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ORBITAL RESONANCES %2097
IN THE SOLAR SYSTEM

S. J. Peale
Department of Physics, University of California, Santa Barbara, California 93106

1 INTRODUCTION

There are numerous examples of orbital resonances in the solar system, by which we
mean any system of two satellites orbiting the same primary whose orbital mean
motions are in the ratio of small whole numbers. The mean motions in such a case
are said to be commensurate, and the resonance is often called a commensurability.
The term “satellites” here includes the planets as satellites of the Sun. The most
famous of these resonances is also a special case since it involves three instead of two
satellites. If we designate the mean motions of the first three Galilean satellites of
Jupiter (To, Europa, Ganymede) by ny, n,, and ns, the relation n; —3n,+2n3 =0 1is
satisfied to nine significant figures. The stability of this resonance was known to
Laplace (1829), and the subject of orbital commensurabilities has been a lively topic
of celestial mechanics from that period to the present. Much of this interest was
derived from the fact that reasonably accurate masses of the satellites involved in
resonances could be derived.

. Often an orbital resonance is characterized by the absence of objects in an other-
wise crowded region of the solar system. The major gaps in the rings of Saturn
occur at distances from Saturn corresponding to orbital periods near % and % the
orbital period of the satellite Mimas. The Kirkwood gaps in the spatial distribution
of the asteroids correspond to orbital periods that are integral fractions of
Jupiter’s period. At the same time, there are some asteroids in these gaps whose
orbital periods are commensurate with those of Jupiter and others (Hilda group)
that preferentially occupy resonant orbits. ‘

In Table 1 we list and describe known orbital resonances. Also given is a reference
where a particular resonance is discussed in some detail. Some of the parameters
given in Table 1 are defined in later sections. The Titius-Bode law is not included in
Table 1 since most formulations of this law of planetary distances from the Sun do not
imply commensurate mean motions for the planets (Nieto 1972). There have been
attempts to formulate a precise resonant structure for the solar system (e.g.
Molchanov 1968), but the deviations of the planet’s mean motions from precise
commensurability are sufficiently large that the probability of finding the planets
where they are is no different from that of a random distribution (Backus 1969,
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Henon 1969). For this reason the 5:2, 2:1, and 3:1 near commensurabilities for
Jupiter-Saturn, Uranus-Neptune, and Saturn-Uranus, respectively, are also omitted.

The stability of orbital resonances has been understood for some time in terms of
the libration of a pendulum-like system (e.g. Brown & Shook 1933, Chap. §). In
Section 4 we display the disturbing function, characterizing the perturbations of
one satellite due to the presence of another, as an infinite series of simply periodic
terms. If the ratio of the orbital periods of the satellites is near that of two small
integers, the frequencies of a few of these terms with large coefficients approach zero
and lead to large amplitude perturbations. Often a single term is so dominant that all
the remaining terms in the disturbing function may be neglected, and a pendulum
equation for the angular argument of the dominant term results with stability about
either O or 7 depending on the sign of the coefficient. In Section 2 we give a heuristic
explanation of one example of this stability, as well as for other phenomena
exhibited by stable resonances.

Table1l Commensurabilities of mean motions for solar-system members

Resonance Libration
System variable ¢ center Reference
Jupiter
Io-Europa-Ganymede  A4;—3Ag+2/g 180° Sinclair (1975)
To-Europa Ay~ 2 + (wg or wy) 0°0r180°  Sinclair (1975)
Europa-Ganymede AE—2ic+ & 0° Sinclair (1975)
Saturn
Mimas-Tethys 2/ — 41+ Qu+Qr 0° Greenberg (1975)
Enceladus-Dione Ag—2ip +@g 0° Sinclair (1972)
Titan-Hyperion 3ir—4y + oy 180° Greenberg (1973a)
Colombo et al. (1974)
Ring Gaps-Mimas AR — 2AM + TR — Franklin et al. (1971)
Asteroids—Jupiter
Trojans Ar—Ay Ay £60° Brown & Shook (1933)
Thule 3ir—44+ oy 0° Takenouchi (1962),
Marsden (1970)
Hilda 2Au—34+on 0° Schubart (1968)
Griqua Ac—24+wg 0° Sinclair (1969)
Franklin et al. (1975)
Eight faint asteroids 2:1 As—24;+wa 180° Franklin et al. (1975)
Alinda 3:1 Aa—34+ 204 0° & 180°  Sinclair (1969)
Kirkwood gaps 3:1;5:2;7:3;2:1 — Lecar & Franklin (1973)
Sinclair (1969)
Planets
Neptune-Pluto 2An—3/p +wp 180° Cohen & Hubbard (1965)
(4N —64p +2Qp)? 180° Williams & Benson (1971)
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Although stability is easily understood, existence of so many objects in
commensurate orbits and, at the same time, the absence of asteroids and Saturn’s
ring particles near some of the commensurate orbits are not so easily explained.
Recent research has been concentrated on this problem of origin and considerable
progress has been made. Generally, the origin of the orbital commensurabilities can
be attributed either to dissipative processes in the form of collisions at the time of
the origin of the solar system or to the slow.differential increases in the semimajor
axes of the satellite orbits from tidal transfer of angular momentum from the primary
(Goldreich 1965). It is almost certainly true that we are observing the consequences of
both processes among the observed commensurabilities.

One infers from the existence of the asteroid belt, from Saturn’s rings, and indirectly
from theories of the origin of the solar system that interplanetary space was much
more crowded with asteroid-like objects than we see it today. It has been shown by
Lecar & Franklin (1973), however, that the orbits of such bodies between Mars and
Saturn are unstable (with a few exceptions) on a very short time scale except for
those in the current asteroid belt. On longer time scales, the solar system could be
swept as clean as we find it today due to the cumulative perturbations of the
massive planets. The early distribution of debris over much of the solar system would
have included many objects in stable commensurate orbits. Mutual collisions would
repeatedly scatter objects out of a commensurability, but others would be scattered
in. As the population of unstable objects was diminished by collision with the planets
or, more likely, by ejection from the solar system, those within the potential wells of
stable commensurabilities would remain behind. The Trojan asteroids and other
asteroids in resonant orbits are most likely remnants of such a sequence of events.
Pluto has avoided a close encounter with Neptune in its crossing orbit only because
it was left in the stable 3:2 resonance, which keeps the conjunctions near Pluto’s
aphelion (Cohen & Hubbard 1965) and near 90° from the mutual orbit node
(Williams & Benson 1971). Most of its companions were ejected long ago, although
a few may survive undetected in similar resonances or in more distant orbits. The
Titan-Hyperion system is another possible candidate for such a primordial
commensurability (Goldreich 1965, Sinclair 1972), although there is not universal
agreement on this point (Colombo et al. 1974).

Examples of orbital commensurabilities that may have been established by the
tidal evolution of initially nonresonant orbits are necessarily confined to the satellites
of the major planets. Only for these satellites have the tidal effects been possibly of
sufficient magnitude to cause significant orbital evolution. The motivation for a tidal
origin of the satellite resonances comes from a determination by Roy & Ovenden
(1954, 1955) that the number of commensurate orbits among the satellites of the
major planets is far more than could be accounted for in a random distribution of
orbits. Since there is no obvious reason for the formation of satellites in resonant
orbits, the current nonrandom distribution implies an evolutionary change in the
original configuration, and the tidal transfer of angular momentum to the satellites
from the spinning primary is a reasonable way to effect this change (T. Gold, private
communication, 1962).

Goldreich (1965) proved the existing resonances among the satellites of Jupiter and
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Saturn to be stable under continuing attempts by the tides to force the orbits to
expand at different rates. He also showed that all the bodies involved in stable
commensurabilities probably experience significant tidal evolution in the age of the
solar system except for Titan. If the Titan-Hyperion resonance was the result of a
primordial chance configuration, the observations are completely consistent with a
tidal origin of these commensurabilities. Of course, “significant” tidal evolution of the
satellite orbits is completely dependent on the unknown value of Q for the major
planets, where Q, the dissipation factor, is 2z times the maximum energy stored in a
tidal oscillation divided by the energy dissipated over a cycle. Goldreich (1965)
determined a lower bound for Q of 1.5 x 10° for Jupiter and 6 x 10* for Saturn, based
on the current distance of the innermost satellites. These lower bounds were used to
estimate the orbital evolution of all the satellites. Dermott (1968, 1971) derived a
frequency and amplitude dependence for Q, which would tend to disrupt the
existing resonances. He concluded therefore that tidal evolution has been
negligible (Q > Goldreich’s lower bounds), but he did not satisfactorily account for
the large number of resonances at the time of satellite formation.

