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ABSTRACT 

An elementary theory of the ratio of depths of secondary and primary eclipses of a light curve 
has been proposed for studying the nature of component stars. It has been applied to light curves 
of Beta Lyrae in the visual, blue, and far-ultraviolet regions with the purpose of investigating the 
energy sources for the luminosity of the disk surrounding the secondary component and deter- 
mining the dominant radiative process in the disk. We have found no trace of the spectrum of 
primary radiation in the disk and have therefore suggested that LTE is the main radiative process 
in the disk, which radiates at a temperature of approximately 12,000 K in the portion that under- 
goes eclipse. A small source corresponding to 14,500 K has also been tentatively detected and may 
represent a hot spot caused by hydrodynamic flow of matter from the primary component to the 
disk. 
Subject headings: stars: eclipsing binaries — stars: individual 

I. RELATIVE DEPTHS OF PRIMARY 
AND SECONDARY ECLIPSES 

As is well known, if we assume that the stellar disk 
is uniformly bright, the ratio of depths of secondary 
and primary eclipses (rf2/^i)boi in the bolometric 
measure is related to the ratio of the effective tempera- 
tures Tj (j = 1,2) of the eclipsed areas of the two 
components. In general, it can be shown easily that the 
ratio of depths of secondary and primary eclipses in 
any wavelength region from À to À + AÀ denoted by 

is given by 

= Jaa dh fU F2(X; g, r¡)d^dr¡ , ^ 
WJ AA JAA dX JJaAl Fi(A; £ rfidtdr) 

where F/A; £,77) represents the radiative flux of the 
primary (j = 1) or the secondary (j = 2) coming from 
the projected areas of stellar objects on the tangential 
(I, rj) plane to the celestial sphere at the point where 
the binary is located, and where Ay4y denotes, respec- 
tively, the obscured area of the primary (j= 1) and 
secondary (j = 2) during the mid-eclipses. In most 
cases, including the present one, AA± = AA2 = AA. If 
one assumes the emerging fluxes of both component 
stars are independent of (£, 77) and are, furthermore, 
given by the Planck function B(A, Tj), (j = 1, 2), equa- 
tion (1) reduces to the well-known bolometric relation 
mentioned in the beginning after being integrated over 
all wavelengths. 

In practice the wavelength regions used in photom- 
etry, such as U, B, V, etc., are not too broad. Thus, for 
the sake of simplicity, we may use as an approximation 
an effective wavelength of each region as the repre- 
sentative of the entire region. Thus if A¿ is the effective 
wavelength of the /th region and if AAX = AA2 = AA, 

equation (1) can be simplified to 

MA = JL ^(A,; 1,. (2) 

^ JJa^ W; £ ^dèdrt 

Equations (1) and (2) represent, of course, the 
general form for the ratio of the depths of secondary 
and primary eclipses. While the derivation of these 
equations is simple, they have so far failed to catch 
the attention of astronomers, because groundbased 
observations cover a region of wavelengths too narrow 
to make them very useful. However, with the recent 
advances in the study of the far-ultraviolet region as 
well as in the infrared region, equation (1) or (2) will 
provide a powerful means for understanding the nature 
of component stars in an eclipsing system. It will be 
especially useful for those systems where one compon- 
ent is peculiar and cannot be ascertained by the usual 
means of study, such as those systems where an opaque 
or a semitransparent disk is associated with the 
secondary component. In such cases equation (1) or 
(2) can give us, as we will see later in the paper, some 
clues as regards the nature of the disk. This is indeed 
the purpose of the present paper, since we will apply 
this idea to the disk in the ß Lyrae system where light 
curves in different colors from the optical region 
(Larsson-Leander 1969; Lovell and Hall 1970, 1971; 
Landis et al. 1973) to the far-ultraviolet region (Kondo 
et al. 1972) are now available. Needless to say, the 
same procedure may be used for a study of any eclip- 
sing system with or without a disk. 

