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ABSTRACT 

To study the stability of flattened galaxies, we have followed the evolution of simulated galaxies 
containing 150 to 500 mass points. Models which begin with characteristics similar to the disk of 
our Galaxy (except for increased velocity dispersion and thickness to assure local stability) were 
found to be rapidly and grossly unstable to barlike modes. These modes cause an increase in 
random kinetic energy, with approximate stability being reached when the ratio of kinetic energy 
of rotation to total gravitational energy, designated t, is reduced to the value of 0.14 ± 0.02. 
Parameter studies indicate that the result probably is not due to inadequacies of the numerical 
A-body simulation method. A survey of the literature shows that a critical value for limiting stability 
/ ^ 0.14 has been found by a variety of methods. 

Models with added spherical (halo) component are more stable. It appears that halo-to-disk 
mass ratios of 1 to 2£, and an initial value of i ^ 0.14 ± 0.03, are required for stability. If our 
Galaxy (and other spirals) do not have a substantial unobserved mass in a hot disk component, 
then apparently the halo (spherical) mass interior to the disk must be comparable to the disk mass. 
Thus normalized, the halo masses of our Galaxy and of other spiral galaxies exterior to the 
observed disks may be extremely large. 
Subject headings: galactic structure — stellar dynamics 

I. INTRODUCTION 

a) Purpose 

There is some theoretical reason to believe that a highly flattened disk supported 
mainly by rotation is subject to large-scale (barlike) instabilities, whether the disk is 
composed of gas or stars. Yet there exist many galaxies where most of the light origin- 
ates in an apparently flat rotating disk, and where the random stellar motions appear 
to be small compared to the systematic circular motion; i.e., they are apparently 
“cold.” Our own Galaxy is such a system, and it does not seem to suffer from any 
large-scale, large-amplitude, short-time-scale instability. Two questions naturally arise. 
Is a “cold” rotating disk of stars truly unstable? If so, how can we account for the 
apparent stability of our Galaxy? To supplement previous theoretical and numerical 
work, we present here some numerical V-body studies designed to test whether or not 
flattened stellar systems are subject to large-scale instabilities; what, if any, critical 
value of the random component of the total kinetic energy is needed to prevent these 
instabilities; and what could be done to add stability to a flat system whose disk would 
be, by itself, unstable. We then discuss the possible significance of the instability in the 
light of the present computations, earlier calculations, and the apparent astronomical 
situation. 

* Supported in part by the National Science Foundation. 
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468 J. P. OSTRIKER AND P. J. E. PEEBLES Vol. 186 

b) Concept 

i) Background 

We establish here some notation. An A-body system in equilibrium satisfies the 
virial theorem in the form 

2J'rand + 27^6^ + = 0 , (1) 
where 

Anean = ^ j J <i>(r)>2/(t), r)dvdr, (2a) 

Anna = 5 J J ^ “ <.v(r)»2f(v’ r)dvdr . (2b) 

Here /(t>, r) is the density of points (atoms, stars) in position and velocity space, 
0(r)> = J vf(v, r)dvl$fdv is the streaming velocity, and H^is the gravitational energy of 
the system, W = % j (potential) Jm. Consider now the simplest such systems, for which 
(v(r)} represents steady rotational motion. Here rmean is the kinetic energy of rotation. 
Dividing equation (1) by | PF| and defining 

t^TmeJ\W\; u = Tr&nJ\ W\ ; (3) 
we have 

t + u = %, (4) 

where the relative magnitudes of t and u represent the relative importance of rotation 
and “pressure” for maintaining equilibrium. 

ii) Fluid System 

The simplest such system—the uniformly rotating, uniform-density, fluid body—has 
been studied in great detail. An axisymmetric sequence, the Maclaurin sequence, can 
be defined in terms of increasing eccentricity or increasing t, the relation between them 
being 

1 = i{(3e"2 — 2) — 3(e~2 — l)1/2[arc sin (e)]"1}. 