The tidal hypothesis for the origin of the orbital resonances among the satellites
of Jupiter and Saturn gains considerable credibility with the development of a rather
complete and reasonably clean and simple theory of the tidal evolution of a satellite
pair from a nonresonant configuration, through transition into a stable
commensurability with subsequent evolution within the commensurability. Allan
(1969) followed the evolution of the Mimas-Tethys pair within the resonance and
was able to estimate an age of the resonance based on Goldreich’s lower bounds on
0. Sinclair (1972) gave the details of the capture of Mimas-Tethys and Enceladus-
Dione from a nonresonant to a resonant configuration including a numerical
evaluation of the probability of capture of Mimas-Tethys in the current resonance,
a probability of escape of this pair from a nearby resonance encountered first, the
probability of escape of Enceladus-Dione from a similar nearby resonance, and
the certain capture of thislatter pair in its current commensurability. Greenberg et al.
(1972) and Greenberg (1973a) demonstrated the certain capture of a Titan-Hyperion—
type pair of satellites under tidal evolution and gave a clear physical picture of the
transition from the nonresonant to resonant configuration. Yoder (1973 ; 1976, to be
published) developed a completely analytic theory applicable to the establishment
and evolution of any two-body commensurability experiencing tidal evolution (under
some constraints, which are satisfied by the satellite resonances). The nature of the
capture can be followed in great detail in this latter theory as a function of one
parameter whose application agrees with the numerical calculations of Sinclair. The
consistency of the current libration amplitudes of the resonances among Saturn’s
satellites with these theoretical developments makes the tidal hypothesis of origin
easily accepted—even to the point of trying to accommodate the Titan-Hyperion
resonance (Colombo et al. 1974).

Because of the importance of these theoretical developments to our recent under-
standing of the origin of satellite commensurabilities, the theory is outlined in Section
4 following a heuristic discussion of stability, capture, and other properties of a
resonance in Section 2 and a summary of current ideas on the formation of the
Kirkwood gaps and the gaps in Saturn’s rings in Section 3. In Section 5 we point out
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explicit successes and possible failures of the tidal hypothesis for the origin of orbital
resonances as applied to the satellites of Saturn, and we end with a short discussion
of an outstanding unsolved problem.

2 PHYSICAL DESCRIPTION OF THE RESONANCE
PHENOMENON

Orbital resonances among the satellites of Saturn and between Jupiter and the
asteroids except for the Trojans all depend on a nonzero eccentricity or inclination
in the coefficient of their pendulum-like restoring accelerations. We describe below
a simplified model of the simplest kind of eccentricity-type resonance. This model
shows all the essential features of such a commensurability while eliminating some of
the complicating detail. The model actually very closely resembles the Titan-
Hyperion case (e.g. Goldreich 1965, Greenberg 1973a).

Consider two satellites of masses m > m’ in coplanar orbits about a primary. The
inner satellite m is assumed to be in a circular orbit and is so much more massive
than m’ that perturbations by the latter can be ignored. The mean motions are
assumed to be nearly commensurate, and m’ is in an eccentric orbit. The orbits are
shown schematically in Figure 1, where @’ is the longitude of the pericenter of the

Figure 1 Large-eccentricity stability mechanism. Arbitrary positions of repetitive
conjunctions are at points 4, B, C, D. L and n are angular momentum and mean motions,
respectively.
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outer orbit. Four arbitrary positions of repetitive conjunctions are indicated by
dashed lines, and the relative positions of each satellite just before and just after a
conjunction are also shown along with the radial and tangential components of the
perturbing force by m on m'. A dot over a symbol indicates time differentiation.

During the period from opposition to conjunction, m removes angular momentum
from m’ via the tangential component of the perturbing force, and from conjunction
to the next opposition it adds angular momentum. If the conjunction occurs exactly
at pericenter or exactly at apocenter, the effects of the tangential forces integrate to
zero, and there is no net transfer. Repetitive conjunctions at any other point destroy
this symmetry. If we assume that the line of apsides is fixed and also assume precise
commensurability of the mean motions, a conjunction at point 4 in Figure 1, for
example, would be followed by successive conjunctions at the same point for non-
interacting satellites. However, the tangential component of the perturbing force is
larger prior to conjunction than after (for ¢; = ¢, in Figure 1) since the orbits are
diverging. In addition, the angular velocity of m’ is closer to that of m prior to
conjunction, as ' is slowing down as it approaches apocenter. This means m catches
up with m’ more slowly than it recedes after conjunction, so the larger tangential
force opposing the motion of m’ is also applied for a longer time than the smaller
tangential force in the opposite sense after conjunction. Hence, a conjunction at 4
leads to a net loss of angular momentum by m’ over an entire synodic period. The
resulting increase in the mean orbital angular velocity n’ means that the next con-
junction is closer to apocenter.

Similarly, a conjunction after apocenter (point B in Figure 1) results in a net gain
of angular momentum by m’, a reduction of n’, and a tendency for the next conjunction
to be again closer to apocenter. The conjunctions thus librate stably about the
apocenter of m', preserving the commensurability. Allowing a secular variation of
@’ does not change this conclusion as the ratio n/n’ is adjusted such that conjunctions
still librate about the apocenter.

The same arguments applied to a conjunction at points C or D near pericenter
show that conjunctions are again driven toward apocenter. The pericenter con-
junctions thus correspond to an unstable equilibrium configuration like that of a
pendulum near the top of its support. The stable point of the analogous pendulum
corresponds to the apocenter conjunction.

Now suppose conjunctions occur repetitively at apocenter with no libration and
that the inner orbit is being expanded by tidal interactions with the primary. The
orbital period of m will increase, and successive conjunctions will occur slightly
after apocenter on the average. Angular momentum will thus be secularly transferred
in just the right amount to preserve the commensurability against the tendency of the
tide to disrupt it (Goldreich 1965).

Two other characteristics of a stable commensurability can now be understood.
First, if conjunctions always occur at apocenter of the outer satellite in this example,
the radial force of m on m’ accelerates m’ toward the primary, and m’ follows a
trajectory slightly inside the trajectory it would have followed if m were not there.
This means m’ will reach its closest point to the primary slightly sooner than normal
and the line of apsides will have rotated in a retrograde sense. If m is sufficiently
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massive, this regression of the line of apsides due to the resonant perturbation (con-
junction always at apocenter) can dominate the normal prograde motion due to the
oblateness of the primary and the secular perturbations from other satellites. This
surprising result is actually realized in the Titan-Hyperion resonance where the
line of apsides of Hyperion’s orbit regresses about 19° yr 1.

The second characteristic is the secular increase of the eccentricity in this type of
orbital resonance. Recall that a tidal expansion of the inner orbit causes the
conjunctions of the stable resonance to occur slightly after apocenter. A radial
impulse force anywhere between apocenter and pericenter causes the orbiting body
to fall closer to the primary, thereby increasing the eccentricity e’ of its orbit. With
conjunctions now occurring slightly after apocenter, the maximum of the radial
perturbative force tends to increase e’ secularly. These effects of the radial perturbing
force lead us into the discussion of a second stability mechanism for an eccentricity-
type resonance.

In the above example we could allow a secular variation in @', but any effects on
@’ due to the resonance were assumed small. This is a reasonable assumption as long
as the eccentricity of the outer orbit is sufficiently large. For a small eccentricity,
the maximum asymmetry of the tangential component of the perturbing acceleration
becomes small, and m is much less able to alter the mean motion of m’ by a transfer
of angular momentum. The stability mechanism by which the conjunctions librate
about the apocenter is thereby seriously weakened. On the other hand, for small
eccentricity the radial perturbing force (which causes the regression of Hyperion’s
line of apsides) is much more effective in changing the position of the pericenter. This
high mobility of the line of apsides coupled with the variation of ¢', also caused by the
radial perturbation, leads to the situation where the apocenter or the pericenter
librates stably about the conjunction (Greenberg 1974).

From the earlier discussion of the effect of the radial perturbations on the peri-
center and eccentricity, we can deduce that a radial impulsive force toward the
primary induces a regression of the line of apsides if applied within 90° of apocenter,
and a positive precession if applied within 90° of pericenter. The radial impulse
decreases e if applied when m’ has passed pericenter but before it reaches apocenter,
and it increases e’ if applied while m’ is on the remaining half of its orbit. Since the
radial perturbation of m’ by m has a relatively sharp maximum at conjunction, we can
assume the radial force to be applied at conjunction and infer the effects on ¢’ and
@’ by the location of the conjunction relative to @’. Again, there is little change in
the mean motion for this mechanism since the tangential accelerations of m’ are
nearly balanced for small e regardless of the location of the conjunction.

Figure 2 describes the same configuration as Figure 1 except that the eccentricity is
now very small. The mean motions may now be relatively far from commensurability,
but the mean value of &' = {@’) is sufficiently large in magnitude that the line of
apsides maintains its relative position with respect to the conjunctions of m and m’
no matter where these conjunctions occur relative to inertial space. We assume
the radial perturbation dominates the variation of @w’, so that for the conjunction
near apocenter <@’y is retrograde, and the conjunctions occur at successively
decreasing longitudes. If conjunctions are repeatedly at nearly constant separation
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Figure 2 Small-eccentricity stability mechanism. Arbitrary positions of repetitive con-
junctions are at points A, B, C, D. e and w are eccentricity and longitude of pericenter,
respectively. See Equation (37).

from apocenter as at point A in Figure 2, the eccentricity tends to decrease, which will
accelerate the retrograde motion of the line of apsides [ see Equation (37)]. The line of
apsides then tends to catch up with the conjunctions and will be less distant at the
next conjunction. On the other hand, if conjunctions are initially repeatedly
separated from apocenter, as at point B where they are slightly ahead, ¢’ is increased,
and the retrograde motion of @’ is decelerated. The apocenter falls behind in its
retrograde motion and is closer to the next conjunction. The apocenter thus
librates stably about the conjunctions for small ¢'.