II. SOURCE OF THE DISK LUMINOSITY 

According to the disk model, the light variation in 
the ß Lyrae system is caused by the eclipse of the 
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primary component by the disk (the primary eclipse) 
and vice versa (the secondary eclipse). That the 
secondary eclipse of ß Lyrae is clearly seen leads to 
the conclusion that the disk surface is luminous, as 
can be seen from equation (1). That being so, we im- 
mediately encounter the problem of finding the energy 
source of the luminous disk. In order to investigate 
this problem we propose a new procedure of study 
which has been briefly stated in a paper presented 
before the AAS meeting at Bloomington, Indiana 
(Huang and Brown 1975) and which is being developed 
here in full. Basically, we apply equation (2) to the 
observed light curves in different wavelength regions. 

In order to use equation (2) we must know F/A* ; £, rj) 
(j= 1, 2). As a first approximation we may equate 
^i(^; £> v) to the Planck function B(Ài5 TJ corre- 
sponding to the effective temperature T± of the primary 
component. But it is much more difficult to write down 

L v)’ because we must first know the nature of 
the energy source of the disk as well as the radiative 
process inside it. It is obvious that the disk does not 
generate thermonuclear energy, nor could its own 
gravitational contraction be significant. So what it 
emits must come directly or indirectly from external 
sources, namely the primary and secondary component 
stars. The relation between the nature of energy 
sources and the characteristics of the disk luminosity 
has been extensively discussed in the paper on BM 
Orionis (Huang 1975), so we will not repeat it here. 
Suffice it to say that the luminosity of the disk surface 
can be broken down into two terms, one term with 
cylindrical symmetry and the other term varying with 
the azimuthal angle around the disk. The first term 
could be due to energy coming, in whatever way, from 
either or both component stars, while the second term 
is necessarily associated with energy fed by the primary 
component, because the secondary component located 
in the center of the disk can only give rise to a bright- 
ness distribution over the disk surface having cylin- 
drical symmetry. 

Let us now examine the relative importance of these 
two terms in connection with the disk in ß Lyrae. The 
asymmetric term with energy source from the primary 
component must have a maximum at the point closest 
to the primary and a minimum at the point on the 
opposite side away from the primary. Such a bright- 
ness distribution will create a slope in the light curve 
between primary and secondary minima. The light 
would increase from primary to secondary eclipse and 
decrease from secondary to primary eclipse (Huang 
1975). Although the time interval between the two 
eclipses of ß Lyrae is too short to measure the exact 
slope, a close examination of the light curve in both 
B and V colors does not indicate any such slope at all. 
On the other hand, since the primary component is a 
highly luminous star, it must create an asymmetric 
brightness distribution over the disk surface. The 
reason that we have not observed the asymmetry could 
be caused by (1) a relatively large inclination of the 
disk, (2) the relatively high luminosity of the secondary 
component, and/or (3) a high degree of dilution of 
primary radiation when it reaches the disk surface. 

We can detect by observation the asymmetric com- 
ponent of the brightness distribution over the disk 
surface most clearly when the disk inclination is close 
to 7t/2 because then we see the edge surface of the disk. 
Since we observe different parts of the edge surface at 
different phases, the asymmetric brightness distribution 
over the edge surface will produce the slope of the light 
curve we have mentioned. However, if the disk in- 
clination deviates increasingly from 77-/2, we will see 
more and more one of the two base surfaces and less 
and less the edge surface of the disk. The actual bright- 
ness distribution on the base surface may be asym- 
metric, but we cannot detect it, because we observe the 
same base surface at all phases. If this is the case, the 
inclination of the disk in ß Lyrae could differ greatly 
from 7t/2. The second possibility is more obvious. If 
the secondary component should be highly luminous, 
then the brightness distribution over the disk surface 
will be dominated by energy from the secondary and, 
consequently, will have cylindrical symmetry. The 
third possibility arises when the relative size of the 
primary star is not large, a requirement that is contrary 
to the accepted interpretation of the light curve of ß 
Lyrae. However, at this point we should not completely 
rule out this possibility. 