Thus the various known equilibrium and stability properties of the sequence can be 
rephrased as limits on permissible values of t (cf. Bardeen 1971; Bodenheimer and 
Ostriker 1973 [BO]; Ostriker and Bodenheimer 1973 [OB]). All equilibrium values of 
t are attainable along the Maclaurin sequence (0 < t < £), but objects with ¿ > 0.1376 
are secularly unstable and those with t > 0.2738 are dynamically unstable to the for- 
mation of bars. If axisymmetry is rigorously maintained, the spheroids are secularly 
unstable to ring formation for t > 0.3589, and dynamically unstable to ring formation 
for t > 0.4574. It might be thought that these results are peculiar to the rather con- 
trived and physically improbable Maclaurin spheroids. However, recent studies (cf. 
OB and references therein) have shown that fluid “stars” constructed with a wide 
range in degrees of central concentration in density and in angular velocity all become 
secularly unstable at nearly the same point (when measured by the parameter t). For 
all the cases considered it was found that 

¿ent = 0.137 ± 0.002 (calculated fluid limits) . (5) 

The secular instability originates in the advantage a rapidly rotating object has in 
maximizing its moment of inertia. Beyond the critical point, barlike equilibria exist 
having lower total energy but the same angular momentum, mass, and central density. 
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No. 2, 1973 STABILITY OF FLATTENED GALAXIES 469 

The instability consists of a developing eccentricity of the equatorial plane and flatten- 
ing at the poles. Dynamical instability (t > 0.27) has been followed in the nonlinear 
regime by Rossner (1967) and Fujimoto (1968). The very complicated post-instability 
motions can be roughly characterized as those of an extremely elongated (25 to 1) 
prolate spheroid tumbling end over end in space. These elongated objects (really 
ellipsoids, not spheroids) are probably unstable to fragmentation, although this last 
point has not been proven. Thus the instability which leads to bar formation in fluids 
appears to be large-scale and irreversible. 

iii) N-Body Systems 

The advantage a triaxial configuration has over an axisymmetric one should carry 
over to rapidly rotating stellar systems, so it is interesting to see if there is an analog 
of the instability in an A-body system. Previous numerical calculations by Miller, 
Prendergast and Quirk (1970 [MPQ]) and Hohl (1971 [H]) appeared to indicate that 
flat cold systems (w/i « 1) are subject to large-scale instabilities. While these studies 
are, in terms of numbers of stars, far superior to the work to be described here, they 
were not designed to explore this instability. Therefore, we describe next some numer- 
ical studies of the instability, and then in § III return to a discussion of its possible 
significance. 

II. COMPUTATION 

a) The N-Body Model 

The model is based on the numerical integration of the equations of motion in three 
dimensions for N mutually interacting particles. In addition to this flattened (but not 
flat) system, we suppose that there is a spherical component, which we call the halo, 
having an assumed mass distribution designed to produce a relatively level rotation 
curve. One issue of definition is important here: by “halo” we mean “spherically sym- 
metrical component,” without prejudice as to whether the correct astronomical term 
would be “halo,” “galactic bulge,” “galactic nucleus,” or some combination thereof. 

The acceleration of the ith particle is 

r = Y (»•/ - *•■) 
' R{ri + 0.1Ä)2 Iti (Til2 + c2)3/2 ' (6) 

The first term is the contribution by the “hard” spherically symmetric halo mass MH, 
The halo stops at radius R equal to the initial disk radius. Beyond this radius the first 
term is The second term is an approximation to the Newtonian gravita- 
tional interaction, valid when -- r;| is much greater than the cutoff c. Because 
of the departure from a Newtonian potential, the virial theorem in its usual form is 
not exactly satisfied for a system in equilibrium. However, in the numerical models 
the discrepancy is only on the order of 10 percent, causing an uncertainty in our 
estimate of t of the same order. Units are chosen such that G = 1 and the mass of 
each particle is unity. The cutoff at ~ c greatly simplifies the numerical computation 
by eliminating the infrequent but very large accelerations at close encounters. Such 
large fluctuations are in any case only the uninteresting consequence of the very small 
number of particles in the model compared to a galaxy. We are interested in the 
question of large-scale stability and the hope is that, if the model radius is much greater 
than c, the acceleration (6) may give a realistic description of the large-scale dynamic 
motion. As described below, we can test this assumption by seeing how the results 
depend on the value of c. 