Unlike the large-eccentricity case where libration about the pericenter was not
possible, the small eccentricity case allows stabilization of conjunctions near peri-
center, as well as apocenter. Repetitive conjunctions near the pericenter induce a
prograde motion in @', sO successive conjunctions must occur at ever increasing
longitudes to maintain the configuration. But the radial perturbation accelerates the
pericenter toward conjunction (conjunctions at C or D relative to @’ in Figure 2)
by the same arguments leading to apocenter libration. The stable libration at either
pericenter or apocenter is similar to the equivalent pendulum librating either above
or below its support. This inverted libration was known to Brown & Shook (1933,
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Chap. VIID), but was only recently clarified for the satellites (Sinclair 1972, Green-
berg et al. 1972, Greenberg 1973a, Yoder 1973).

If we now allow the inner orbit to expand due to tidal transfer of angular
momentum from the primary, its period increases, and conjunctions for a libration in
apocentric stability now tend to fall slightly past apocenter. The eccentricity and
hence the restoring acceleration or stability of the resonance increase, |{d@’>|
decreases, and the commensurability of the mean motions becomes more exact. This
latter conclusion follows since conjunctions are maintained near apocenter in spite of
the reduction in | {&' |. At the same time, as the eccentricity grows the first stability
mechanism involving angular momentum transfer becomes dominant. Tidal
evolution in this case increases the stability and leads to secular transfer of angular
momentum, which maintains the commensurability.

Something very different happens to a st~ble pericentric libration as the inner
orbit expands. Conjunctions fall slightly past the pericenter leading to a reduction in
the mean value of e. The pericentric libration is therefore eventually destroyed by the
tidal expansion of the inner orbit.

The low-eccentricity stability mechanism also allows us to describe a method by
which the tides carry a noncommensurate pair of satellites into a stable libration
(Greenberg 1974). Assume that the inner orbit is being expanded by the tides as
before, but that the outer satellite is too small for significant tidal evolution. Also
assume that ¢’ is not very large. The orbits tend to approach each other, and the
mean motions approach the commensurability. The conjunctions progress in a
retrograde sense at an ever decreasing rate as the resonance is neared. This means
there are an increasing number of radial “impulses” increasing ¢’ before conjunctions
drift into the region where ¢’ decreases and, likewise, an increasing number of
radial impulses decreasing e¢’. The fluctuation in e’ thus increases as resonance is
approached, and if the initial e is not too large, ¢’ can approach zero on one of its
swings. But notice that conjunctions will be in the region of point A in Figure 2
while ¢’ is decreasing, and if e’ gets very small, the retrograde motion of w gets very
large, and the apocenter will attempt to overtake the conjunction [see Equation
(37)]. If it fails to do so and the apocenter falls more than 90° behind, the con-
junctions progress on around more slowly, inducing an even larger fluctuation, until
eventually apocenter does overtake the conjunctions in the region of point A. The
librations are thereafter stabilized by the small-eccentricity mechanism, and the
commensurability evolves as described above with ¢’ secularly increasing and the
mean motions approaching ever closer to the exact commensurability. Notice that
only capture into librations about apocenter is possible and that the capture is certain
(Sinclair 1972, Greenberg et al. 1972, Greenberg 1973a, Yoder 1973). If e; is too large,
the maximum fluctuation may not reduce its value close enough to zero to allow
alarge | o' |. Capture is no longer certain but depends on the values of the various
parameters when the first libration occurs. Probabilities of capture as a function of the
value of ¢’ far from resonance can be determined either numerically (Sinclair 1972,
1974) or analytically (Yoder 1973, 1974).

Similar heuristic descriptions of stability and evolution are possible for other
resonance configurations. The inclination-type resonance of Mimas-Tethys is some-
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what more subtle, however, and the reader is referred to Greenberg (1973b) for a
lucid physical description of this resonance. Sinclair (1972) considered the opposite
direction of approach to a resonance and showed that no capture is possible and no
resonance is stable unless the inner satellite of any pair has a sufficiently dominant
rate of tidal evolution (see Section 4).

Of course the above physical pictures were deduced from rather extensive
mathematical developments, one of which is outlined in Section 4. Before doing so,
however, current ideas on the formation of the gaps in Saturn’s rings and the
asteroid belt are described in the above physical terms.

3 SATURN’S RINGS AND THE ASTEROIDS

Gravitational theories for the origin of the Kirkwood gaps in the asteroid belt
(Brouwer 1963, Message 1966) have not withstood subsequent criticism. A
mathematical singularity was overlooked in Brouwer’s theory (Jefferys 1967).
Message depleted the gap region by a phase mixing where the asteroids associated
with the gap spent most of their time at the extremes of librations and at the apocenter
of highly eccentric orbits. Subsequent orbit determinations have revealed only
three confirmed libratorsin the 2 : 1 resonance, although several more objects are also
likely trapped at this commensurability (Franklin et al. 1975). Among the brighter
asteroids, at least the gaps are real and not just a result of most of the gap asteroids
being out of phase with the position of the gap at any one instant. Jefferys (1967)
pointed out that nongravitational forces in the form of collisions must have been
the important mechanism for creating the gaps. Since this idea has an appealing
consistency, we use the concepts from Section 2 to describe how it works both for the
asteroids and for Saturn’s rings.

We have seen how a near commensurability of mean motions generates large
fluctuations in the orbital eccentricity as the resonance variable either librates or
circulates very slowly. These fluctuations are much smaller for those nearby orbits
whose mean motions are not commensurate. If these latter orbits are highly
populated, any object librating about a commensurability is likely to suffer a
collision when near the apocenter or pericenter of an orbit whose eccentricity is
near the extreme of its fluctuation. These collisions depopulate those orbits at the
commensurability.

The asteroid belt presents a remaining problem, however. Nearly all the asteroids
(about 30 are known) near the 3:2 commensurability with Jupiter (Hilda group) are
in fact trapped in libration as is the asteroid Thule in the 4:3 resonance (Schubart
1968). These asteroids would all make close approaches to Jupiter were it not for the
fact that the resonance causes the conjunctions to librate about the pericenter of the
inner orbit. Like the apocentric stability discussed in Section 2, the resonance
maximizes the distance of closest approach. Thule and the Hilda group, like the
Trojans and Pluto, owe their survival to the orbital commensurability. Sinclair (1969)
noted that those orbits near the 4:3 and 3:2 commensurabilities would be
depopulated very rapidly by the close encounters with Jupiter (see Lecar &
Franklin 1973). The eccentricities of the resonant orbits still fluctuate greatly, but with
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nearby orbits depopulated the asteroids occupying these resonant orbits suffer no
collisions. Those orbits on either side of the 2:1 or 3:1 commensurability are far
enough away from Jupiter to be completely stable over the age of the solar system in
spite of their nonresonant mean motion, and collisions with these objects can account
for the depopulation of the Kirkwood gaps.

Other types of orbital resonance in the asteroid belt were mapped by J. G. Williams
(1969; 1973a,b). These “secular resonances” result when the longitude of the node or
perihelion has a period matching that of one of the long-period oscillations in the
planetary system. Like the resonances between the mean motions, the secular
resonances lead to large eccentricities and inclinations, and we find gaps in the
distributions of asteroid orbits corresponding to the resonant node and perihelion
motions. It is tempting to attribute these gaps to collisions as well. However,
Williams (private communication, 1975) noted the wide dispersal of orbital
eccentricities and inclinations in the current asteroid belt and pointed out that a
sufficient number of collisions to depopulate either the Kirkwood gaps or the secular
resonances should have also flattened the distribution of asteroids and circularized
their orbits. A possible way out of this dilemma is for perturbations over the age of the
solar system to redisperse the eccentricities and inclinations, but he believes that the
mechanism for the creation of the gaps is still uncertain.

The collision argument has often been used to qualitatively explain the Cassini
division and other gaps in the distribution of Saturn’s ring particles, where Williams’s
comments do not apply. Franklin & Colombo (1970) and Franklin et al. (1971) have
refined the arguments to explain some of the details of the ring-particle distribution.
Collisions will depopulate the region near the 2:1 and 3:1 commensurabilities
with Mimas, and the collisions will persist until noncolliding orbits are obtained.
In Section 2, we note that a secular motion of the pericenter causes the ratio n'/n to
differ from an exact commensurability. For ring particles, Saturn’s oblateness will
dominate the pericenter motion, and @ will be positive. The relation n—2n"+w =0
for a stable resonance means n will be somewhat smaller than the value for an exact
2:1 commensurability with Mimas, and we indeed find the gap displaced from the
exact commensurability toward larger orbits. Franklin et al. (1971) found it necessary
to invoke a high mass density for ring B(2 0.1 g cm ~3) further increasing @ in order
to account for the entire observed displacement of the Cassini gap from the exact 2: 1
commensurability of mean motions. However, Greenberg (private communication,
1975)has found an error in their analysis for the oblateness contribution to @ of such
a magnitude that ring B need contribute little or nothing to @ for consistency with
the observations.