In general, F2(\í; f, rj) comes from the energy fed 
to the disk by several sources. Three sources can be 
mentioned, although not all of them are necessarily 
present, let alone significant, in equal degrees. These 
three sources are electromagnetic radiation from the 
primary, the radiation arid other forms of energy flow 
from the secondary component, and the gaseous flow 
(including resulting shocks, hot spots, etc.) and cor- 
puscular radiation from the primary component. When 
the disk has received energy from these sources, it 
reemits radiation and becomes luminous itself. The 
secondary eclipse is a result of this luminosity of the 
disk. 

What kind of spectrum will the disk surface radiate ? 
The answer, of course, depends upon the physical 
nature of the disk. If the density of the disk is high, so 
that local thermodynamic equilibrium (LTE) holds, 
the disk will radiate in the first approximation as a 
blackbody, and one can define an effective temperature 
Td for the disk. In such a case, equation (2) may be 
approximated by 

_ wdB(Ái9 Td) 
U/Ai B(Ái, Ti) ’ (3) 

where 7\ is the effective temperature of the primary 
component, and wd is a numerical factor which takes 
care of two facts. In the first place, it absorbs the 
departure of the radiative flux from that given by the 
Planck function as a result of the presence of emission 
lines, etc. In this respect wd serves as a correction factor. 
Second, it takes into account the possibility that only a 
fraction of àA covers the effective radiative surface of 
the disk. This means that LTE may be, and likely is, 
established below the geometrical surface of the disk. 
In either case we should expect wd to be of the order 
of magnitude of unity. 
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Situations may also occur such that even when an 
effective temperature for the disk surface Td can be 
defined, there are superposed on the general “photo- 
sphere” some hot and cold spots (e.g., Smak 1970) or 
shock fronts over each of which a different effective 
temperature Tj (j= 3,4,..., N), where V - 2 is the 
total number of spots covered by Ay4, prevails. In such 
a case, we would have 

{d2\ _ wdB{Xi9 T'd) + 2f=a Tj) ... 
W„ WKñ <4) 

where Wj (j > 3) is the fraction of area of the (y — 2)th 
spot of the effective temperature Tj within AÆ 

In the other extreme the radiation in the disk is 
scattered monochromatically. This will be true if the 
density is low, such as in the supergiant atmosphere, 
and/or if the temperature is high, so that electron 
scattering is the dominant source of opacity. Under 
these conditions radiation in the disk maintains the 
characteristic spectrum of its sources. In such cases the 
emerging flux is composed of as many components as 
there are sources, and we cannot assign an effective 
temperature to the disk. In general, we may express 
equation (2) approximately as follows 

çk\ _ 2U Tj) 
a; a, ’ 

(5) 

where T2 now denotes the effective temperature of the 
secondary component star, Wi and w2 are dilution 
factors, while Wj and Tj (y > 3) have the same mean- 
ings as before. 

From what has been said, the physical meaning of 
equation (5) differs greatly from that of equation (4), 
even though mathematically the two equations assume 
the same form. Thus in the mathematical analysis we 
do not have to separate these two physical cases. How- 
ever, when we come to the interpretation, we must 
discuss them separately. 

Our previous discussion of two radiative processes 
in the disk applies also to stellar atmospheres. This is 
especially true when we come to the study of what is 
generally called the reflection effect. Astronomers in 
the field of eclipsing binaries usually discuss the reflec- 
tion effect in terms of the LTE condition. However, 
when we discuss the atmospheres of supergiant stars, 
especially of early spectral types, or other hot tenuous 
media where the opacity is dominantly provided by 
electron scattering, the approximation given by mono- 
chromatic scattering is far better than that given in 
LTE. In such cases the reflection effect must be con- 
sidered in terms of monochromatic scattering. In the 
case of the disk in ß Lyrae we have no a priori knowl- 
edge of which one of the two radiative processes 
provides a better approximation. We will try to find 
out which one does by the present study. 

