 3)HmPMP^m) + + \t2~ h.^)HmPÁlXm) 

+ HmP¿nm) -y (57-12^+ 5+ 5HmPM)PM. (53d) 

One solves equations (53) to obtain a new guess œ + Sœ. 
The equations for the SBhti come from equations (30), (38), (40), and (41)-(47). Defining 

RHS(J9) = Ar2 x (right-hand side of eq. [30]) , (54) 
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= 1, r = Ar, 

-^ + 167rAr2e2c-2v¿+ 2(<7m - Ä)S5lim + 4852>! - i = RUS(B) . (55a) 

2 < fe < 7 — 1, r = feAr, = ft 

(l - - [2 + 

+ - A)3¿?h,m + (l + = RHS(ß). (55b) 

h = I — r = hkr, f¿ = f¿i 

~2 ^Bh-1,1 + ^ 2 + 2 ^h + l’l = ~ ^rB,r ^ ^ 2 (^^C) 

where 

Elm = 2o \ (4/' + 1)(2/' + 2)HmPMP^m) + l HmP2{nm) + ^ [I + 5P2M^HmPi(jim) . (55d) 

One solves equations (55) to obtain a new guess B + SB. 
Equation (4d) is already linear in £, and we can use it along with the boundary condition (8) to find £ at the grid 

points. One way to do this is to write, within our level of approximation. 
L-l 

r=i 
^2i'(r)P2i',«(D • (56) 

Equation (4d) gives an expression, odd in ft, for Combining it with (42), (57), and the orthonormality relations 
for the P21* tn yields 

£2r(r) 
(4/' + 1) 

4/'(2/' + 1) 2 ■^’>*(1 2V.iL^rri)^^ H'm) ’ (57) 

for 1 < /' < L — 1 ; and hence 

£(r, ft) ft; £0(r) + "v1 (4/' + 1) 
,44/'(2/' + 1) 2 ffm(l - /¿MrJßJUr, , 

m = 1 J 
(58) 

where ^0(
r) is determined by the boundary condition that Ç = ln at /x = 1. 

A successful method for computing models with density distributions that drop smoothly to zero at the stellar 
surface is the following. 

Fix, once and for all, the equations of state, the rotation law, QA, and ß (cf. § lid). Having obtained (e.g., by using 
a solution constructed for smaller a guess for v, œ, B, £, Q, and p, substitute that guess into equations (50), and 
solve for Svh>l by Gaussian-elimination techniques. Replace the vhtl with vhtl + 8vhJ, and use either equations (19) 
and (21), (22) and (23), or (24) and (25) to obtain new Q.htl and pha. Solve equations (53) to obtain new œhfl, and 
recompute the and pha as before. Solve equations (55) to obtain new Bhth use (58) to obtain new and 
recompute the and ph ’i as before. Keep iterating until the process converges. 

This procedure should also work for cold-star models with small surface densities much less than the average 
density, since the small surface-discontinuity should be negligible within our level of approximation. 

ii) The Case for Which the Density c is Strongly Discontinuous at the Stellar Surface 

For this case the surface density is not negligible in comparison with the average density, and we have in mind 
especially the homogeneous models of § IV below. We have found that the method of the previous case requires 
three modifications if convergence is to be achieved. 

First, the metric functions v and œ have strongly discontinuous second radial derivatives at the stellar surface. 
This forces us to fit backward and forward Lagrangian polynomials to such functions on the inner and outer sides, 
respectively, of the stellar surface, in a way which explicitly guarantees that the fits are C(1) across the surface. 
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The method of spline fitting provides a technique for ensuring the appropriate amount of smoothness. Let ^ be 
the value of h at the first grid point outside the stellar surface along the /th spoke. We write down the modified 
Lagrangian-polynomial fits 

Jfi-l ¿Tj-l / _ -A \ 
f(r,tn) ~f<(.r,i^i) = 2 f(iAr’ ^ FI ( iAr - j\r ) + a<l FI (r - iAr) 

near r = («^ — l)Ar inside the surface, and 

(59a) 

. x f>(r, Pi) = 
írz + n-l Jí?i+n-l / 

2 AiAr^d n ( 
r - jkr \ 

iAr — jAr) +a>i n (r -iAr) (59b) 

near r = ¿tf¡Ar outside the surface. Here n is the number of grid points (4 or 5, say) used to fit the polynomials. 
The constants a<i and a>t are determined by the conditions 

f<(r*i, Pi) = f>(r*i, pi), (59c) 

f<,r(r\ Pi) =f>,Ar*l> Pi) > (59d) 

where r*i is the position of the stellar surface along the /th ray. The value of r*t might be determined, for example, 
either by fitting a polynomial to the pressure and finding its zero or by assuming that = ¿tf¡Ar. 

Differentiation of equations (59a) and (59b) yields backward formulae for radial derivatives at r = (^ — l)Ar 
and forward formulae at r = i^Ar. The usual formulae (46) and (47) are used at other values of r. Hence the 
difference equations of case (i) are modified at A = ^ — 1 or ^ in a way we shall not take the trouble to write down. 