Collisions have thus been able to provide the necessary nongravitational forces
to depopulate gaps in regions of a high density of orbiting objects. The collision
hypothesis is consistent with the existence of the Trojans, Hilda and Thule
asteroids, and with Pluto since nonresonant orbits in these regions were quickly
eliminated, while the resonant objects were preserved by the resonance itself. The
existence of so many commensurate orbits among the satellites of the major
planets, however, has never been accounted for satisfactorily by any collision or other
dissipative process during a formation phase. For this reason we turn to tidal
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friction as a means of altering the original distribution of satellite orbits toward the
establishment of stable orbital resonances (Goldreich 1965). The successful analysis
that allows us to follow this process of evolution from nonresonant to resonant
orbits is discussed in the next section. The internal consistency of the tidal hypothesis
supports this means of establishing most if not all of the satellite commensurabilities.

4 ANALYTICAL DEVELOPMENT

The usual approach to the analysis of orbital resonances has been that developed by
H. Struve (Tisserand 1896, pp. 125-138), where time derivatives of the orbital
elements q, ¢, i, w, Q, ¢ are expressed in terms of partial derivatives of a disturbing
function with respect to these same elements (Lagrange planetary equations). For
example, Goldreich (1965), Allan (1969), Sinclair (1972), and Greenberg (1973a) have
all used some form of the Lagrange equations in their analyses. Others have used
various forms of the restricted three-body problem applied to the Jupiter-asteroid
commensurabilities where the perturbations of one of the resonance partners could
be ignored (Message 1966, Schubart 1964). Canonical variables are usually used in
these later approaches. Sinclair (1970) extended these analyses to the unrestricted
problem where both masses of a resonance pair are small compared with the primary,
but may be comparable to each other. A constant Hamiltonian was obtained from
which the perturbations of both partners could be determined. This treatment was
reduced to one degree of freedom in an application to the Enceladus-Dione
resonance (Sinclair 1972). Yoder (1973) in a treatment similar in some ways to that
of Sinclair’s (1972) analysis of Enceladus-Dione starts with modified Delaunay
canonical variables and maintains the canonical form of the equations of variation
through a series of transformations, which ultimately reduce the problem to one
degree of freedom. This last development is the most versatile and has the simplest
mathematical form. All two-body resonances satisfying the constraints of the
approximation, including the three resonances among Saturn’s satellites, can be
studied in great detail with relative ease.

The advantage of using the Lagrange planetary equations is that the physical
explanations of the resonance behavior, like those in Section 2, are more easily
constructed. But they have the disadvantage of being difficult to extend to the most
general case. The very great simplification of the mathematical description by
Yoder makes the physical picture less immediate, but this is more than compensated
by the power of the technique. Every kind of transition from a nonresonant to a
resonant orbital motion due to tidal changes in the orbital parameters can be
followed in terms of the rather simple mathematical model of a pendulum.
Analytic expressions for the probability of capture into an orbital commensurability,
which the tides cause a system to approach, are obtained in terms of the parameters
defining the orbits and the dissipative properties of the primary. Because of this
versatility, we shall describe Yoder’s analysis in some detail.

In all cases with which we shall be concerned, the satellites whose orbital periods
may be nearly commensurable are orbiting a primary body whose mass M is very
much larger than either of the masses m or m’ of the two satellites. The orbit of each
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satellite is therefore nearly an ellipse with the mutual interactions between the
satellites resulting in small perturbations of the orbital elements. A Hamilton-Jacobi
transformation of the canonical equations of motion of one satellite yields the
canonical Delaunay variables [Plummer 1918 (1960), pp. 142-144] which can be
modified to (Brown & Shook 1933, p. 132):

L=./ua, A
r=L[/1-e*~1], w (1)
Z=L,/1—-e*(cosI—-1), Q

where a, e, I are the semimajor axis, eccentricity, and inclination of the orbital
ellipse, respectively; Q is the longitude of the ascending node measured from an
inertial line in the primary equator plane; w = w+Q is the longitude of pericenter
with o being the angle in the orbit plane between the pericenter and ascending
node; and A = {ndt+¢ is the mean longitude, where n is the mean orbital angular
velocity and ¢ is the longitude at epoch. Finally, uo = G(M +m), where G is the
gravitational constant.
The time derivatives of the above variables are given by

dL_6H di_ oH
dt a9 dt 6L
dl’ B oH dw B o0H

i & o @)

dZ oH dQ 0H
dt = oQ dt  0Z

where H is the Hamiltonian.

H = Hy+R,
GM  uo 1ud
R e Y &
1 Y
R =Gm| —— —%) ()
lr—r'| 7

The sign of H is consistent with common celestial-mechanics usage. In Equation (3)
the zero-order Hamiltonian H, is that for two orbiting point masses. The
disturbing function R is restricted to that part due to the presence of the second
satellite of mass m’, where the two terms in R are called the direct and indirect terms,
respectively. The position vectors r and r’ locate m and m’ relative to the primary
center of mass, and v is the velocity of m. If R = 0, then all of the variables are
constant except A where di/dt = — 0Ho/OL = n.

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1976ARA%26A..14..215P

FI976ARARA T4 “Z15P!

228 PEALE

The disturbing function R for the satellite m can be expanded in an infinite series
of the form (Allan 1969)
Gm'

_ ll=m=2p|yrit-m=2p'| ,lql g’
R=Y — CI I Plelale’ 191 cos Gimppraq @)
>

with a similar expansion for the disturbing function for m’ due to the presence of m.
In Equation (4)

¢lmpp'qq’ =(-2p+qg)i—(1-2p +q )& —(—-m— 2p)Q
+(l—m'=2p)QV —quw+q'w,
where A — @ has replaced the mean anomaly. In Equation (4) a. is the larger of the
two semimajor axes, and C is a series in o = a</a-, e, 2, I?, I'*, whose lowest-
order term is O(a</a-) (i.e. the lowest-order term in C does not contain e or I).
The summation indices are the integers 2<I<o0, 0<p=<I 0=m<],
—00 < g < 0.

An important characteristic of the terms in the series in Equation (4) is the
equality of the magnitude of the coefficient of w with the lowest power of ¢ in the
coefficient of the cosine and the magnitude of the coefficient of Q with the lowest
power of I (see Brown & Shook 1933, p. 141). Also notice that when R is expressed
in terms of the canonical variables, L, T", Z are confined to the coefficients of the
cosines, and 4, @, Q are confined to the arguments. Rotational invariance requires
the sum of the coefficients of the angle variables in each argument to be zero.

Near a low-order commensurability of the mean motions of the two satellites, the
frequency of some terms becomes very small. Often the combination of a large
coefficient and small frequency makes the perturbations due to a single term com-
pletely dominant. If this is the case, we can write

H(J, 0,7, 0) = Ao(J, J')+ A (J, J) cos ¢
and (6)
H(J', o, J,0) = A, )+ A1 (', J)cos

(5)

for the respective Hamiltonians governing the motions of the two partners. The
canonical variables defined in Equation (1) are represented by J, w; and ¢ is the
slowly varying resonance variable now written as

¢ = ji+i} +ko+ ko +iQ+iCY, (7)

where j, k, i are identified with the appropriate expansion indices in Equation (5).
The identification of a resonance by a single resonance variable ¢ allows a
convenient classification based on the form of ¢ and the associated leading term in
the coefficient of the cosine. These classifications are given in Table 2.
The Hamiltonians in Equations (6) can be reduced to one-dimensional form by
using the fact (dL/dt)/j = (dI'/dt)/k = dZ/dt/i = dx/dt, so that

L=jX+L0, F:kx+ro, Z=1X+ZO (8)
With y = jA+ k@ +iQ, Hamilton’s equations reduce to
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Table 2 Classification of resonances

¢ Type Coeflicient Example (Table 1)

JA =4 Synodic o(1) Trojan asteroids
JA+A +ka Simple e O(e'*) Titan-Hyperion
JA+jA +iQ Simple I o'
JAHA +iIQ+TIQY Mixed I o(Itiih Mimas-Tethys
A+l +kw+ ke’ Mixed e O(el ekl

dx OH ( ) dx' oH ¥, x.7)

- = X)X, - = xX,),X,

dt oy YY) Ty T gy Y

: , ©

dy oH ( ') dy oH )% )