is present is the projection of the disk on the celestial 
sphere. This projected area may be characterized by 
two parameters, a width and a length, which will not 
change greatly, even though the light curve may be 
fitted in an infinite variety of ways (e.g., Huang 1973). 
For example, consider the projection of a disk in the 
form of a circular cylinder, say a coin, at different 
perspective angles. The projected area is exactly an 
elongated rectangle when it is viewed edgewise. But as 
the viewer moves farther away from the edgewise 
direction, the projection is better represented by an 
ellipse, even though it is not an exact ellipse. Wilson 
(1974) takes the disk as an ellipsoid of revolution whose 
projections on the sky at different angles of inclination 
can be represented likewise by ellipses. In either case 
the projected area can be characterized by the two 
parameters mentioned above, which are the width and 
length in the case of a rectangle and the minor (polar) 
and major axes in the case of an ellipse. Hence em- 
pirically the two points of view (circular cylinder and 
ellipsoid of revolution) do not differ appreciably as far 
as the observations are concerned. Wilson has given 
five solutions by assuming five values (2, 3, 4, 5, 6) for 
the mass ratio q = m2/mu where mi and m2 denote, 
respectively, the masses of the primary and secondary 
components. The sizes of the disk and the primary 
component do not vary greatly with q. 

We will denote the semimajor and the semiminor 
axes of the projected ellipse, respectively, by a and b 
in the unit of the separation of the two components. 
In the same unit system, we denote by ri and r2, 
respectively, the radii of the primary and secondary 
components. Of course, in the disk model the second- 
ary component is not directly seen by the observer. 

The observed points in both B and V colors obtained 
during the 1959 international campaign (Larsson- 
Leander 1969) show large scatter, especially at primary 
mid-eclipse. Hence whether r2 exceeds b is hard to say 
for sure. However, if r2 did exceed b, and the secondary 
star protruded from the projected ellipse, we would 
expect to see a sudden dip or a change of slope in the 
light curve when the protruding portion of the second- 
ary component begins to move across the face of the 
primary. In the observed light curves we can see some 
changes of slope in some cycles, but such a change has 
never been permanent. Consequently, we may assume 
in what follows that r2 does not exceed b by any large 
amount. 

IV. SINGLE-COMPONENT ANALYSIS 
AND ITS INTERPRETATION 

Both LTE and monochromatic scattering processes 
give the same expression for (dfa/^i)*, in the case that 
one energy source is assumed for the disk. Let us 
therefore write 

III. GEOMETRIC APPROXIMATION FOR THE DISK IN 
ANALYZING THE LIGHT CURVE 

_ wxB(K T*) 
(6) 

What counts in studying the light curve in a system 
where a semitransparent or a completely opaque disk 

and use Tx and wx in order to note that we do not 
commit ourselves to any definite interpretation for the 
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TABLE 1 
Ratio of Eclipse Depths 

Ai (dzldi)^ 

5470   0.58 
4400  0.54 
3330     0.60 
2980   0.58 
2460.    0.65 
>920.....  0.53 
1500...   0.75 
1380  0.82 

time being. Thus, if the LTE process turns out to be 
right, the index x becomes d. But if the scattering 
process dominates the radiation field, x becomes y, 
where j could be either 1 or 2. 

The primary component has often been classified as 
B8 or B9. If we should take it to be B8.5, we have Tx = 
11,350 K (Morton and Adams 1968). Eight {d^d^ 
values in eight colors are available : two colors in the 
standard B and V (Larsson-Leander 1969) and six 
colors in the ultraviolet region obtained recently by 
the OAO (Kondo et al. 1972). We have measured 
(¿/2M)aí from light curves in these eight wavelength 
regions and give the results, together with the effective 
wavelengths, in Table 1. It appears that the light curve 
in the wavelength region of 1920 Â differs greatly from 
light curves in other wavelength regions. It is believed 
that there occurs in this region some abnormal behavior, 
which has also been found in another star (Under- 

hill and Fahey 1973). Therefore, in each study we have 
performed two sets of analyses, one including the 
1920 Â region (8 colors) and one excluding this region 
(7 colors). 

For each color, equation (6) provides a relation 
between two unknowns, wx and Tx. We can compute 
Tx by assigning a definite value for wx. In this way we 
derived seven (eight) values for Tx from the seven 
(eight) (djdi)^ values in Table 1. 