A second complication involves the matter terms proportional to dp/dv or de/dv on the left-hand sides of equations 
(50a) and (50b). Particularly for constant-e models, these terms are large even near the surface. The corrections 
8vhtl are consequently rather sensitive to these terms, and they tend to oscillate unstably unless corrective measures 
are taken. 

We have found that the oscillations can be suppressed by the insertion of a multiplicative “convergence factor” 
of the form ^ + c2(l — r/r **) in front of the terms proportional to dpjdv or de/dv on the left-hand sides of equations 
(50a) and (50b). Proper adjustment of the constants and c2 enables us to achieve convergence. 

A third complication involves the elusiveness of convergence in the present case when the constant ß (cf. § lid) 
is held fixed from one stage to the next. Fortunately, there is again a remedy: convergence can be achieved if, 
instead of ß, the rest mass 

M0 = j fiBn(l — v2)~ll2Be2l:~3v27Tr2drdfjL, (60) 

where fiB is the rest mass per baryon, is held fixed. From a mathematical point of view, it is rather remarkable that 
this constraint, though physically reasonable, is required, since the rest mass does not appear anywhere in the basic 
structure equations. 

A successful method for computing models with severe density discontinuities at the stellar surface is the 
following. 

Fix, once and for all, the equations of state, the rotation law, and M0. Incorporate the first two modifications 
just discussed into the linearized equations of case (i). (We should remark that in our actual computations of the 
homogeneous bodies discussed below, 5-point difference formulae were used everywhere in order to maximize 
accuracy.) Then proceed just as in case (i), except for this: at each stage, demand that ß be readjusted to keep the 
value of the rest mass fixed. 

This completes our discussion of the basic numerical method. 

IV. UNIFORMLY ROTATING HOMOGENEOUS BODIES 

In this section we shall discuss the results we have obtained for uniformly rotating (constant D) homogeneous 
(constant e) bodies. Bonazzola and Schneider (1974) previously studied these bodies, but there is only a small 
overlap between our more extensive results and theirs. 

There are a number of reasons why one might want to study these relativistic analogues of the classical Newtonian 
Maclaurin spheroids (see Chandrasekhar 1969 for a comprehensive discussion of the Newtonian bodies), even 
though at first sight they might appear to be somewhat unrealistic. First, for many of the proposed cold equations 
of state, the more massive neutron-star models have nearly uniform distributions of density over central regions 
containing most of the mass. Second, Ostriker and his co-workers (see, e.g., Bodenheimer and Ostriker 1973) have 
demonstrated the existence of a remarkably close correspondence between many of the properties of the Maclaurin 
spheroids and those of more realistic, Newtonian fluid bodies. Third, the relativistic bodies afford the opportunity 
to explore the effect of rotation in situations involving extreme strengths of relativity: in the nonrotating limit, 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

6A
pJ

. 
. .

20
4 

. .
20

O
B 

213 No. 1, 1976 RAPIDLY ROTATING FLUID BODIES 

homogeneous bodies have ratios (2GM/c2rs*) of gravitational radius to Schwarzschild-coordinate radius that can 
be as large as 8/9. 

a) Some Details Involved in Constructing the Solutions 

The explicit equations for homogeneous bodies are those of incompressible matter, 

€ = constant, fjLBn = €, (61) 

and the rotation law for uniform rotation is 

= O = constant. (62) 

The integral (23) of the equations of motion then becomes 

O-rf-P». «a» 

The relaxed matter terms on the left-hand sides of the difference equations of § III can now be evaluated explicitly 
at each grid point by eliminating p via equation (63). Note that, for example, 

dpjdv = — (e + p)(l + v2)¡{\ — v2) inside star 

= 0 outside star. (64) 

The assumption dejdv = 0 at all grid points is implicit in this equation. This is all right because the computer 
always places the surface, where dejdv has a delta-function singularity, somewhere between two grid points. 

We find it convenient to use e as a scaling parameter by taking €-1/2 to be a fundamental unit of length in our 
calculations. A quantity such as M0€112 then measures the strength of relativity, and a quantity such as Bardeen’s 
(1971) rotation parameter 

R = J2€ll3/M0
1013 (65) 

then measures the amount of rotation. 
We build up sequences of rotating bodies by beginning with a spherical body. A spherical body is specified by its 

value 

ys = 1 - (1 - 2M/rs*)1'2 (66) 

of y in equation (63). Here r* is the value of the Schwarzschild radial coordinate rs at the surface of the body; and 
M is the mass, which satisfies 

M = (47r/3)rs*
3€. 

The relation between rs and our radial coordinate r is 

2r/c3 rs = inside star 
1 + ($7T€r2/3c3

2) 

— r(l + %M¡r)2 outside star, 
where 

c3 ee i[l - M/r* + (1 - 2M/rs*)1/2][l + (1 - 2M/rs*)1'2]. 