- = < xy ] X ) - = — —(X > ’ x:

i ox oYY T T T ey

where ¢ = y+ )/, and x is seen to be the fluctuation in the action variables.
From Equation (4), R’ differs from R only in the factors C' and m, so
1(x', x) = (m/m)(C1/C1)A1(x, x") = K(m/m")A;(x, x). If we can ignore the variation
of K, dx'/dt = K(m/m')dx/dt or x' = K(m/m')x from Equations (6) and (9), which
leads to

dx_(ﬁ ) (iqé__aﬁ(x,gb)
&= WS T e 1o
where
H=s(x)+ m §'(x) +v(x) + A1 (x) cos ¢ (11)
Km

is a constant Hamiltonian with one degree of freedom. We have written Ay(x, x") =
s(x)+v(x, x") and Ap(x', x) = s'(x")+v'(x, x'), where s(x) is the secular part of H, which
is independent of m’, and v(x, x') is the secular part of H, which depends on m'. In
Equation (11), K(m/m')x has replaced x" wherever it appears in s'(x), v(x,x") and
Ai(x, x). If the resonant term has any contribution from the indirect term in R
[ Equation (3)], then Co/Co # C;/C' and the canonical form of Equations (10) and
(11) can only be written if we can neglect (x) (which we usually can). For the 2:1
simple e-type resonance, which does have a contribution from the indirect term, it
happens that C; = C} and Equations (10) and (11) apply with K = 1, which is the
case in all resonances where the indirect term in R is not involved. Finally, we justify
keeping C and C’ constant by noting that the lowest-order term in C does not
contain e or I, and the next higher-order terms are O(e?) or O(I?), which we can
neglect for small e and I. We can thus consider C an expansion in o = a</a-, which
generally can be expressed in terms of Laplace coefficients (e.g. Brouwer &
Clemence 1961, p. 490). The fractional fluctuation in C is comparable to that in
a< or a-, which in turn is like that in L or L. From Equation (8) 6C/Coy = dL/Ly=
j0x/Lo = j (Xmax — Xmin)/ Lo- But A;(x, x") also contains at least one factor of e or I from
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Equation (4), and for small e or I, ' ¥ — Le?/2 and Z ~ — LI*/2, which leads to
Aefey ~ (k/je§ —%)jox/Lo. So the fractional fluctuation in e for small e is a factor
e 2 larger than the fluctuation in C, and the variation in the coefficient of cos ¢ is
almost entirely determined by the x dependence of e. The same argument holds for
factors of I, and keeping C constant is always a good approximation for small e and
I

The last simplification of the mathematical description of orbital resonances
involves the expansion of the secular part of H in a rapidly converging series in x
to O(x?). The zero-order term in H is u3/{2[ L(x)]?} +(m'/Km)u@/{2[ L(x)]*}, which
is clearly expandable since dx/L, < 1. The remaining secular terms like that due to
the oblateness of the primary or to another satellite also have no leading factors of
e or I and are thus similarly expandable. These secular terms are vital for separating
the frequencies of nearly resonant periodic terms (e.g. see Allan 1969), but for
transition into and evolution within a single resonance they do nothing but shift the
zero of the resonant frequency. Only the zero-order part of H is therefore retained in
the expansion to O(x?).

This expansion takes the form

2

Hy = Ao +xAox+ %AOxx: (12
where
o . M Wo
Ag = — 4+ — = 13
0 2a0 Km2ag (13)
Aox = —jno—jno (14)
3 -2 m =2
Aoz =2 +3Kk 2L (15)
aop m dg

Each subscript x indicates a differentiation with respect to x. Inclusion of the
remaining secular terms would change the magnitude of the coefficient only slightly.
If we complete the square for the terms in x in Equation (12), absorb the remaining
terms not involving x into H, and define a new time ¢ = Ao, t, then we can write

H s (x, ) = 3(x+c)*+b(x)cos ¢ (16)

dc_OH; d = OH,

dt o9 dt  ox (17)
where '

c= AOx/AOxxr b(X) = Al(x)/AOxx: Hf (-x’ ¢) = H(x’ (rb)/AOxx- (18)

The differential equations obtained by Allan (1969), Sinclair (1972), and Greenberg
(1973a) follow directly from Equations (16) and (17). Hereinafter we shall drop the
subscript on H.

The form of H in Equation (16) is identical to that of a pendulum with an applied
constant torque if the x dependence of b is ignored. The analogy is established with
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b corresponding to —g/I; x+c(t), to —¢; and the torque, to —dc/dt, where gis
the acceleration of gravity and [ is the length of the pendulum. The introduction of
the tides gives c its time dependence. This allows us to discuss the transition into the
evolution within an orbital resonance in terms of a pendulum initially rotating over
the top of its support but being slowed by a torque until libration is established with
subsequent damping of the libration. Many of the important two-body orbital
resonances can be handled with Equation (26), including those whose partners
have comparable masses. The values of the parameters and the form of b(x) [ through
A(x)] change from resonance to resonance. Resonances not involving e or I such as
the Trojan asteroids cannot be handled with this formulation, but such resonances
did not evolve through tidal evolution in any case. [See Brown & Shook (1933,
Chap. 9) for a treatment of the Trojan asteroids.] Also, any case with two or more
terms with nearly equal resonant frequencies and with comparable coefficients
cannot be treated since we have assumed that only one term is dominant in R. Finally,
we assumed the disturbing function was expandable in powers of a, ¢, and I and that
perturbations were small. This eliminates crossing orbits or those situations where
close approaches are possible. The three two-body resonances among Saturn’s
satellites are well described by Equation (16), and this procedure may provide a route
to understanding the establishment and evolution of the three-body resonance
among Jupiter’s Galilean satellites as a combination of two stable two-body
resonances (Sinclair 1975; Yoder 1976, to be published).

Stability of Librations

One can easily determine those values of ¢ and x about which stable librations
may occur (Yoder 1973). At such a point (xo, ¢o), (%o, q[)o) = (0,0), and the system
remains close to this point if slightly perturbed. This latter condition is described by
the existence of closed curves about (xo, ¢o) generated by H(xo+0x, o +0¢) in a
region surrounding the test point. From Equation (17), x = 0 at ¢ = 7 or 2z, and
¢ = 0yields (xo, ) = (— c+db/dx, ), and (x¢, 27) = (— c— db/dx, 2x), which we shall
call = and 2 libration centers, respectively, if stable librations exist. The expansion
of H(xo+0x, o+ 6¢) about an equilibrium point takes the form of a quadratic in
ox and ¢ by neglecting higher-order terms. This curve is an ellipse and librations
therefore are stable if HZ,— H,, Hys < 0, where again the subscripts indicate
differentiation. This leads to stability criteria

b(1—-b,,) >0, bpo=m
b(1+byy) <O, o =21

If | byx| < 1 at both the 7 and 27 centers, b(n) > 0 and b(27) < O for stability. This
is similar to a simple pendulum (where b,, = 0), which always has only one stable
center. If | by (m)| and | b,,(2m)| are both > 1 and b/b,, < 0, the system can librate
about either the n or 2% centers, but if b/b,, > 0, neither center is stable.

Recall the example in Section 2 where libration about both apocenter and peri-
center was possible for small e. This was a simple e-type resonance where b(x) has a
leading factor e!*!. From Equations (4) and (18) and the approximation I’ ~ — Le?/2,

(19)
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b= GmC'e, ¥
B a- AOxx

b GmC'ey ¥ 1= |k |k
o a AOxx LO

. Gmcf66(|k'|—4)k/2lk/|(l k1|_2) (20)
s a AOxx L% .

For a sufficiently small value of the eccentricity eq | b.x(0)| > 1 for | k| < 4 but only
for |k| =1 does by, have the opposite sign of b. This includes the Titan-Hyperion
and Enceladus-Dione resonances. The maximum value of ¢, that will allow stability
at the = libration center is determined by |bs.(m)| = 1, which corresponds, for
example, to eg,(n) < 0.0062 and eq,(m) < 0.025. Currently the average values are
{eg,»> = 0.0044 and <ey,» = 0.104. Enceladus could librate stably in the inverted
position, since e(n) < <{e).

Tidal Evolution

The tides raised on a homogeneous, spherical primary by a satellite lead to (Goldreich
1965)

dn 27 mn?(a,\’ o
dt  4MQ\a

and
dL 9 mn®a; 22)
dt 2M Q 4

where M is the primary mass and a, the equatorial radius. The importance of tidal
evolution to the formation of orbital resonances comes from the strong dependence
of dn/dt on m and a. The differential rate of the orbital evolution means that satellites
originally in nonresonant orbits can gradually approach a commensurability
(Goldreich 1965). Within a resonance, the tides lead to a change in the coefficient of
the restoring term and change the amplitude of libration (see Section 2).

The tidal effects are inserted into the Hamiltonian of Equation (16) as a
perturbation by replacing n and L where they occur by

dn dL
Mir; Lo+ | Zar.
n0+j‘dtdt, 0+J\dtdt

However, near a resonance Ao, = —jn—j'n’ is very near zero, so the fractional
change in this coefficient is much larger than the fractional change in A¢ or Agys.
Hence, we can neglect the tidal change in these later coefficients and write

!

dn an’\ — —
Abex ) = = Avs(ino+m5)~ (j i ) 1) 3)
0 0

where t = Ao, as before. There is also an x dependence in the perturbation, which
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can be retained by expressing Equations (21) and (22) in terms of L(x) and
expanding to first order in x. The partial derivative in the canonical equations
does not act on this x dependence in dL/dt, however. We generally omit the x
dependence in Equation (23), but should note that it becomes important in the
evolution of a resonance when the coefficient of t— t, is very small, as may happen in
the Mimas-Tethys case (Allan 1969). Finally, the tidal variation of the coefficient
of the cosine has little effect on the approach to and transition into a stable
commensurability, although there is a secular change in this coefficient within the
resonance (e.g. Allan 1969).
From Equations (16) and (17)

gd(té = —x—c—b,(x)cos ¢, (24)
so that far away from the resonance where (d¢/dt)/Aoxx = dd/dt = (jn-+jn' +
ktr)/Aoxx (for example) is not near zero, d¢/dt ~ — ¢ and the x and cos ¢ terms in
Equation (24) yield only small fluctuations. It is always possible to choose the signs
so that d¢/dt > O far away from resonance, then ¢ < 0; and the only way the tides can
bring a system to a resonant configuration is for the magnitude of ¢ to decrease.
Hence,

, de _ .dndnw
0t~ Va7 dty @3)
must be positive.