When Nis large, the main computational problem is the large number, ocN(N — l)/2, 
of operations required to determine the accelerations. We were fortunate that Professor 
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470 J. P. OSTRIKER AND P. J. E. PEEBLES Vol. 186 

E. G. Groth designed a program for evaluating the accelerations utilizing the full 
capabilities of the Princeton computer, saving a factor of about 3 over the more naïve 
approach. In the computation the integration time step is a fixed number Al For each 
point the position, velocity, and acceleration at t are used with a(t — A¿) and 
a(t — 2A¿) to predict r(t + ht) by a fourth-order polynomial. This new position is 
used to compute the new acceleration, and the new acceleration with the previous five 
numbers is used to get a corrected position r(t + A/) by a fifth-order polynomial. 
The time step is chosen so that the integration ought to reliably carry a point past 
another point at any impact parameter and any reasonable incident speed. Accuracy 
is checked by comparing the results for different time steps (§ l\d below). Earlier ver- 
sions of this general scheme have been used in other applications (Peebles 1969, 1971). 

b) Initial Values in the Standard Model 

A particular model called model 1 is taken as the “standard” to which we compare 
the results of varying any of the parameters. The initial values and other parameters 
for this standard model are described here, the variants in § lie. 

The general parameters are: (i) particle number N = 300; (ii) disk radius Æ = 1 ; 
(iii) cutoff radius (eq. [1]) c = 0.05; (iv) time step A¿ = 0.001 ; and (v) halo (eq. [6]) 
Mh = 0. 

The initial surface density of points £(r) varies as r “1. This is achieved by distribut- 
ing the points uniformly in the radius interval 0 < r < Æ, as follows. The disk is 
divided into A/10 rings, with width in radius Ar = 10Æ/A each, and into 10 equal pie- 
shaped radial segments (A<£ = 36°). One point is placed in each of the N cells, with 
the radius r and longitude randomly chosen over the range of arguments for the cell. 
The points are placed in a flat disk. The thickness of the disk is established by assigning 
random velocities normal to the disk. The initial particle distribution in the plane is 
shown in figure 4a. 

The first step in assigning initial velocities is to estimate the angular velocity needed 
to hold each particle in circular orbit. Each point is temporarily rotated by an angle 
^ equal to a random fraction of 360°, and iv^ computed. The average value of this 
quantity yields the desired mean speed if the radial positions of the particles do not 
vary and if the angular positions are not correlated. The initial velocity of each particle 
is directed in the plane perpendicular to the radial vector, the magnitude being 
<—This initial velocity averaged over the 10 particles in each radial interval 
is plotted as a circle in figure 1. The particle speed does not vary much with r, as 
expected from the density distribution, and in rough agreement with the observed 
rotation law of the Galaxy. When the halo is added, the shape of the rotation curve is 
very nearly unchanged—a condition that is expected because the surface density 
distributions have roughly the same forms for the assumed halo and disk components. 

The above procedure introduces a scatter of approximately 20 percent in the circular 
velocities of particles in the same ring. We increase this scatter by adding a velocity 
dispersion designed to fit the Toomre (1964) criterion for stability against the develop- 
ment of small-scale irregularities. The added velocity components are drawn from 
random normal distributions with standard deviations o>, (70, a2. The standard devi- 
ation of the velocity added in the radial direction is the smaller of 

(jt
t — oNv"1, <7r

s = 0.4y j (7) 
where 

v v(\ + In vjd In r)1/2 . 

Here v(r) is the mean particle speed as a function of position obtained from the first 
step, and N is the number of mass points in the model. The first equation is based on 
Toomre’s condition (1964) for stability against growth of irregularities of small scale. 
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No. 2, 1973 STABILITY OF FLATTENED GALAXIES 471 

Fig. 1.—Initial velocities in the disk. Circles, the initial velocities in the standard, model 1. 
Crosses, the dispersion ar in the initial random radial velocities. Triangles, the initial rotation curve 
for model 6. 

In our standard integration we choose the constant 

(7 = 0.454, (8) 

20 percent larger than the minimum for stability according to Toomre. The quantity 
(jr

T gets very large at small r, so the condition oy < o>s defined by the second equation 
is added to assure that the orbits are at least roughly circular. 