In the spherical limit, the metric functions are given by 

(67) 

(68a) 

(68b) 

and 

ev = |(1 — 2M/rs*)1,2 — £[1 — (8'»r/3)ers
2]1/2 inside star 

= 1 - 2M/ra outside star, 

é = B = (rjry, 

(69a) 

(69b) 

at = 0. (69c) 

Having determined a spherical model in units of e by specifying ys, we find its value of M0e112 from equation (60). 
We then choose a small value, say ~0.1, for £2e1/2, and apply our iterative procedure. In doing so, we readjust ß, 
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or y, at each stage by repetitive application of Newton’s relation in the form 

where 

Ay 
(desired value of M0) — (present value of M0) 
dM0¡dy 

8M0 

8y 
Mb» 

(1 - V2)112 Be2'-2'1, 

(70a) 

(70b) 

and Ay is the change in y. After achieving convergence to a model with a given value of Qe~1/2, we increase this 
quantity a little and try to construct a new model (there is no guarantee that one exists). In this way we build up a 
sequence of models with fixed M0e

1/2 and with varying Q.€~112 and R. 

b) Results 

Our results for uniformly rotating homogeneous bodies are contained in Figures 1-7, Tables 1-4, and the text 
below. Various checks, involving comparisons with the fully relativistic slow-rotation calculations of Chandrasekhar 

Fig. 1.—A plot of the square ot the uniform angular velocity, in units tt times e, versus the eccentricity (eq. [71]) of homogeneous 
bodies. The bottom solid curve is the Newtonian Maclaurin sequence. The other solid curves are relativistic sequences of fixed (rest 
mass) x €1/2. Each is associated with a particular value of ys defined by eq. (66). The dashed curves are curves of constant rotation 
parameter R (eq. [65]). At the Newtonian point marked pns, the post-Newtonian corrections to the Maclaurin spheroids become 
singular. At the points marked shed, centrifugal forces balance gravity at the equator, and the sequences terminate. At the points 
marked ergo, there appear regions within which observers must rotate relative to the distant stars. 
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Fig. 2.—A plot of the equatorial pressure p, in units e, versus the radial coordinate, in units e~1/2, for various configurations 
along the sequence with ys = 0.5. Q is the angular velocity of a configuration. 
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Fig. 4.—A plot of the percent of dragging, o>/í2, versus the radial coordinate, in units e"1/2, throughout the equatorial plane for 
various configurations along the sequence with ys = 0.3. Ü is the angular velocity of a configuration. 

TABLE 1 
The Sequence with ys = 0.3, M0e

112 — 0.077* 

Qe-1'2 R ÍN 'C/Q 103/€3/2 Pet* Eb/Mo 

0.063. 
0.12 . . 
0.18. . 
0.24. . 
0.30. . 
0.36. . 
0.42. . 
0.48. . 
0.54. . 
0.60. . 
0.66. . 
0.73. . 
0.80. . 
0.90. . 

0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.0 
1.1 
1.2 
1.3 
1.4 

0.0002 
0.0009 
0.0020 
0.0036 
0.0057 
0.0084 
0.012 
0.016 
0.022 
0.028 
0.038 
0.051 
0.075 
0.15 

0.0007 
0.0030 
0.0067 
0.012 
0.019 
0.028 
0.039 
0.052 
0.067 
0.086 
0.11 
0.14 
0.19 
0.31 

0.5365 
0.5370 
0.5378 
0.5391 
0.5406 
0.5426 
0.5449 
0.5476 
0.5507 
0.5542 
0.5581 
0.5620 
0.5657 
0.5667 

0.027 
0.054 
0.082 
0.11 
0.14 
0.16 
0.19 
0.22 
0.25 
0.28 
0.32 
0.36 
0.41 
0.46 

2.03 
2.03 
2.05 
2.06 
2.08 
2.11 
2.15 
2.20 
2.25 
2.33 
2.44 
2.60 
2.90 
3.81 

0.300 
0.301 
0.302 
0.303 
0.305 
0.308 
0.311 
0.314 
0.318 
0.323 
0.328 
0.333 
0.340 
0.351 

0.272 
0.271 
0.269 
0.266 
0.263 
0.258 
0.252 
0.245 
0.236 
0.226 
0.212 
0.194 
0.168 
0.118 

0.178 
0.178 
0.177 
0.176 
0.175 
0.173 
0.171 
0.169 
0.166 
0.162 
0.157 
0.150 
0.139 
0.108 

* The quantity ys is defined by equation (66). All members of the sequence have the same value of Mo*112, where M0 is the rest 
mass and e is the density of mass energy. The various columns are the following: e, the eccentricity (eq. [71a]); Qc“1'2, the angular 
velocity of the fluid relative to infinity, in the unit e1/2; R, the rotation parameter/2e1/3/M0

10/3, where J is the angular momentum; 
tN, the quantity iJClf(M0 + — M), where M is the mass ; tuc/n, the angular velocity relative to infinity of the zero-angular- 
momentum observer (cf. § IIû) at the center of the body in the unit O; ve, the velocity (eq. [6]) of the fluid relative to the zero- 
angular-momentum observer at the equator; /, the moment of inertia J/Ù, in the unit e_3/2; y, the value of the constant appearing 
in the equation of equilibrium (63); pde, the pressure at the center of the body, in the unit e; Eb¡Mq, the fractional binding energy 
1 - M/Mo. 