The description of the orbital resonance has been reduced to that of a pendulum,
which is rotating over the top of its support (d¢/dt > 0, corresponding to non-
resonant motion or circulation of the resonance variable) and being slowed by a
torque (dc/dt due to the tides) toward a state where d¢/dt vanishes at least
momentarily. The latter situation can lead to the stable libration exhibited by
several satellite pairs in the solar system. Stability in the presence of the tidal torques
1s maintained by the dominance of the maximum restoring torque (Section 2). Many
similarities to the description of spin-orbit coupling (Goldreich & Peale 1966, 1968)
are evident. However, for spin-orbit coupling b was constant or time dependent
instead of x dependent. This x dependence of b provides a much greater variety of
evolutionary tracks toward the establishment of an orbital resonance compared with
the spin resonance. Since the form of b(x) is peculiar to each type of resonance, each
presents its own mathematical problems.

Transition

By transition we mean either the capture from a nonresonant rotating state into a
stable libration or the passage through and subsequent escape from such a
resonance. In spin-orbit coupling this transition was handled by following the
variation of ¢ directly (Goldreich & Peale 1966, 1968). The tides gradually decrease
é such that a plot of ¢2 vs ¢ appears schematically as in Figure 3, where ¢ reverses
sign at ¢ = 0 and ¢ subsequently decreases. Capture into a librating state is possible
if the variation of ¢2 is asymmetric about ¢ = 0, as shown in Figure 3. A second zero
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1.2

Figure 3 Reduction of $? due to tides as a function of the resonance variable ¢, showing
asymmetry about transition. Capture probability is d¢%/Ag>.

in ¢ is then possible. If the value of $? as the equivalent pendulum passes over the
top the last time before ¢ = 0 is equally likely to have any value between 0 and
A¢? indicated in Figure 3, then the probability of capture into the resonance is

5>

P= AG (26)
where 8¢h? is also defined in Figure 3. This definition has been adopted by Sinclair
(1972, 1974) and Yoder (1973).

The necessary asymmetry in ¢ about ¢ = 0 in the spin-orbit case is provided by
a substantial decrease in the tidal torque as the resonance is traversed or alternatively
by a core-mantle interaction, which cannot apply here. However, for a resonance
between two orbital motions, the effect of the tides given by dc/dt is nearly constant
during the transition phase and yields a negligibly small capture probability. It is the
x dependence of the coefficient b that provides the asymmetry in ¢ for the orbital
resonance. This x dependence destroys the simplicity with which P is calculated for
spin-orbit capture. Although the definition of P in Equation (26) can still be applied,
a different approach is expedient in determining 8¢> and A¢ (Yoder 1973).

From Equations (16) and (17)

dx .
il b sin ¢, 27)

where we can eliminate sin ¢ using Equation (16) to yield

j‘ sign(— bsin ¢)dx
I—to =
D(x)

(28)
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where
D(x) = b(zx)_ [H_%(x+c)2]2'

The variation in x is confined between two real roots of D(x). From Equation (27)
the roots bounding x correspond to ¢ = 2nz or (2n+ 1)7, where n is an integer. One
can label a root with the value of ¢ and the sign of ¢ when x assumes the root value.
Hence, it is always possible to uniquely specify the nature of the motion—positive or
negative circulation or libration—by the labels on the bounding roots. Evolution of
a system due to tides can then be ascertained by following the motion of the roots and
by keeping track of their labels in the complex plane. Although this process is often
nontrivial (Yoder 1973), oneis able to define analytically all the important parameters
governing the evolution, including analytic expressions for the probability of capture
at transition. This often avoids the necessity of numerical calculation$ for each
specific resonance (e.g. Sinclair 1972, 1974).

Transition from positive circulation into negative circulation (escape) or positive
circulation into libration (capture) begins with the coincidence of two roots on the
real axis or one root reaching a value such that b(x) evaluated at that root vanishes.
The coincidence of two real roots with their subsequent motion off the real axis in the
complex plane is associated with a probabilistic capture. The quantities 6¢> and
A¢? in Equation (26) are determined from time integrals of d(Imx?2)/dt where Imx, is
the imaginary part of a (¢ = m) root, which left the real axis after coincidence with
another (¢ = m) root. The vanishing of b(x,) is associated with certain capture, which
is described in Section 2. The condition separating a certain capture with a
probabilistic one is simultaneous coincidence of three (¢ = n) roots, two of which
were previously complex.

Since various evolutionary tracks are defined by specific associations and
configurations of the roots of D(z), it is possible to completely determine the values of
all the parameters in the problem separating the various possibilities and defining the
capture probabilities. This determination requires using the adiabatic invariance of
the action of an oscillating or rotating system

J= §xdo (29)

when the parameters are varied slowly compared with the oscillation period (Kulsrud
1957, Gardner 1959, Lenard 1959). The integral is over one complete cycle. Since the
tidal changes are very slow indeed, the zero value of J far from transition [x
represents positive and negative fluctuations of ¢ about its mean value (— c), see 24)]
means that J = 0 at transition and (29) represents the necessary additional relation
to determine the values of all the parameters at transition. Once in libration, J is
also conserved adiabatically, and its value calculated at transition (time integration
being over a libration instead of a rotation) can be used to follow the tidal evolution
within a resonance.

We present the results of these exercises for the simple e-type resonance, of which
the Titan-Hyperion and Enceladus-Dione commensurabilities are examples. Because
of its formal identity, the simple I type is also included here. It is convenient to
define dimensionless variables by x' = x/(—I), ¢’ = c¢/(—To),H = H/T'3,b'(x) =
b(x)/T3, t = (—Tot). Dropping all the primes and the bar on t, we can write
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b(x) = B(— kx+1)1/? (30
’ k| —4
ﬁ=4Gm Cel ) 31)
Ho Aoxxad> do
%z%g: — B(—kx+1)*125in ¢ (32)
k|
%:—Z—Zz —x—c+l—k2]—kﬁ(—kx+1)(§ 1)cosgzﬁ (33)

where — ' ~ e?L/2 = —kx—T', from Equation (8) has been used.

Both positive and negative values of k are retained, although the reason may not be
immediately obvious. A resonance variable may be defined by ¢ = 1—-24+w
for k = + 1. But changing the sign of k only changes the sign of ¢ since the sum of the
coefficients must vanish. The assumed sign of ¢ certainly can have no effect on the
analysis of the resonance. Still, a negative k has a very important distinction. Recall
that ¢ = jn+j'n + ke was chosen positive far from resonance, and it was assumed
that tides were driving the system toward resonance (dc/dt>0). For k=1,
é = n—2n'+@ > 0 indicates that the inner satellite is orbiting too fast for the
resonance, and the only way the resonance can be approached is for the inner orbit to
expand sufficiently fast such that the rate of decrease of n is more than twice the rate
of decrease of n'. For k= —1, ¢ = —n+2n' —o > 0 means that the inner satellite
is orbiting too slow, and the orbits must expand such that the rate of decrease of n
is less than twice the rate of decrease of n'.

Hence, k = +1 means that the approach to a resonance is dominated by
expansion of the inner satellite orbit (successive conjunctions circulate in retrograde
sense), whereas k = — 1 means an approach to the resonance from the other direction
(successive conjunctions circulating in the prograde sense). The importance of this
distinction is that Yoder (1973) found that capture into a resonance for k= —1 or
—21s impossible. Hence, the only way the tides can lead to stable commensurabilities
is for the ratio of the periods to approach a commensurability p/(p+q) from smaller
values. Sinclair (1972) reached this conclusion in his careful analysis of Mimas-Tethys
and Enceladus-Dione. We see later that this fact may place some constraints on the
frequency and amplitude dependence of Q for Saturn (Greenberg 1973c, Yoder 1973).

The condition that a system approaching a resonance enter stable libration with
certainty is | 8| > § for k = +2 and | B| > 0.272 for k = + 1. For values of | §] less
than these critical values, the probability of capture [ Equation (16)] is

2

P = , 34
1+ m/(2 arcsin o) G4

where
5= 2Xn— Xon- — X4 <1. (35)

X4 — X2 —
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The roots of D(x) in Equation (35) are labeled with the value of ¢ and the sign of ¢
when x has the value of the root. The root x4 is a 2n +root for k = 2 and also for
k=1 when |f| <021. For 021 < |B]| <027, x4 is a = +root. The roots are
evaluated at the time that two = roots coincide, marking the beginning of the
transition. When & = 1,| 8| = 0.27, above which value P = 1. A simple e or I system
with k=1 can be trapped temporarily in the inverted libration mode for
0.21 <|B| < 0.27. Such a libration state is unstable to further tidal evolution,
however, and escape from the resonance to negative circulation always occurs (see
Section 2).