The derivatives of v in equation (7) are obtained from v averaged in intervals Ar = 
0.1, and oy is evaluated for nine zones in radius. The final values for the dispersion are 
indicated as the crosses in figure 1. In the outer half, <jr = ar

T. For r < 0.5, ar
s falls 

below (7r
r, reaching or

s = 0.8a/ at r = 0.2 and af = 0.6a/ at r = 0.1. Finally, we 
reduce ar in the outermost zone by a factor of 2 in order to reduce the expansion of 
the edges of the disk. The ar for the radial velocity added to any particle is the value 
for the zone in which the particle finds itself. 

For a0 we take the equilibrium expression required for steady epicyclic motions : 

°e = + dlnvldlnry12 . (9) 

The dispersion normal to the plane is taken to be 

°z = (10) 

As a final step, the vector velocity p* is multiplied by a factor, separately determined 
for each of the original rings, such that the ring has the same total kinetic energy as 
before. The purpose of this last correction is to approximately reestablish the equilib- 
rium between gravitational and centripetal accelerations that existed before the random 
energies were added. 

This calculation differs from previous work (MPQ and H) in several respects. Fewer 
“stars” are used here. The gravitational interaction is dealt with in a very different 
way. Both approaches round off the interaction at small separations, but ours does 
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not induce the fourfold symmetry built into some versions of the Fourier technique. 
In our model, the equilibrium stellar disk has a finite (in fact, substantial) thickness 
perpendicular to the rotation axis. Thus we avoid, among other difficulties, the rapid 
two-body relaxation in an infinitely thin disk of mutually interacting Newtonian mass 
points. For this degenerate case the relaxation time is independent of N and of the 
same order as the crossing time. 

c) Measures of Evolution and Some Results for the Standard Model 

A convenient measure of rotation, and a theoretically interesting criterion for 
instability in the numerical and analytic fluid models, is i = T^ean/I (eq. [3]). The 
systematic rotation energy in the model is defined as 

Ornean = 5 2 ’ O1) A a 
where na is the number of points in successive rings of distance perpendicular to the 
angular-momentum axis Ar = 0.1, and va is the mean value of the component of the 
velocity in the ^-direction (any backward-moving particles counted as negative) for 
the particles in the ring; this definition agrees with definition (2a) when the streaming 
velocities are purely rotational but differs from it if a bar forms. Since initial and final 
states are roughly axisymmetric, only a small error is introduced by use of equation 
(11). I IF I is the magnitude of the sum of the potential energies of interaction of the 
particles in the field of the halo plus the self-energy of the halo. The evolution of this 
estimate of t for the standard model is shown as the open circles (model 1) in figure 2. 

TIME T 
Fig. 2.—Evolution of the model galaxies. Abscissa is time measured in units of the orbit period 

for the outermost particles in the initial system under the assumption of circular orbits. Ordinate 
is defined in equation 3. 
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Fig. 3.—Evolution of the model galaxies. Ordinate is the rms thickness of the disk, in units of 
the initial radius of the disk. 

The time r in this and the following figures is measured in units of the orbit time for the 
particles in the outermost part of the original disk. 

A second interesting measure is the root-mean-square value of the coordinates 
perpendicular to the disk, z. One might expect the effect of two-body collisions, or of 
any tendency for the disk to buckle, to show up as a progressive thickening. The 
evolution of the disk thickness is shown in figure 3. The rapid initial rise comes about 
because the initial disk has no thickness but a random normal component of velocity. 
One might expect |z| to overshoot, then settle back to a stable value. This seems to 
happen in model 1 (N = 500; cf. § He), but is not so apparent in the model 1. After 
one rotation period, the disk is approximately twice as thick as its initial equilibrium 
value. 

We tried one other measure of evolution, the transforms ^coslfa, 
quantities designed to measure the growth of a barlike shape. They did initially increase 
but then behaved in a very complicated way, possibly because the disk does not main- 
tain a truly straight bar. 