216 
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Fig. 5.—A plot of the percent of dragging, to/Q, versus the radial coordinate, in units €-1/2, throughout the equatorial plane for 
configurations near the shed points along three relativistic sequences. Q is the angular velocity of a configuration. 

TABLE 2 
The Sequence with ys = 0.5, M0e

1/2 = 0.16* 

Or1'2 R ÍN c/ii Ve 103/e3'2 Pole EbIMo 

0.045. 
0.085. 
0.13. . 
0.17. . 
0.22. . 
0.26. . 
0.31. . 
0.35. . 
0.40. . 
0.45. . 
0.50. . 
0.55. . 
0.61. . 
0.67. . 
0.75. . 
0.79. . 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 

0.0002 
0.0008 
0.0018 
0.0032 
0.0051 
0.0075 
0.010 
0.014 
0.018 
0.023 
0.029 
0.037 
0.046 
0.060 
0.084 
0.11 

0.0007 
0.0028 
0.0063 
0.011 
0.018 
0.026 
0.036 
0.047 
0.060 
0.076 
0.094 
0.12 
0.14 
0.18 
0.23 
0.30 

0.8214 
0.8215 
0.8218 
0.8222 
0.8228 
0.8236 
0.8245 
0.8255 
0.8266 
0.8276 
0.8286 
0.8295 
0.8302 
0.8305 
0.8297 
0.8313 

0.032 
0.064 
0.096 
0.13 
0.16 
0.20 
0.23 
0.26 
0.30 
0.33 
0.36 
0.40 
0.43 
0.47 
0.55 
0.61 

6.58 
6.59 
6.61 
6.64 
6.69 
6.74 
6.81 
6.89 
6.98 
7.12 
7.27 
7.47 
7.74 
8.17 
9.05 
9.82 

0.500 
0.501 
0.503 
0.505 
0.508 
0.511 
0.516 
0.521 
0.526 
0.533 
0.540 
0.548 
0.557 
0.567 
0.579 
0.596 

0.999 
0.994 
0.985 
0.975 
0.962 
0.945 
0.924 
0.899 
0.870 
0.836 
0.795 
0.746 
0.687 
0.613 
0.513 
0.472 

0.294 
0.294 
0.293 
0.291 
0.289 
0.287 
0.284 
0.280 
0.276 
0.271 
0.265 
0.258 
0.249 
0.237 
0.217 
0.187 

* The notation is the same as in Table 1. 
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Fig. 6.—A plot of the velocity v of the fluid relative to the local zero-angular-momentum observer (eq. [6]) versus the coordinate 
radius, in units e_1/2, throughout the equatorial plane for configurations near the shed points along three relativistic sequences. 
Q is the angular velocity of a configuration. 

Fig. 7.—A plot of eccentricity (eq. [71]) versus the ratio //M0
2, where J is the angular momentum and M0 is the rest mass, for 

various relativistic sequences. The dashed curve marks the appearance of regions within which observers must rotate relative to the 
distant stars. At the points marked shed, centrifugal forces balance gravity at the equator, and the sequences terminate. 
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TABLE 3 
The Sequence with ys = 0.62, M0€

1/2 = 0.215* 

CU"1'2 R tu cûqJÇX Ve 102/e3/2 
Pel* EbIMo 

0.032. 
0.078. 
0.106. 
0.157. 
0.186. 
0.214. 
0.245. 
0.276. 
0.312. 
0.350. 
0.392. 
0.440. 
0.495. 
0.572. 
0.643. 

0.1 
0.3 
0.4 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 

0.0002 
0.0017 
0.0030 
0.0069 
0.0095 
0.013 
0.016 
0.021 
0.026 
0.032 
0.039 
0.047 
0.057 
0.075 
0.094 

0.0007 
0.0061 
0.011 
0.025 
0.034 
0.045 
0.057 
0.071 
0.088 
0.11 
0.13 
0.15 
0.18 
0.23 
0.27 

0.9594 
0.9595 
0.9595 
0.9595 
0.9593 
0.9593 
0.9591 
0.9584 
0.9578 
0.9571 
0.9562 
0.9550 
0.9534 
0.9507 
0.9487 

0.031 
0.094 
0.12 
0.19 
0.22 
0.25 
0.29 
0.31 
0.35 
0.39 
0.44 
0.46 
0.51 
0.57 
0.63 

1.06 
1.06 
1.06 
1.07 
1.08 
1.08 
1.09 
1.11 
1.13 
1.14 
1.17 
1.19 
1.23 
1.32 
1.39 