In Figure 4, the capture probability is shown as a function of /8, where S, is the
critical value, with | 8| > | .| meaning certain capture. If | 8| < | B. |, the small value
of the coefficient of cos ¢ means that the maximum fluctuations dx are small. Since
B oc ed¥!=* or I{*1~# small fluctuations correspond to large values of e, or I, for
|k| < 4. In the small fluctuation limit it is possible to derive the approximate
expression (Yoder 1973),

2
P= .
1+7|B|"2/[2bx(0)]

As the derivative b, oc f§, the second term in the denominator is very large, and
P oc | B|**. The small-fluctuation approximation is seen to be valid for P < 0.1
for k =2, and P < 0.5 for kK = 1 in Figure 4. At transition, ¢ can be evaluated along
with all the other parameters with the aid of the action integral for positive rotation
[Equation (29)]. The action integral is re-evaluated for libration at transition with
the known parameters, where its value is thereafter adiabatically invariant as ¢
continues to increase. The invariant action with a given value of § allows one to
follow the decrease in the libration amplitude and the increase in the magnitude of

(36)
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o} 0.2 0.4 06 08 10

B/B,

Figure 4 Capture probability for orbital resonances as a function of §/8.. (After Yoder 1973.)
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b(x) within the resonance as a function of ¢. This is related to time through
Equations (21) and (29), and one sees how the time scale for the evolution is directly
related to the dissipation factor Q for the primary body. Alternatively, the current
parameters for a commensurability can be integrated backward in time until the
amplitude of libration reaches 180° or until b(x) vanishes at one point in its
fluctuation (e.g. Allan 1969). Given Q, this determines an age for the resonance.

In Figure 5, the value of ¢, at transition is shown as a function of | #| for the simple
resonance with k = 1. For large | 8|, co & /2. The break at | 8| = | B.| = 0.27 results
from the different mode of transition for | 8| > or < | 8, |- Subsequently larger values
of ¢ define new values of the parameters consistent with the invariant action integral.
Figures 6 and 7 show the amplitude ¢,, of libration as a function of ¢(t) for two
ranges of |B|. The particular function of ¢(t) was chosen as abscissa in Figure 6 to
emphasize the linear portion for large | 8|, where sin ¢, ~ 2¢/f for f > 1 as long as
¢/B < |B|71? (Yoder 1973, 1974). A different set of coordinates was chosen for
Figure 7 since the amplitude is reduced extremely slowly for small | 8| and the
abscissa ~ e/eo. The positive values of ¢ implied in Figures 6 and 7 do not mean
—jn—j'nW >0 since ¢ in Equation (33) contains x whose mean value becomes
increasingly negative. We can use Equation (23) to convert the value of ¢ into a time
.dn dn
Ta
angular momentum. Sinclair (1974) has shown this to be true until the mean motions
are quite close to the commensurability.

For the simple e-type resonance with k=1, e =¢eo(—x+1)"2 At ¢ = ¢y,
é = 0so Equation (33) yields the extreme values of x for a given ¢,, and from Figures
6 and 7 for a given c(t). With (x> = (X2, + +X2,-)/2 the average value of e is known
as a function of time. Also from Equation (32) there is a secular change in {x) since

as long as does not change too much due to the secular transfer of

25 T T T T

0 1 i 1 1
4

18l

Figure 5 Value of parameter ¢ at transition for use in determining amplitude evolution
in Figures 6 and 7. (After Yoder 1973.)
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the librations are not about ¢ = 0 when the tides are included. For the normal
librations considered here {x) increases its negative magnitude such that e secularly
increases within the resonance. The complete time behavior of an orbital com-

1.0 T T , 90°
A \4\ B:—Z 75°

0.8

o6t

SIN ¢>m -

o4t
B B=-10? -

0.2f B=-10°

0 ] i 1 L Q°
0 05 1.0 1.5 20 25

('_2%(1))

Figure 6 Libration amplitude as a function of ¢ and g for large values of | 8|. (After Yoder
1973)

180° | T T T

(@]
(6] o

10 15 20 25
[C(f)+|]l/2

Figure 7 Libration amplitude as a function of ¢ and § for small values of | 8|. (After Yoder
1973)
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mensurability can thus be followed in detail. This process cannot be continued
indefinitely, however, for eventually the magnitude of ¢ becomes too large for the
approximations to be valid. The success of the recent theoretical understanding of the
tidal evolution of orbital commensurabilities has encouraged much discussion of
their possible histories, which we follow in the next section.

5 DISCUSSION

Because of their relative simplicity, the resonances among the satellites of Saturn have
received the most attention and are the best understood. We therefore consider the
three two-body commensurabilities in this system. Table 3 lists additional data to
which we shall refer.

All three resonances satisfy the restrictions that the tidal change in ¢ [ Equations
(21) and (25)] is very slow, so that treating the tides as a perturbation is valid. This is
especially so as Q = 6 x 10* in Equation (21), where the bound was established by
the limited recession of Mimas from Saturn in 4.6 x 10° years (Goldreich 1965,
Goldreich & Soter 1966).

The Mimas-Tethysresonanceis a 2: 1 mixed I type, where the conjunctions librate
about the midpoint of the two nodes of the orbit planes on Saturn’s equator plane.
We have explicitly assumed in Section 4 that all but one term in the disturbing
function can be neglected, but it is not a priori obvious that this assumption is valid
for a given resonance. For example, near the 2: 1 commensurability the arguments
(2A—41 +2Q),2A—41 +Q+Q),(2A—44 +2Q)),(A— 2/ +®),(A—241 +w) are all
slowly varying. (The prime always refers to the outer satellite.) However, the time
variations of node and pericenter due to the oblateness of Saturn are sufficiently
rapid that frequencies of the above arguments are actually well separated, as can be
vertified from Table 3 (Allan 1969). Compare the 78.8-year libration period with
Q- = —293°yr~ 1.

The Neptune-Pluto resonance is apparently a case where at least two resonance
variables are simultaneously involved. Not only do conjunctions librate about the
apocenter of Pluto’s orbit (Cohen & Hubbard 1965), corresponding to a simple e-type
resonance, but the apocenter and hence the conjunctions also librate about a point
90° from the node of Pluto’s orbit plane on Neptune’s (Williams & Benson 1971).
There has been no published analytical analysis of this dual libration, although
Greenberg & Franklin (1975) have successfully explained coupled modes in 2:1
librating asteroids.

For Mimas-Tethys, —dn/dt+2dn'/dt ~ 2x 10~** rad sec”? [Equation (21)] is
positive, and the system evolves through the resonances in the order in which they
are listed above. The commensurability ratio 4 is approached from smaller values, so
this system has the possibility of being trapped at any one of them with subsequent
damping of libration. The positive value of dc/dt deduced here depends on assigning
the same value of Q to the tidal dissipation from both satellites, which will not be the
case if Q is frequency or amplitude dependent. The relative tidal acceleration of the
two satellites almost matches the commensurability relation such that
(—dn/dt+2dn'/dt)/(dn/dt) = 0.1. This means the Mimas-Tethys system evolves very
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slowly, and the x dependence of ¢ (corresponding to the changing dn/dt due to
the tides) becomes important in the evolution within the resonance (Allan 1969,
Yoder 1973).

The order in which the resonances are encountered was deduced from the current
values of & and Q in Table 3, which are dominated by the oblateness of Saturn.
However, from Equations (1), (2), (3), and (4), an approach to a resonance induces
the variations

dw m ag _ aqy may I
— | =nolk|— —Ce'¥=2; <— =nop— —C — 37
( dt >res n0| IM a- ° dt /e nOM a- Iy (37)

for the simple e and lowest-order mixed I type, respectively. For k = 1, dw/dt will
be large and negative (C < 0) for small ey. The node can have a large negative motion
if Iy < I', but the presence of I’ in the numerator means the node motion will nearly
always be dominated by the nonresonant secular perturbations. It is much more
likely that a small value of ey (or ep) can induce such a large retrograde motion
in w (or ') that a simple e-type resonance can be encountered before any of the
inclination resonances and can automatically enter libration (see Section 2). The first
encountered e-type resonance would have been that involving ¢’ (Tethys), and since
presently ¢’ < 1 this would make @’ most likely to have the large retrograde motion
as the system approached the 2:1 commensurability. From Equation (37),
€o < 1.3x107° in order for |(dw'/dt)es| > | dQ/dt|. Since such a small value of €,
is extremely unlikely, it appears safe to assume that the Mimas-Tethys system first
encountered the well-separated inclination resonances in the order given (Yoder
1973, 1974). We need but account for its avoidance of the first I-type resonance and
capture into the second.

Since m'/m ~ 17 for this resonance, we can neglect the variation in Tethys’s
parameters and approximate the resonance as a simple I type. Then
B = 4m'CIo/(M Aoxx ao ao I?) and Ay, = 12/a3+48m/(m'a’?) where again the prime
refers to the outer satellite. The current values of the parameters yield
Brow = —9.2x 107>, This is so much smaller in magnitude than the critical value
B. = —0.27 that the small fluctuation limit | 8| < 1 should apply throughout the
evolution. In this limit, {x? & —¢(¢) in libration, and c¢(t) & 0 at transition (Yoder
1973) (see Figure 5). From Table 3 and Figure 7 the current amplitude of libration
is 97°, corresponding to [c(t)+1]"? ~ 4. But b({x)) = B(— x>+ 1D)V? = B[c(2)
+1]2 = b(0)[c(t) +1]"/%, where b(0) is the value of b at transition. Thus
baow/boy = Inow/Io = 4, where I corresponds to the value of I when the libration
amplitude is 180°. However, we pointed out earlier that the x dependence of ¢ was
important in this particular resonance because of the near cancellation of the tidal
decelerations in dc/dt. When the x dependence is included, a numerical integration is
sometimes necessary, and the amplitude is 180° when I, = 024156 (Allan 1969). This
corresponds to a value of B at transition of —4.5x 1072, which verifies the small
fluctuation limit throughout the evolution. The probability of capture is then
[Equation (36)] P = 4b,(0)/x|B|*/? ~ 4.3%, which was first obtained numerically by
Sinclair (1972).