Particle positions in model 1 at selected times are shown in figure 4. After a short 
period of adjustment to initial conditions, a large-scale bar develops. This bar is quite 
apparent after only a small fraction of a rotation period (cf. fig. 4b) and is most 
developed at about r = 0.6 (fig. 4c). After the development of a prominent bar, 
the potential has a significant time dependence, so the energy of an individual star 
moving in the “smoothed” potential is not constant. Also, since the smoothed 
potential is not axisymmetric, the angular momentum of an individual particle is not 
constant either. Finally, since the turning rate for the bar is comparable to the orbital 
time for the average star, there is very efficient coupling between the large-scale dis- 
turbances and individual particle orbits (effective wave-particle interaction). As a 
consequence of these effects, the particles’ initial, nearly circular, orbits are rapidly 
altered and the velocity distribution becomes more isotropic in the plane (v#, vr). Thus 
the disk heats up rapidly and t falls to approximately half of its original value in only 
half a rotation period. After t has fallen to the range 0.1-0.2, further changes are 
slower, and the system appears to be approaching a stationary state (cf. fig. 4d). 

d) Numerical Accuracy 

Numerical errors are a traditional problem in 7V-body models (cf. Lecar 1967), but 
we have several reasons for thinking that we have avoided or mitigated the problem: 

1. We are interested in the global evolution of the system, not in the detailed 
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(a) r = 0 (b) T = 0.2 

(c) r = 0.6 (d) r = 0.94 

Fig. 4.—Evolution of model 1. The graphs show the positions of the mass points projected onto 
the plane, at four instants. 

relaxation processes for individual particles, whether due to numerical error or to 
two-body collisions. We may expect, therefore, that a given numerical error may be 
less serious here than in some other applications of A-body models. 

2. We have rounded over the potential at small distance, thereby making the mathe- 
matical problem nonsingular and removing the largest fluctuations in acceleration 
from the computational problem. 

3. We judge from trial applications of the integration scheme, where the analytic 
solution is known, that the time step should be small enough for the integration to 
carry one particle past another one reliably (but not with great accuracy) whatever 
the impact parameter for expected particle relative velocities. 
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4. We find that the results are insensitive to the choice of A¿. We ran a second 
version of the standard model 1 with At doubled. The resulting pattern of distribution 
of points as a function of r looks almost identical to the standard case, although some 
individual orbits do show marked differences. At r = 0.5 (measured in units of the 
initial orbit period for the outermost points) the system energy in the standard run 
has increased by 0.08 percent, and has decreased by 0.6 percent in the new model 
with At doubled. At this time t = 0.1796 in the standard case, 0.4 percent larger than 
this in the new model, the difference being of the same order as the energy error in 
the second model. The potential energies differ by 1.6 percent. There are comparable 
discrepancies in the random kinetic energy, the thickness of the disk, and the moment 
of inertia about the angular-momentum axis. At r =1, the energy has increased by 
0.22 percent in model 1, decreased by 2.8 percent in the new model, t = 0.1373 in the 
model 1, 4 percent smaller in the new model. 

We conclude from this comparison that the interesting aspects of the model, the 
pattern of the distribution of points and the measure t, are quite insensitive to the 
choice of time step, hence that it is reasonable to suppose that computation errors are 
not seriously affecting the results. Other tests are described in the following section. 

é) Parameter Studies 

In this section we describe the results of varying divers features of the model, usually 
changing only one parameter at a time. 

Model 2.—The introduced velocity dispersion (eqs. [7]-[10]) is reduced to half the 
value in model 1, with 

a = 0.227 . 

The results for t{r) are shown as the triangles in figure 2. The system stays somewhat 
more compact than model 1, the “bar” is less prominent, and one might imagine that 
the subclusters of points are denser and richer. The system is unstable to local conden- 
sations according to Toomre’s criterion, so this latter behavior is not unexpected; 
however, the evolution of t parallels the standard case. 

Model 3.—The cutoff c in equation (6) is reduced to c = 0.025, half the value in 
model 1. To preserve accuracy we also reduced the time step by a factor of 2. The 
results for t are shown as crosses in figure 2. This model ended up with the lowest 
value of t for any of the models described here. Perhaps related to this is the fact that 
the disk fissioned into two orbiting clusters of roughly equal size, an effect we observed 
occasionally in our preliminary models. One must bear in mind here that the calculated 
value of rmean (defined by eq. [11]) is only a nominal estimate of the systematic kinetic 
energy, both because our estimate of what the systematic streaming velocity is at any 
position depends on a limited number of particles, and because we are assuming that 
the systematic motion always is circular about the center of the mass. Clearly the 
“true” streaming velocity is greater than our estimate if the system has broken into 
two disks and each rotates about its own center of mass as it revolves about its com- 
panion. 