0.620 
0.623 
0.625 
0.633 
0.638 
0.644 
0.651 
0.659 
0.667 
0.676 
0.686 
0.698 
0.710 
0.724 
0.741 

4.45 
4.37 
4.31 
4.15 
4.04 
3.91 
3.77 
3.60 
3.41 
3.18 
2.92 
2.64 
2.32 
1.99 
1.58 

0.363 
0.361 
0.359 
0.353 
0.350 
0.346 
0.341 
0.337 
0.330 
0.323 
0.314 
0.304 
0.292 
0.267 
0.250 

* The notation is the same as in Table 1. 

and Miller (1974) and the post-Newtonian calculations of Bardeen (1971), involving the Hartle-Sharp (1967) 
variational principle for rotating relativistic stars in a manner explained below, and involving tests on how changes 
in grid structure influence results, indicate that our results are accurate to a couple of percent. 

i) A Comparison of the Newtonian and Relativistic Sequences 

Some of the differences between the Newtonian and the relativistic bodies are evident in Figure 1, which is a plot 
of the square of the angular velocity (in the unit ttc) of a model versus its eccentricity 

e s [1 - (¿„K)2]1'2 ; (71) 

here the quantities 
fT'Ui=l) /• r*(« = 0) 

dp - drë-\ de = dre'-y (72) 
Jo Jo 

are the proper radial distances from the center of a body to its surface along the rotation axis and in the equatorial 
plane, respectively, within a 3-surface orthogonal to the zero-angular-momentum observers. The bottom solid 
curve is the Newtonian Maclaurin sequence. All Newtonian models can be represented by this single sequence, since 
in Newtonian theory there is another scaling parameter, say the Newtonian mass M0, in addition to €. (A third 
parameter, say e or R, then measures the amount of rotation.) The solid curves above the Newtonian curve are 
relativistic sequences along which M0€112 is constant. Each sequence is labeled by the value of y = ys for the spherical 
member of the sequence. Sequences with larger values of ys (and M0€112) are more relativistic. The dashed curves 
are of constant values of R in equation (65); and they show the relative locations of relativistic and Newtonian 
models with the same e, M0, and J: for given values of Je and M0e

112, there is one relativistic point and one 
Newtonian point, both lying on the same dashed curve of constant R. 

Figure 1 and also Tables 1-3 show that larger strengths of relativity require larger angular velocities to produce 
a given value of e or of R. This reflects the importance for these bodies of the dragging of inertial frames and the 
fact that, roughly speaking, the centrifugal forces are proportional to v2 and the angular-momentum density is 
proportional to v, while v cc (£1 — œ) (cf. eq. [6]), and œ/Q. increases with ys at fixed e or R. Note that e and R do 
not measure rotation in the same way and that e decreases as ys increases at fixed R. This appears to be because the 

TABLE 4 
The Points of Formation of Ergotoroids along Sequences* 

ys y e Qe-1'2 R tN J/M2 

0.55  0.63 0.67 1.5 0.07 0.20 0.83 
0.60  0.64 0.36 1.1 0.026 0.089 0.59 
0.62  0.65 0.24 0.9 0.016 0.057 0.49 

* The quantities in the first six columns are defined in the same way as in Table 1. 
The quantity J/M2 is the ratio of the angular momentum to the square of the mass- 
energy. 
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proper volume gets very big in the central regions of highly relativistic models; the major contributions to proper 
radii then come from these nearly spherical central regions where rotational effects are small; and the differences 
between proper radii in different directions thus tend to decrease as ys increases at fixed R. 

Along the Newtonian sequence, Ü first increases with e, reaches a maximum given by QmaX
2 ^ 0.4497re at 

e x 0.93, and thereafter decreases toward zero as 1. For e close to unity, Ü.2 cc de~
3 in accord with the 

Keplerian behavior of the outermost fluid orbits. In Newtonian theory the centrifugal force is proportional to r 
and the gravitational force is nearly so in the outer regions of highly flattened, constant-€, constant-0 fluids. This 
delicate balance permits Maclaurin spheroids at all possible values of e. 

The balance is destroyed by relativistic effects. Our calculations show that at least for ys ^ 0.3, and very probably 
for all ys, the relativistic sequences terminate at points marked “shed” in Figure 1. At these points centrifugal forces 
balance gravity at the equator. Numerical instabilities have prevented us from verifying that sequences with small 
values of ys terminate, but we have little doubt that they do. The line through the shed points in Figure 1 probably 
extends down to the point marked pns, where the post-Newtonian corrections to the Maclaurin spheroids become 
singular (Chandrasekhar 1967; Bardeen 1971). Such a behavior agrees with Bardeen’s (1971) prediction that uni- 
formly rotating, homogeneous, relativistic models become untenable at values of R which decrease from the pns 
value ~ 0.273 as ys increases from zero. The value of R at the termination, or shed, points drops to ~ 0.095 for the 
sequence with ys = 0.62. Bardeen (1971) has shown that the pns point is also the point at which the Maclaurin 
spheroids become secularly unstable to axisymmetric differential rotation. It may be that the relativistic bodies also 
become secularly unstable to differential rotation before the sequences terminate. In any event, the sequences 
terminate due to shedding of matter, because of the artificial constraint of uniform rotation; and differentially 
rotating homogeneous bodies are expected to exist at values of R larger than those at the shed points. 