The inclination of 0742 now applies as the Mimas-Tethys system passed through
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the first-encountered, simple I-type resonance. In this case f§ = 8.33x 10™* and
P = 7.3% by Equation (36), which was also numerically verified by Sinclair (1972).
We can thus account for Mimas-Tethys skipping the first resonance encountered
and stopping in the second because | f| < | B, | and the captures are probabilistic.

The Enceladus-Dione pair is a 2:1 simple e type with B = 4m'C/(M Ao ad'ed)
with Aoxx = 3/a®+12m/(m'a’?). From Table 3, the current values of the parameters
lead to fhow = —19. Since | Buow| > | B.| and must have been larger in the past, the
large-fluctuation limit applies throughout the history of this resonance. The system
entered libration with certainty (Sinclair 1972, Yoder 1973). However, Sinclair (1974)
noted that the existing resonance should be the last one to be encountered of the
five associated with the 2:1 commensurability. Also, the values of both orbital
inclinations are so small that || > |B,| for the inclination resonance and should
have been captured there. These I-type resonances could have been avoided only
if the inclinations were larger in the past to make the captures probabilistic. However,
this problem vanishes if we perform the same exercise on this pair as we did earlier
for Mimas-Tethys.

For | B| > 1, sin ¢,, = 2¢(t)/B, and it can also be shown that {e>/{eo> = B/2¢(t)
in this limit (Yoder 1973, 1974). Thus, sin ¢,, = ey, /{e>, where e is the mean value
of e in the circulating phase before transition. Two values of ¢,, are quoted in the
literature: ¢,, = 1°5 (Sinclair 1972), for which e, = 1.15x10™* and ¢,, = 200
(Goldreich 1965), for which e, = 2.6 x 107°. For the larger value of e, (dw/dt)es
+ (dw/dt)sec = —952°yr 1 < dQ/dt = —152° yr !, where Equation (37) was used. If
Dione’s eccentricity was no smaller during positive circulation of the resonance
variables than it is now, (dw'/dt)es+ (dw'/dt)ec = 27.4° day~!. Hence, the simple
e-type resonance in which we find Enceladus and Dione was encountered long
before any of the other resonances, and we need not require special circumstances
to account for their avoidance. Again the tidal hypothesis is consistent with the
state of Enceladus and Dione, since the resonance in which we find them, and the
one into which they were captured with certainty, is the first one encountered as the
orbits expand. Also, the small amplitude of libration is accounted for by the rapid
damping for | #| > 1 (see Figure 6).

The remaining commensurability, Titan-Hyperion, is a 4:3 simple e type whose
properties fall midway between the extremes of the other two pairs. As C > 0, the
conjunctions of this system librate about ¢ = 7 or the apocenter of Hyperion’s orbit.
The value of |Buow|=4mC/(MAorca’?e’®), with Aoy, = 48/a’>+27(m'/m)/a?, is
0.058, and it is apparent that neither approximation | §| > | B.| or | B| < | B| is valid.
The general procedure employing the action integral J [Equation (29)] must be
used to determine the history of this resonance. At the present time we can evaluate
¢, H, and ¢ at the extreme of a libration ¢ = ¢,, = 36°. These relations along with
B = Browle/eo)? allow us to express H and hence J in terms of e,. This latter integral is
evaluated numerically as a function of g, and e, is determined by the condition that
J equal its value at transition. The important parameters thus deduced are
eo =0.022, | B| = 5.85, co = —2.62, cnow = 20.1, where ¢, is determined from the
action integral evaluated at transition (Yoder 1973, 1974). Automatic capture is
assured (e.g. Greenberg et al. 1972, Greenberg 1973a).
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From Table 3 we see that even today, with Hyperion’s large eccentricity, the
retrograde motion of the apsides exceeds that of the node. From Equation (37), this
retrograde motion was considerably higher at transition when ¢, = 0.022, and the
first resonance encountered by the Titan-Hyperion system is where we find it today.
From Figure 7 we see that for the reasonably small value of | 8| appropriate to the
Titan-Hyperion case, the amplitude of libration decreases very slowly after its initial
drop from 90°. The value of ¢,, after a time is more indicative of the value of § (i.. the
mean eccentricity) before transition than of the age of the resonance with larger
| B| (smaller eo) leading to smaller amplitudes. This was shown by extensive numerical
integrations of the Titan-Hyperion system (Colombo et al. 1974). These authors also
found that e, near 0.02 leads to asymptotic amplitudes near the present 36°, which
is also consistent with the above analytical results. Thus, Titan and Hyperion seem to
fit very well into the pattern of tidal origin of commensurabilities. However, we have
so far implicitly assumed that the tidal evolution of the orbits has been of sufficient
magnitude to accomplish the observed evolution. That this is not necessarily so is
shown by the ages of the resonances for the given value of Q for Saturn.

First, we can show that the inner two resonances could have evolved sufficiently
for the tides to have accounted for their existence. For Mimas-Tethys, the current
97° amplitude and c(f) = 0 at transition leads to Ac ~ 15 from Figure 7. Using
Equations (21) and (25), with Q = 6.5 x 10%, we find —dn/dt+2 dn'/dt = 2x 103
rad sec”? and a time since transition t of about 6 x 108 years. Allan (1969) finds
7 = 2.4 x 108 years by a numerical integration of a more accurate approximation.
This is much younger than the solar system, and the tides are thus capable of forming
the commensurability. '

For Enceladus-Dione, 8 = 1.06 x 10° and Ac = 5.17 x 10° with ¢,, = 1°5. With
0 = 6.5 x 10* and Equations(21)and (25), —dn/dt+2 dn'/dt = 1.1 x 10~ >3 rad sec™?,
and the age t ~ 1.7 x 10° years. The tides are again adequate.

For Titan — 3dn/dt +4dn’/dt ~ 4.6 x 10~ 2% rad sec 2, and the time required for the
evolution of this system is about 6 x 10° years by the above procedure. This exceeds
the age of the solar system by more .han an order of magnitude and led Goldreich
(1965) and Sinclair (1972) to abandon the tidal hypothesis for this particular
resonance. Hence, the Titan-Hyperion example may have resulted from a primordial
chance distribution of objects around Saturn, and it exists today because the
resonance has prevented close encounters with Titan (see also Colombo et al. 1974).
On the other hand, all the other properties of this resonance are consistent with a
tidal origin, and it is tempting to try to salvage the hypothesis.

The lower bound on Q for Saturn was determined by the limited evolution of
Mimas. However, if the Q appropriate to the tide from Titan were 2-4 x 103, the
evolution time scale is again within the age of the solar system (Colombo et al. 1974).
One could have a large Q for the Mimas tide and a small Q for the Titan tide with
the proper assignment of amplitude and frequency dependence. However, such an
exercise is very arbitrary, and one must be careful not to destroy the tidal’
hypothesis for the other two resonances in the process. The sign of dc/dt for these
resonances could be reversed for some assignments of amplitude and frequency
dependence (Greenberg 1973c; Yoder 1973, 1974). The small libration amplitude of
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the Enceladus-Dione resonance is perhaps the most convincing support of the tidal
hypothesis, as it is very improbable to have resulted from random processes.

There is one possible observational test for the origin of the Titan-Hyperion
resonance. The rotation rate of Hyperion is unknown, but the current eccentricity of
its orbit leads to a capture probability of about 0.24 for trapping in the Mercury-
like 3 spin-orbit resonance (Peale 1974). If Hyperion is found in this spin resonance,
e would have to have been large when tides had slowed it to this value, which was
< 10° years from the date of formation. The current large eccentricity would have
been primordial, and the resonance would have been due to chance events. Finding
Hyperion synchronously rotating does not prove the converse, however.

The remarkable success of the tidal hypothesis for the origin of at least two of the
orbital commensurabilities among Saturn’s satellites has not been transferred to the
three-body commensurability among Jupiter’s satellites. Sinclair (1975), in addition
to the Laplace relation, found three two-body resonance variables which are also
librating. Although this suggests a tidal origin (Goldreich 1965), no consistent
evolutionary scheme has explained the extremely small amplitude of libration of the
three-body commensurability (Sinclair 1975). Yoder (1976, to be published) noted
that the two-body dc/dt must be positive for stability of the Laplace resonance, and
suggests (Yoder, private communication, 1975) that some of the difficulties in the
evolutionary scheme might be resolved by allowing for eccentricity changes due to
tidal dissipation in the satellites themselves. There also exists a Laplace relation for
the satellites of Uranus (Greenberg 1975), but the resonance variable is slowly
circulating rather than librating. It is curious that there are also no two-body
commensurabilities among Uranus’s satellites (Greenberg 1975), and a comparative
study of Uranus and Jupiter systems may lead to our understanding of the details of
origin and damping of the well-known Laplace relation at Jupiter. Surely this is the
outstanding problem in the study of orbital resonances.
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