Model 4.—To see whether the low values of t in model 3 might be the result of an 
accidental fission, we ran a model identical to model 3 in all respects save that a different 
set of random numbers was used to generate the initial values. There is not clear 
evidence of fission in this model, and the i-values (solid circles in fig. 2) are larger than 
for model 3, but still somewhat below the other models. 

Model 5.—In model 1 we forced a uniform initial distribution of particles by dividing 
the disk into cells in radius and angle, placing one point at random in each cell. In 
model 5, the cells in radius remain as before, but the initial longitude of each particle 
is a random fraction of 360°. This allows greater initial density irregularities. The 
results look very much like model 1. 
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Model 6.—Here the radial distances of the points are chosen so that (r/R)312 is 
uniformly distributed from 0 to 1, giving surface density £(r) oc r“1/2. This is less 
centrally concentrated than model 1 (2 oc r-1). The initial velocities averaged over 
intervals Ar = 0.1 are plotted as triangles in figure 1. The rotation curve for this 
system is rather closer to uniform rotation, but the general features of the instability, 
including the development of a rough “bar,” persist; as before, the velocity distribu- 
tion rapidly becomes more isotropic in the disk and t falls to the range 0.1-0.2. 

Models 7, 8.—Perhaps the most serious concern about our approach is that we may 
be seeing effects peculiar to systems with limited numbers of particles. This certainly 
is true for some quantities, like the evolution of the local velocity dispersion, although 
the fact that the dispersion in z velocities remains small compared to the dispersion 
of velocities in the disk indicates that two-body relaxation is not a primary factor in 
producing the instability. To further test the assumption that the evolution of t is 
insensitive to TV, we compared models with different numbers of particles. Models 7 
and 8 have N = 500 and 150, respectively. The initial values are chosen according to 
the same prescription as for model 1. The sequence of “ random ” numbers is the same 
in each model; but of course, because N is different, a given “random” number is 
applied to different variables in the different models. 

The three models differing (in this sense) only in N are compared in figure 5. The 
closely similar course of evolution, including the appearance of a rough bar, in the 
three models is strong encouragement for the view that the evolution of t we have found 
may not be a peculiarity of the number of particles chosen. 

/) Effect of the Halo 

Among the parameters we varied, the only one that markedly changes the course 
of evolution of t is the halo mass MH (eq. [6]). The models illustrated in figure 6 all 

TIME r 
Fig. 5.—Effect of varying the particle number N on the evolution of the model galaxy 
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have the same parameters and commence from the same initial conditions save for the 
halo mass. In models 9 to 12 the ratios of halo mass to disk mass are 0.5, 1, 2, and 3, 
respectively. The introduction of the halo increases \W\, the total gravitational energy 
of the system (disk and halo and disk-halo cross-term) and hence lowers the initial 
value of t, since the halo is assumed to be nonrotating. If / is a direct measure of 
tendency to instability, and if the instability transforms systematic kinetic energy of 
rotation into random motions, then, in the models where t exceeds the threshold, the 
values of this parameter might be expected to asymptotically approach the threshold. 
Figure 6 shows that model 1 ends up below models 9 and 10. This could be interpreted 
in several ways, perhaps that in model 1 the instability develops more violently and 
hence approaches the threshold more rapidly, or perhaps that the instability over- 
shoots, carrying t past the threshold. It is doubtful that we could learn much on this 
question by carrying the integration of models 9 and 10 further along in time, because 
the numerical error grows systematically larger. The best we can say is that, by r =1, 
models 9 and 10 do not show clear evidence of the coherent bulk motion so apparent 
in the initial stages of development of the pure disk models. 