In principle the seven (eight) values of the tempera- 
ture should all be the same if the analysis is exact and 
if the correct value of wx is chosen. Actually several 
approximations have been made in the procedure, and 
we do not expect such a perfect result. But we can 
always look for the most consistent result by the 
following procedure. For each value of wx we can 
obtain seven (eight) values of Tx and compute after- 
ward the standard deviation or the root mean square 
(rms) of the deviations of the seven (eight) values of the 
temperature from their average value. Thus, for each 
assumed value of wX9 we can obtain a mean value of 
Tx and a rms value of the deviations for seven (eight) 
values of temperature from the mean value. In this way 
we have obtained the average temperatures and rms 
deviations for a series of values of wx. The mean tem- 
perature as well as the standard deviation were found 
to change with wx. The results are plotted in Figure 1. 
In order to save space we have combined in one figure 
the present results of our one-component analysis with 
those of our two-component analysis, which will be 
discussed later. The one-component result corresponds 
to the two curves marked “one-component.” The 

Fig. 1.—Standard Deviation Curves. The two curves labeled “one component” represent the standard deviation of Tx as a 
function of wx calculated from equation (6) in seven colors (without the 1920 Â color, solid line) and in eight colors (with the 1920 Â 
color, broken line). The three curves marked “two-components” represent the standard deviation of Ty as a function of wy calcu- 
lated from equation (10) in seven colors and with Tl = 11,350 K for the three cases of h>i = 0.12, 0.08, 0.04. 
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X(A) 
Fig. 2.—Individual Temperatures. The uppermost curve is a plot of the individual temperatures Tx calculated from equation (6) 

for seven colors and wx = 0.49, the value of wx corresponding to the highest internal consistency. The value of Tx computed for the 
1920 Â region for this case is denoted by the uppermost x . The lowest of the three curves represents the seven individual tempera- 
tures Tx computed from equation (6) for the case w* = 1. The eighth value of Tx for this case in the 1920 Â region is denoted by 
the lowest x of the three. The dashed line represents the individual values of Td computed from equation (10) in seven colors and 
for the case that T$ = 14,500 K, w3 = 0.02, wd = 0.48. The dashed x is the value of Td computed for the 1920 Â region from 
equation (10). 

lower (upper) curve of the two represents the result 
derived from seven (eight) light curves excluding 
(including) the one obtained in the 1920 Â region. It is 
plotted as the solid (broken line). Obviously, the least 
value of the standard deviation, i.e., the minimum 
point in the curve, corresponds to the most consistent 
determination. Thus the seven-color determination 
gives wx equal to about 0.49, which corresponds to a 
mean temperature Tx = 11,950 K, while the eight- 
color determination gives wx = 0.51, which corre- 
sponds to a mean Tx = 11,780 K. Figure 2 illustrates 
the individual values of the temperature derived from 
the ratio {d2ld^)Ki at different wavelengths, Ai? for wx = 
0.49. For our present rough estimate the difference 
between the two sets of values (wx, Tx) in seven and 
eight colors is too small to be significant. However, the 
minimum value of the standard deviation is consider- 
ably greater in the case of the eight-color determination 
indicating indeed that the 1920 Â region is distorted 
by some unusual phenomenon and therefore departs 
greatly from what would be expected from the Planck 
function. 

The derived temperature of about 12,000 K for the 
eclipsed portion of the disk is much higher than what 
was originally derived for the secondary component 
by Struve (1958). His result was obtained by assuming 
that no opaque disk surrounds the secondary com- 
ponent. If secondary eclipse should be simply due to 

the obscuration of the secondary component itself by 
the primary component, we would have to set wx = l, 
and the light curve in the visual region would indicate 
that the secondary component is an A star. However, 
if we should set wx = l and try to derive temperatures 
Tx from equation (6) from the light curves of seven 
colors as we have done before, we would find that 
the standard deviation is 646 K, which is way above the 
corresponding value of 129 K that is derived for the 
case of wx = 0.49. This is a great increase in internal 
inconsistency. The individual temperatures Tx derived 
for the case wx = 1 from various values of 
are also given in Figure 2 by the line marked “one 
component,” wx = l. Here we see that light curves 
observed in widely separated regions of wavelength 
confirm the assumption that the secondary object that 
is eclipsing and is being eclipsed during primary and 
secondary eclipses, respectively, is not an ordinary star 
(which requires wx to be close to 1) but is a disk whose 
outer layer is tenuous. Since the OAO results for the 
light variation of ß Lyrae were published, it has often 
been said that these light curves are abnormal. By the 
present analysis we have removed this idea of 
abnormality. 