ii) The Formation of Ergotoroids 

A fundamentally relativistic phenomenon is associated with the points marked ergo on the sequences with 
ys > 0.55 in Figure 1. In every model above the ergopoint on a sequence, there is a topologically toroidal region, 
called an ergoregion or ergotoroid, in which the dragging of inertial frames is so strong that all observers are forced 
to rotate with angular velocity dyjdt > 0 relative to the distant stars. Mathematically, an ergoregion is the collection 
of points at which the metric component gtt > 0, and hence at which the Killing vector £a that is timelike at infinity 
is spacelike. For our models the ergoregions cannot contain any part of the rotation axis, and hence must be 
toroidal, for the following reason: we have assumed that the fluid 4-velocity ua is a linear combination of the 
Killing vectors and 77a (cf. § Ha); but 77a = 0 on the rotation axis; hence ua cc £a on the rotation axis, and £a 

cannot be spacelike there. 
Table 4 exhibits the approximate values of various parameters associated with the ergopoints on three sequences. 

It is clear that the ergopoints appear at smaller amounts of rotation as the strength of relativity increases : the values 
of the eccentricity e, the rotation parameter R, and the quantity 

tN = iJn/(M0 + y Q - M), (73) 

which reduces to the ratio of rotational kinetic energy to gravitational potential energy in the Newtonian limit, all 
decrease at the ergopoints as ys increases. 

Along the sequence of infinitesimally thin, uniformly rotating, pressureless disks of Bardeen and Wagoner 
(1971), ergotoroids first appear at the rim of a disk. Along one of our sequences, however, the ergotoroids first 
appear at a point in the equatorial plane between the center and the surface of a model. (Wilson 1972 also found 
this behavior.) As shown in Figure 2 of Butterworth and Ipser (1975) for the sequence with ys = 0.61, the ergo- 
toroids grow with increasing rotation and can eventually reach into the exterior vacuum. 

iii) The Radial Behavior of Various Quantities 

Figure 2 shows how the pressure distribution in the equatorial plane steepens as a stellar model of fixed rest mass 
and fixed equation of state (fixed density in the present case) spins down along the sequence with M0e

1/2 = 0.16, 
ys = 0.5. This behavior results in the expected decrease in the moment of inertia, 

(74) 

as shown in Table 2. 
Figure 3 compares the pressure distributions in the equatorial planes of configurations near the termination 

points along three different relativistic sequences. The pressure distribution steepens and the equatorial coordinate 
radius, in the unit €_1/2, decreases as the strength of relativity increases. But M0e

1/2 and Me112 increase sufficiently 
rapidly to cause the moment of inertia, in the unit e-3/2, to increase. 

Figure 4 shows the percent of dragging, o>/Q, throughout the equatorial planes of various configurations along 
the sequence with ys = 0.3. As a model of fixed rest mass M0 and fixed density e spins down along the sequence, 
cü/Q decreases at a given coordinate radius. This behavior is not common to all sequences, however. For example, 
as Table 3 reveals, the percent of dragging at r = 0 can decrease with/e over parts of highly relativistic sequences. 
In any case, the behavior of <o/Q can never cause the moment of inertia to increase as Je decreases. 
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Figure 5 shows cu/O throughout the equatorial planes of configurations near the termination points along different 
sequences, and Figure 6 shows the corresponding velocity v of the fluid relative to the zero-angular-momentum 
observers. At a fixed fraction of the equatorial radius of a model, w/Q. increases with the strength of relativity. The 
velocity v varies almost linearly with the radial coordinate r; but in highly relativistic configurations it is much 
larger than the Newtonian value Qr, due to the factor e~2v in the definition of v arising from time dilation and the 
increase in the ratio of proper distance to coordinate distance in strong gravitational fields. 

iv) Stability 

We have not yet performed any stability calculations for our models, so the following discussion is somewhat 
speculative. 

We previously mentioned one type of instability to which our models might succumb, the axisymmetric secular 
instability to differential rotation that would be excited by any operative viscosity. If a body reached a point of 
onset of this instability, it would begin to rotate differentially. The body might then form a configuration with a 
nearly uniformly rotating central bulge that continually transfers its angular momentum to a surrounding 
differentially rotating disk. 

Other types of instabilities, however, that grow on shorter time scales probably appear before the above secular 
instability and play the dominant roles. 

One of these is a nonaxisymmetric dynamical instability, the so-called Dedekind bar-mode instability, which is 
excited by gravitational radiation-reaction in general relativity, and which is present in nearly Newtonian models 
with e > 0.813, R > 0.0572 (Chandrasekhar 1970; Friedman and Schutz 1975). This instability has spherical- 
harmonic index |m| = 2, and the corresponding mode radiates away angular momentum as well as energy. We 
expect that this instability sets in at certain values of R < 0.0572 for ys > 0. 