In models 11 and 12, / is slowly decreasing even though model 12 starts out with t 
less than the final value (at r = 1) in model 1. It is not clear how one should interpret 
this, for the effect is small and the possibility of relaxation by conventional processes 
very real. In any case, it appears that models having / initially ^0.15 change slowly 
and are only weakly unstable if at all. 

g) Summary of Numerical Results 

The cold models without halo exhibit a violent instability that we cannot relate to 
any peculiarities of the model save the absence of a “ hard ” component in the potential. 
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These unstable models appear to approach a stationary state with significantly increas- 
ed radial motions in the plane. After about one rotation period, the average value of t 
in the eight models is f ~ 0.14, the spread about this value exceeding ht = ±0.03 
in only one case, model 3. The behavior of ¿ as a function of time is very similar in the 
different models. This is a remarkable result in view of the very great differences in 
parameters among the models. 

During the first rotation time period the system of particles goes from a symmetric 
disk to a highly nonaxisymmetric “barlike” structure, which tends to dissolve and 
approach rough axial symmetry again. After one orbital period t is roughly comparable 
to what was indicated as the critical value in analytic studies of fluid models. When a 
small halo is introduced, this sequence is reproduced in a less pronounced way. When 
the halo mass is larger, the disk develops random kinetic energy in a manner reminis- 
cent of two-body relaxation processes but does not show a violent instability. For the 
chosen forms of density distribution in disk and halo components, a halo mass of 1 
to 2^ times the disk mass appears to be required to reduce the initial value of t to the 
stable range ¿ ^ 0.14. 

III. DISCUSSION OF NUMERICAL RESULTS AND 
APPLICATIONS TO REAL SYSTEMS 

a) Reality of the Instability 

Is the result found in the last section—that cold, axisymmetric, flat galaxies are 
grossly and irreversibly unstable—true ? On the basis of the various checks we have 
made and the parameter studies described, we believe that the instability is not an 
artifact of some special errors in these calculations. However, A-body studies are 
fraught with unexpected difficulties, and it is useful to check any result by independent 
means. Numerical studies of perfectly flat systems (H, MPQ; Miller 1971 [M]) have 
been published which, in terms of numerical accuracy and number of stars, are far 
superior to the present work. Examination of these studies indicates that the same 
instabilities are found, that bars develop, and that finally “a stable axisymmetric disk 
with a velocity dispersion much larger than that given by Toomre’s criterion is 
generated” (H). The values of / in the final, apparently stable, systems were not 
published, but have been kindly calculated by the authors for use in the present paper; 
these values are given in table 1. They are in good agreement with the results for our 
model. It is still possible that the result is due to an oddity of A-body calculations, and 
that the coincidence between the critical value of t and that found in studies of fluid 
systems is, in fact, coincidental. Perhaps there is a critical value for A-body systems; 
but it may be nearer 0.2738, the limit for a zero-viscosity Maclaurin spheroid, than 

TABLE 1 
Critical Value of f = Tmea,nl\ W\ 

Study ¿crit 

Maclaurin spheroid (fluid, exact) = 0.1376 
Generalized polytropes (OB) (fluid, approximate) ~ 0.137 ± 0.002 
«-body, flat (H) (« = 105, approximate) ^ 0.141 
«-body, flat (M) (« = 1.25 x 105, approximate) ^ 0.130 — 0.135 
«-body, 3-D (present work)* 

(« = 150-500, approximate) íü 0.14 ± 0.02 
«-body, flat (K) («-> co, exact) = 0.125 < /orlt < 0.173 

* Average and standard deviation of i at r = 1 for the 12 models discussed 
in this paper. 
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0.14, the limit for secular stability of fluid systems (for a careful discussion of the 
equilibrium and stability of self-gravitating figures see Chandrasekhar 1969), and 
numerical errors and small values of N combine to give so much relaxation that the 
computed A-body systems simulate a high-viscosity fluid. Thus it is extremely im- 
portant that there exists one exact study of the stability of a disk of stars to non- 
axisymmetric modes, that of Kalnajs (1972, [K]). Kalnajs was able to construct stable 
composite models for sufficiently small values of t but not for larger values (the values 
of t were provided by Toomre 1972). Kalnajs’s results are consistent with the pre- 
viously described conclusions (cf. table 1); but, since he investigated only a very small 
sample of quite special models, it is possible that further exact studies will produce 
counterexamples. 