We can now discuss the physical nature of the disk 
luminosity. First, we observe that if it should be the 
result of illumination by the secondary component, 
our result would have led to a disk that is observable 
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TABLE 2 
Dilution Factors and Ratio of Luminosities 

Wilson (1974) Derived Here 

q = m2/wi i a fi b IJli Wi 

2.   90° 0.52 0.21 0.35 0.21 0.54 0.13 
3   89° 0.54 0.16 0.31 0.16 0.54 0.11 
4.. ..  85° 0.56 0.17 0.29 0.18 0.72 0.11 
5..  ... 85° 0.57 0.15 0.27 0.16 0.75 0.10 
6.     85° 0.57 0.15 0.26 0.16 0.81 0.09 

directly, whether the radiative process in the disk is 
LTE or monochromatic scattering. This can be easily 
seen by comparing the relative observable luminosity 
of the disk with respect to that of the primary com- 
ponent. The ratio of the projected area of the disk to 
that of the primary component being abjr^, the relative 
(bolometric) luminosity of the disk, ld9 with respect to 
that of the primary, ll9 is approximately equal to 

la _ w£bT^ m 

/i” >T2 TV’ 

In Table 2 we have listed /¿//i computed according to 
equation (7) for wx = 0.49, Tx = 11,950 K and for 
five values of q. Wilson has assumed as a model for the 
disk an ellipsoid of revolution and has given the semi- 
major axis, a, and the semiminor axis (denoted here by 
Z>i) as well as the inclination, i, for each value of q. 
While the ellipse projected on the sky has the same 
semimajor axis as the ellipsoid, its semiminor axis, 
which has already been denoted by b, is related to a, 
bl9 and i by the following relation 

b2 = éi2 sin2 i + a2 cos2 i. (8) 

It may be noted that although b has to be derived from 
bx and /, it is more accurately determined than bx and 
L In other words, one can propose models with differ- 
ent combinations of b-^ and i. If such models should fit 
the light curve well, the final value of b will always 
come out approximately the same (for the same value 
of a). This is because the light curve is basically deter- 
mined by the projected ellipse. Hence a and b are much 
better determined than b1 and i in Wilson’s or any 
other similar models. 

We have computed according to equation (7). 
In every case is greater than 0.5. It follows that we 
should see the radiation coming from the disk. That 
we do not discern any absorption spectrum from the 
disk even during primary eclipse is a point that must 
be answered if we should take the secondary star as 
the sole source of illumination of the disk. The problem 
is currently being studied by us. 

Let us consider electromagnetic radiation from the 
primary component as the sole source of the disk 
luminosity (the index x = 1). If such is the case, w1 
cannot have a value of 0.49. This can be easily seen 
by calculating the dilution factor of primary radiation 

at the disk from the geometrical configuration of the 
binary system. Considering the area on the disk surface 
that is nearest to the primary component, we have the 
conventional dilution factor given approximately by 

Wi = 
TT?*!2 

47t(1 — a)2 (9) 

which may slightly underestimate the actual value in 
the present case. In Table 2 we give the values of w± 
for different solutions given by Wilson (1974). It shows 
that in no case does Wx reach 0.49. Since Wx as given 
by equation (9) has been computed for the point on 
the disk closest to the primary component, the dilution 
factor at other points should be less than this value. 
Hence the disk luminosity derived from our analysis 
cannot be explained by the illumination of electro- 
magnetic radiation from the primary star. 

V. TWO-COMPONENT ANALYSIS 
AND ITS INTERPRETATION 

Let us next examine the two-component analysis. 
In this case we have 

_ WyB(Ái9 Ty) + wzB(\u T¿) * 

By using the subscripts y and z, we do not commit 
ourselves as regards the radiative process in the disk. 
For example, in the scattering case, z may be set to 
be 1. If LTE prevails in the disk, y is set to be d9 and z 
may denote a hot spot, say z = 3. In any case, equa- 
tion (10) means that in the area of the disk on which 
primary radiation impinges there are two components 
of radiation given by the two terms in the numerator. 