Another dynamical instability is deeply relativistic. Ever since Penrose (1969) devised his classic process for 
extracting energy from ergoregions, it has been suspected that, as long as black-hole event horizons are absent, 
reasonable systems with ergoregions are dynamically unstable. Friedman (1975) has recently provided a proof that 
this is so for all fluid stellar models. Roughly speaking, stellar models with ergoregions are unstable for the follow- 
ing reason. The Killing vector £a that is timelike at infinity tips over and becomes spacelike within an ergoregion. 
Hence one can set up there a non-axisymmetric perturbation that in some sense has negative energy relative to 
infinity. As the perturbation leaks out of the ergoregion and radiates energy, which must be positive, away to infinity, 
its amplitude within the ergoregion must actually grow and make the energy even more negative there in order to 
conserve total energy. The result is that the perturbation grows exponentially in time, and the system is unstable. 

If, as we expect, the Dedekind instability sets in at R < 0.0572, for relativistic models, then Figure 1 shows that it sets 
in along a sequence before the ergoregion instability does when ys ^ 0.57 and perhaps later when ys ^ 0.57. Theoreti- 
cally, incompressible models are always stable against overall collapse, so one could argue that the ergoregion 
instability is dominant for sequences with ys ^ 0.57. Actually, though, it is perhaps unlikely that there are any 
realistic stellar models corresponding to ys ^ 0.57 and stable to overall collapse. Thus we tend to be pessimistic 
about the existence of realistic stellar models that are completely stable up to the point of formation of ergotroids. 

v) A Scenario for the Possible Evolution of Contracting Homogeneous Bodies 

Figure 7 is a plot of eccentricity versus the ratio //M0
2, and it provides a framework for discussing the slow 

contraction of bodies toward states of tighter binding. Our use of uniformly rotating bodies throughout this 
discussion may not be all that bad at first, since in Newtonian theory an initially uniformly rotating homogeneous 
body remains uniformly rotating if each mass element conserves its angular momentum during contraction. 

Suppose that, due to axisymmetric emission of radiation, say, a body contracts at fixed angular momentum and 
rest mass. An initially weakly relativistic body evolving slowly in this way would first move vertically upward in 
Figure 7 in the direction of increasing ys as its density e and its binding energy increase. If JJMq2 ^ 0.5, Figure 7 
and the previous subsection indicate that the body eventually reaches a point of onset of the Dedekind instability. 
Our picture is that the instability timescale is less than the contraction timescale, and that the body is channeled 
to the left and down in Figure 7 in the direction of increasing ys along the line (not shown) of onset of the instability. 
The body next reaches either a point at which it undergoes overall gravitational collapse or a point on the dashed 
ergoregion-instability curve. In the former case, reasonable estimates for parameters at the collapse point might be 
R ^ 0.057, ys ^ 0.4. This corresponds to J/M2 ^0.8 (at fixed R, J/M2 is insensitive to ys) so that the body could 
collapse directly to a black hole without first having to get rid of more angular momentum. This means that it 
could bypass collapse to a disk. In the latter case, the ergoregion instability might drive the body down the dashed 
curve toward nearly spherical configurations, until overall collapse sets in. We remark that if the ergoregion in- 
stability is ever operative in realistic situations, it might lead to the emission of significant amounts of relatively 
high-frequency gravitational radiation. This is because, as Friedman (1975) has shown, the time scales associated 
with the ergoregion instability are inversely proportional to the spherical-harmonic index \m\ of a perturbation. 

Consider now evolution when //Mo2 ^0.5 initially. A body proceeds vertically upward in Figure 7, reaches a 
maximum eccentricity e ^ 0.7 at ys ~ 0.3, and then proceeds downward in the direction of decreasing e until it 
collapses to a black hole. Even though e is decreasing, it is not completely clear that the body is contracting toward 
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States that are “more spherical.” The problem is that, near the upper part of the range 0 < //M0
2 ^ 0.5, rather 

than decreasing with e at fixed JIM0
2, R actually increases somewhat. It would be interesting to see whether the 

intrinsic deformation of the stellar surface, defined in some invariant way, behaves similarly. 
The above scenario suggests that relativistic bodies might tend to avoid contracting to disklike configurations; 

and also that black holes might not generally be close to the Kerr limit J = M2 at their formation. Of course, this 
could be all wrong if the required amounts of angular momentum cannot be radiated away during contraction and 
collapse. 

vi) Applications to Uniformly Rotating Neutron Stars 
We shall now use our results to obtain rough estimates of the amounts by which uniform rotation can increase 

the masses and moments of inertia of neutron stars. We remark first that the observed behavior of the pulsars, 
including that associated with the so-called glitches, does indicate that the neutron stars (thought to be) in pulsars 
are essentially uniformly rotating objects. Second, for many equations of state, the higher-mass neutron stars have 
nearly constant-density central regions that contain most of the matter, and our results are most appropriately 
applied to such objects. 