In the absence of such counterexamples, it appears that t — 0.14 represents ap- 
proximately the maximum rotational energy an axisymmetric stellar system can contain 
and remain stable to the formation of a bar, 

b) Ways to Construct Stable Systems 

The first way to construct a stable system is that followed in the course of evolution 
of many of the A-body models—the disk heats up until t is approximately 0.14. This 
state, a hot flat disk, appears to be a quite satisfactory stable equilibrium, but it does 
not correspond to the observed stellar motions in the apparently flat spiral galaxies. 
Second, the system might evolve into an equilibrium rotating bar which is cold, in the 
sense that streaming motions dominate over random motions, but which is stable 
against further deformations ; existing calculations shed very little light on this point. 
In any case, this is not a satisfactory model for an ordinary—not barred—spiral galaxy. 

Finally, one can add another hot component and thus stabilize the total system. 
Adding a hot disk component reduces to alternative (1) and would require an unseen 
disk component with large mass and largely radial orbits. Adding an extended com- 
ponent corresponding to the “halo” described in §11 apparently will stabilize the 
system if the halo mass is equal to or somewhat greater than the disk mass. A similar 
conclusion was reached by Kalnajs (1972) from an independent consideration of 
possible stabilizing influences. 

Of these three alternatives, the last—the massive halo—seems the most likely solu- 
tion for our own Galaxy. Though we have not exhausted the possibilities of con- 
structing ingenious models having hot components interior to the Sun but most of the 
total mass in a flat cold component (a variant of alternative [1]), we have not found a 
way to produce a stable model by this means that does not do violence to the observed 
rotation curve. Further work assessing this alternative would be quite useful. 

c) Astronomical Plausibility of a Massive Halo 

This is a lengthy question, and we only outline a few essential points here. The 
direct evidence from star counts is inconclusive. According to Oort (1965): “Some 5 
percent of the total mass of the galaxy may be estimated to consist of these (K, M) 
dwarfs. There is no way for estimating how much more mass there may be in the form 
of intrinsically still fainter stars. The real mass of the halo remains entirely unknown. 
It is quite possible that there might be enough halo stars to make the halo an important 
contributor, or even the most important contributor to the mass of the Galactic 
System. The uncertainty concerning the relative contributions of the halo and disc to 
the total mass is the greatest obstacle in the way of constructing a model of the mass 
distribution in the Galaxy” (Oort’s italics). 

There is some information available from dynamical studies, and several authors 
(see, for example, Belton and Brandt 1963; Vandervoort 1970) have concluded that 
the halo mass must be large; this finding was based on a comparison of the force laws 
perpendicular to the plane and perpendicular to the rotation axis. Although the 
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standard models for the mass distribution in the Galaxy place most of the mass in the 
disk (e.g., Schmidt 1965), one of us (J. P. O.) has constructed simple dynamical models 
of the Galaxy from mass distributions which have halo-to-disk mass ratios of ^2/1 
but which satisfy all the usual dynamical constraints. 

Finally, it is interesting to consider the potential applicability of these results to 
other galaxies. Presumably even Sc and other relatively “pure” spirals must have 
some means of remaining stable, and the possibility exists that these systems also have 
very large, low-luminosity halos. The picture developed here agrees very well with the 
fact, noted by several authors (see, for example, Brandt, Kalinowski, and Roosen 
1972; Rogstad and Shostak 1972), that the mass-to-light ratio increases rapidly with 
distance from the center in these systems; the increase may be due to the growing 
dominance of the high mass-to-light ratio halo (~102) over the low mass-to-light 
ratio disk (~ 101). It also suggests that the total mass of such systems has been severely 
underestimated. In particular, the finding of Roberts and Rots (1973) that the rotation 
curves of several nearby spirals become flat at large distances from the nucleus may 
indicate the presence of very extended halos having masses that diverge rapidly 
[M(r) oc r] with distance. The inferred mass-radius law is that within the outer parts 
of an isothermal sphere. 

The plausibility of these and other speculative implications of the present work can 
be tested by at least two routes. Further dynamical studies can be made to ascertain 
the generality of the bar-making instability in a stellar system; and direct observational 
searches can be pursued to see if numerous very faint high-velocity stars exist in the 
solar neighborhood. 
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Note added in proof.—The authors wish to reemphasize a point noted in the paper 
but stressed by a referee. The criterion t < 0.14 is necessary but not sufficient for 
stability; systems with i < 0.14 may be constructed which are unstable to various 
models. 
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