If scattering dominates the radiative process, we 
know for sure that there exists a component of 
primary radiation; hence z = 1. We have seen from 
Table 2 that Wx is of the order of magnitude of 0.1 but 
nevertheless have computed three cases with Wx = 
0.04, 0.08, and 0.12. Tx is set at the same value 
(11,350 K) as before. The same procedure that applies 
to wx and Tx in the previous section can now be 
applied to wy and Ty for each value of {d2ld^)Xi in 
Table 1 and for a given value wy. Thus, in the same 
way, we have computed the average Ty and respective 
standard deviations of individual temperatures from 
this average for various assumed values of wy (for both 
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Fig. 3.—High Temperature Source, (a) Plotted is the standard deviation of Td as a function of wd for Td calculated in seven 
colors from equation (10). The six curves correspond to six choices of T3 (8000 K, 12,000 K, 14,000 K, 14,500 K, 15,000 K, 15,500 
K) and are labeled as such. For all cases w3 = 0.05. (b) The standard deviation of Td, where Td is computed from equation (10) 
for seven colors, is plotted against wd for T3 = 14,500 K and the three cases w3 = 0.02, 0.05, 0.08. 
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7 and 8 colors). In Figure 1 we have illustrated the 
variation of rms with wy, the curves (marked “two- 
components”) being labeled by three values of w± 
(0.04, 0.08, and 0.12). Only the results derived from 
seven colors are shown here. Since the eight-color 
curves show consistently higher inconsistency (i.e., 
larger standard deviations), we consider the seven- 
color curves to be a better representation. Our results 
show that the average temperatures of the best internal 
consistency (i.e., the lowest standard deviation) for 
different values of w>i (0.04, 0.08, 0.12) are all close 
to the value of 12,000 K derived from the one-com- 
ponent theory. As can be seen from Figure 1, the 
standard deviation becomes greater and greater (in- 
ternal consistency worse and worse) as w± increases 
from zero (which corresponds to the one-component 
analysis) upward. Thus, judged simply by the standard 
deviation curves, the one-component theory is the best. 
On the other hand, we know that the primary com- 
ponent must contribute some radiation to the disk. If 
scattering should be important, we would observe 
radiation from the primary and, consequently, expect 
a considerable improvement in the internal consistency 
(i.e., lowering of the standard deviation) by intro- 
ducing the primary radiation into the analysis. That 
this does not happen leads us to suggest that LTE 
instead of scattering dominates the radiative process 
in the disk. 

Next we consider the case of LTE, for which y = d. 
Let us label z = 3 for a hot or cold spot. Our problem 
is to investigate whether or not there is a component 
of radiation arising from a hot or cold spot. For this 
purpose we have analyzed Td in the same way as before 
for different values of wd according to equation (10) 
by assuming different values of from 6000 K up to 
16,000 K and w3 = 0.05 for all cases. We have found 
that for Tq below 8000 K the standard deviation curves 
plotted against wd are all close together and approach 
the result of the one-component analysis. This indi- 
cates that we are working mainly in the ultraviolet 
region and cannot discern the presence of any com- 
ponent corresponding to temperatures below 6000 K. 
In order to find out whether a low-temperature com- 
ponent (corresponding to a cold spot) exists, we will 
have to wait for observations in the infrared region. 

In the high-temperature region we have found some 
interesting results which are illustrated in Figure 3a. 
When Tq increases from 8000 K, the standard devi- 
ation curve in Figure 3a moves up and to the left 
indicating a worsening of the internal consistency. 
However, at about 12,000 K the minimum of the 
standard deviation curves reverses the trend. It moves 
down as T3 increases until T3 = 14,500 K, at which 
time it changes the trend and increases again. This 
would seem to show that there is a trace of radiation 
corresponding to a temperature of about 14,500 K in 
the disk. 