We focus initially on the amount of rotational energy that can be stored in, and thereafter radiated away during 
spin-down of, a neutron star of fixed rest mass and fixed equation of state (approximated here as fixed density). 
In our approximation, if we forget about restrictions imposed by stability considerations, this energy is the difference 
between the mass-energy of the most rapidly rotating configuration (i.e., the one at the shed point) and that of 
the nonrotating configuration on a sequence of given M0e

1/2 and ys. Suppose we assume e ~ 5 x 1015 gem-3 at the 
center of the nonrotating maximum-mass neutron star associated with a reasonable equation of state. Then the 
sequence with ys = 0.3 corresponds to neutron stars made of relatively soft matter, as is reflected by a relatively 
low value M ~ 0.7 M0 for the nonrotating maximum mass; and the sequence with ys = 0.5 corresponds to neutron 
stars made of stiffer matter, as is reflected by a larger value M ^ 1.3 M© for the nonrotating maximum mass. 
Denoting by a the ratio of M for the most rapidly rotating configuration to M for the nonrotating configuration 
with the same M0 and €, we find from Tables 1 and 2 that a - 1.08 for ys = 0.3 and a ~ 1.15 for ys = 0.5. Smaller 
values of a are implied if the most rapidly rotating object is replaced by the last completely stable one along the 
sequence. In this case, assuming that the Dedekind instability sets in at R ~ 0.057, we obtain the smaller values 
a ~ 1.03 for ys — 0.3 and a ~ 1.08 for ys = 0.5. Thus the amount of rotational energy that can be stored should 
be ^0.1 Mq if neutron-star matter is sufficiently stiff to yield a value ^1.3 M© for the maximum mass of a non- 
rotating neutron star. 

The accuracy of our results for the change in mass-energy along a sequence of fixed M0€
112 and ys can be checked 

by using the Hartle-Sharp (1967) variational principle for uniformly rotating relativistic stars. This principle implies 
that along one of our sequences of fixed M0, e, and ys, changes in mass-energy are related to changes in angular 
momentum by the equation 

AM = QA/. (75) 

Our results in columns (2), (7), and (10) of Tables 1-3 agree with equation (74) to within a couple of percent. 
During motion along a sequence of fixed ys, the moment of inertia, another important observable property of 

the neutron stars in pulsars, changes with the mass energy. For e ~ 5 x 1015 g cm“3, our results in Tables 1 and 2 
say the following : along the sequence with ys = 0.3, / varies from 1.2 x 1044, in cgs units g cm2, for the nonrotating 
configuration to ~ 1.5 x 1044 for the configuration with R = 0.057 to ~2.2 x 1044 for the configuration at the 
shed point; along the sequence with ys = 0.5, the corresponding values for I are ~3.8 x 1044, 4.6 x 1044 and 
5.6 x 1044. 

Our results also provide us with a rough upper limit on the amount by which uniform rotation can increase the 
maximum possible mass of a neutron star above its nonrotating value, for a given equation of state. As the rotation 
increases, more matter can be supported in equilibrium, so the maximum rest mass M0, as well as M, increases above 
its nonrotating maximum value. It seems reasonable to assume that the ratio p/e is nearly the same at the centers of 
the maximum-mass, nonrotating star and of the maximum-mass, uniformly rotating star obeying the same equation 
of state. Suppose we adopt this assumption and consider the example in which the maximum-mass, nonrotating 
configuration has central density ~ 5 x 1015 g cm-3 and mass M ~ 1.3 M©. This configuration is approximated by 
the nonrotating member of the sequence with ys = 0.5, which has a central ratio pje = 1. If we first forget about 
restrictions imposed by stability considerations, the corresponding uniformly rotating configuration with the 
maximum possible mass should be the one that obeys the same equation of state (same € here), has the same central 
ratio /?/€, and is rotating at the mass-shedding limit. Our results indicate that this latter configuration lies on a 
sequence with ys ~ 0.6 and has mass M ~ 1.75 M©. Hence in this case uniform rotation increases the maximum 
mass of a neutron star by ~ 30 percent. A smaller percent increase is implied if we restrict attention to configurations 
that are completely stable. In this second case, the corresponding maximum-mass, rotating configuration has the 
same € and p as before, but has a value of R that we take to be ~ 0.057. This configuration lies on a sequence with 
ys ~ 0.55 and has mass M ~ 1.5 M©. Hence in this second case uniform rotation increases the maximum mass by 
~ 15 percent. 
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Finally, we note that for these cases the moment of inertia /increases from ~ 3.8 x 1044 g cm2 for the nonrotating 
configuration to ~5.3 x 1044 g cm2 for the last stable rotating configuration to ~2.7 x 1045 g cm2 for the con- 
figuration at the shed point. 

We thank J. M. Bardeen, S. Chandrasekhar, and J. L. Friedman for helpful discussions. 
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