Next we attempted to determine the value of w3 
corresponding to this component of radiation. In order 
to do so, we set T3 = 14,500 K and analyzed the 
standard deviations of 7^ as a function of wd for 
different values of wQ. Our results for w3 = 0.02, 0.05, 

0.08 are shown in Figure 3b. It appears that the 
standard deviation curves have the lowest minimum 
somewhere near w3 = 0.02. In Figure 2 we have 
plotted the values of Td found from the various 
(dz/dx)^ values given in Table 1 for T3 = 14,500 K, 
w3 = 0.02, and wd — 0.48, the approximate value of 
wd for which there is the highest internal consistency. 
Hence, if this high-temperature component is not 
caused by observational errors, it indicates indeed a 
hot spot or a shock front. But whatever it is, it oc- 
cupies only a small fraction in the eclipsed area AA. 

VI. CONCLUSION 

From the relative depths of primary and secondary 
eclipses in different colors from the visual to the far- 
ultraviolet region it has been found that the effective 
temperature of that part of the disk that it responsible 
for secondary eclipse is of the order of 12,000 K. It has 
also been found that there is no significant trace of 
radiation that belongs to the temperature of the 
primary star. It appears therefore that the radiative 
process in the disk is close to LTE, because from 
geometry we know a certain amount of primary radi- 
ation must be impinging on the disk. On the other 
hand, it appears from the available data, which could 
use improvement, that there is a trace of radiation 
corresponding to a temperature of 14,500 K in the 
eclipsed area of the disk. If this is not caused by 
observational errors, it may point to the presence of a 
small hot spot in the eclipsed area of the disk. What 
the brightness is outside the eclipsed area of the disk 
has not been examined in this study. Also, whether a 
component of radiation corresponding to a low tem- 
perature below 6000 K is present cannot be ascertained 
with the present data and requires observation in the 
infrared region. 

Finally, it should be noted that the data in the far- 
ultraviolet region used in the calculations are pro- 
visional at best. Our analysis by using equation (4) or 
(5) instead of equation (1) is also crude, even though 
the result seems to be quite reasonable, as is indicated 
by the smallness of the minimum standard deviations 
shown in Figures 1 and 3 compared with the average 
temperature. Eventual improvement in observational 
data may require a more accurate analysis based on a 
theory of radiative transfer in the disk which at present 
is still lacking. However, the basic idea presented in 
this paper of utilizing equation (1) as a means for under- 
standing eclipsing stars will become even more im- 
portant than ever with the improvement in both 
observation and the theory of radiative transfer. 

We would like to thank the dean of the graduate 
school of Northwestern University, Dr. Robert H. 
Baker, for his granting of a fellowship to one of the 
authors (D. A. B.). We are also indebted to Mrs. Vida 
Wackerling who has performed a part of the com- 
putation on the digital computer at Vogelback Com- 
puting Center of Northwestern University. The present 
work is supported by the National Aeronautics and 
Space Administration. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



No. 1, 1976 ECLIPSING DEPTHS OF THE LIGHT CURVE 159 

Notes added in proof.—Our thanks to Dr. A. P. 
Linnell, as the result of whose advice we have made 
the following addition : 

Changing 7^ does not affect the general behavior 
shown in Figure 1. All curves in the figure will simply 
shift with minor variations up or down as the case may 
be when Ti changes. For example, we obtain the 
minimum of curves at rms = 143°, w* = 0.49 (corre- 
sponding to Tx = LOóTi) by setting ^ = 12,000 K; 
and rms = 115°, wx = 0.49 (corresponding to Tx = 
LOSTi) by setting T± = 10,700 K versus rms = 130° 
and wx = 0.49 (corresponding to Tx = 1.057\) for the 
case 7\ = 11,350 K. The changes in both wx and 

TJTx are very small when Tx varies from 10,700 K to 
12,000 K. (All cases are derived from the seven-colored 
data.) 

Regretfully, we have only one set of observational 
data for However, if an error of 10 percent is 
arbitrarily introduced in any of the seven values of 
(dz/dx) it creates only some small changes in the be- 
havior of curves in Figure 1. 

Also a change of 7\ does not remove the small high- 
temperature component that is derived from Figure 3, 
even though we still consider this component as very 
tentative, because, as has been mentioned in the text, 
it could be due to observational errors in dz/dx. 
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