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ABSTRACT 
The equations for linear adiabatic nonradial oscillations have been solved for cooling white- 

dwarf models. Periods and eigenfunctions are obtained for the g2, guf. Pu P2 modes of nonradial 
quadrupole oscillations. Periods of the ^i-mode range from 50 to 200 seconds for typical white- 
dwarf stars with M = 0.4 ~ 1.0 M0 and L = 10“4Lo ~ 10~2Lo. It is shown that there exist 
period-luminosity relations for ^-modes along the cooling white-dwarf sequence. The damping of 
nonradial oscillations due to radiative heat leakage, neutrino losses, and gravitational radiation is 
studied in the quasi-adiabatic approximation, and all models are found to be pulsationally stable. 
It is found that the emission of gravitational waves is the most efficient mechanism for the damping 
of /- and p-modes while radiative heat leakage is the most efficient for ^-modes. Damping times 
range from a few tens of years to about 105 years—time scales much shorter than Kelvin or cooling 
times for white dwarfs. Results are compared with observations of ultrashort-period variables. It 
is suggested that light variations of HL Tau 76 (P = 747 s) and G44-32 (P = 600 s) may be associ- 
ated with nonradial g! oscillations of white dwarfs with convective envelopes. The importance of 
gravitational radiation from nova outbursts is also discussed. 
Subject headings: gravitation — interiors, stellar — pulsation — white dwarf stars 

I. INTRODUCTION 

In Van Horn, Richardson, and Hansen (1972, hereafter referred to as Paper I), 
detailed studies of the radial pulsations of representative cooling white-dwarf models 
were performed. In this paper, we study the nonradial oscillations of those same 
models. The importance of studying nonradial oscillations of white dwarfs is evident 
from recent observations by B. Warner and his co-workers. Warner and Robinson 
(1972) discovered five more ultrashort-period variables among dwarf novae, which 
increased the number of known white-dwarf variables to 10. Their discovery strongly 
suggests that pulsations in white dwarfs are intimately connected with the dwarf-nova 
(and possibly nova) phenomenon either because the oscillation itself is a direct cause 
of outbursts or because it is an indirect result of outbursts. They suggest that these 
oscillations are g-modes of nonradial oscillations in white dwarfs. In support of this 
suggestion is the work of Warner et al. (1972), who have demonstrated that the 71-s 
oscillation of the old nova DQ Her may be interpreted as a nonradial q[uadrupole 
mode from the observed phase variations of the oscillation during the eclipse of the 
star. 

One characteristic of nonradial oscillations in white dwarfs which sets them apart 
from radial modes is the behavior of the periods of the g-modes. These periods differ 
from what would be predicted from the usual period-density relation (i.e., PÍpIpq)112 

= Q with Q ~ 0?04) in that they are longer. This is one of the reasons to call upon 
nonradial oscillations to explain relatively long periods observed in some white 
dwarfs (e.g., P = 747 s for HL Tau 76 in Landolt 1968; P = 212, 273 for R548 in 
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278 YOJI OSAKI AND CARL J. HANSEN Vol. 185 

Lasker and Hesser 1971), because periods of radial pulsations range from a few seconds 
to tens of seconds. The nonradial quadrupole oscillations of white dwarfs are also 
interesting because they emit gravitational radiation, and the nova outbursts may well 
be possible galactic sources of gravitational waves (as will be discussed later). 

Previous studies of nonradial oscillations in white dwarfs have mostly been limited 
to zero-temperature objects. Approximate periods of the gx-mode for white dwarfs 
with finite internal temperatures have been estimated by Baglin and Schatzman 
(1969). The full fourth-order differential equation which describes (in a linear sense) 
nonradial oscillations has been solved for hot white dwarfs by Harper and Rose 
(1970), but their static models are far more luminous than ordinary white dwarfs. In 
this paper, that fourth-order differential equation system has been solved for moder- 
ately realistic white-dwarf models with luminosities ranging from 10“4Lo to 10 L0, 
and various damping mechanisms of oscillations have been studied in the quasi- 
adiabatic approximation. In § II (and Appendices A and B) we describe the com- 
putational procedures used; results and discussions are deferred to §§ III and IV. 

II. BASIC EQUATIONS AND METHOD OF COMPUTATION 

a) Adiabatic Oscillations 

The basic equations governing the linear adiabatic nonradial oscillations of a 
gaseous star have been discussed by Ledoux and Walraven (1958). These are: 

the equation of motion, 

^ ^ grad/> - i grad/»' - grad 0>' ; (1) 

the equation of continuity, 

¥+div(,®»)=0; 

the adiabatic condition, 

LrkLp-Mr' (3) 

and Poisson’s equation, 

V2<D' = 4ttGp' . (4) 

Here the Eulerian and Lagrangian perturbations are represented by prime (') and 8, 
respectively. The quantity A appearing in equation (3) represents the local dynamical 
stability (or the Schwarzschild criterion) and is given by 

1 1 J = XT(y_ V yH 
Fipdr Xp (5) 

where xt = In Pfó In T)p and Xp = (P In pjd In p)T, and other symbols have their 
usual meanings. For highly degenerate white dwarfs, xt « 1 so that stratification is 
nearly neutral, which makes frequencies of g-modes very low. 
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No. 1, 1973 NONRADIAL OSCILLATIONS OF WHITE DWARFS 279 

We assume that the spatial and temporal behavior of the perturbations can be 
represented by 

reos m^) 
f\r, e, cl>, t) = f'(r)(Nr)- 1/2P¡m(cos e™ 

Uin m(/> 

= fir^Nr) -1/2 7*m(0, c/>)eiot, 0 <m (integer) < /, (6) 

where P™ is the associated Legendre function and N™ is a normalization factor for the 
spherical harmonics defined as 

1 r*3l 
Nr = ^\ ! I Yr(0, ^)|2 sin ed6d<l> 

1 (/ + m)\ 
(21 + 1) (/ — m)! cm * 

Here em = 1 for m = 0 and €m = 2 for m # 0. The system of equations (l)-(4) can be 
reduced to one fourth-order differential equation (Ledoux and Walraven 1958). In 
order to solve it numerically it is, however, more convenient to solve the equivalent 
four first-order differential equations with four variables. Following Dziembowski 
(1971), we choose these four variables as 

and 

_ UO' 

^ g dr 
5 (8) 

and we also introduce a dimensionless frequency œ by 

a2 = a>2GM/R3 . (9) 

The four basic linear differential equations and the appropriate boundary conditions 
are then essentially those given by Dziembowski (1971). (The complete set is repro- 
duced in Appendix A.) This system of equations, along with two inner and two outer 
boundary conditions plus a normalization condition 

8r/r = 1 at the outer boundary , (10) 

forms a proper eigenvalue problem. We have used a Henyey-type relaxation method 
due to Baker and Lucy (Baker 1968) to solve for both eigenvalues and eigenfunctions. 
The convergence of this relaxation method depends on how good the initial guesses 
of eigenvalues and eigenfunctions are. Good guesses imply speedy convergence. 
However, since it is difficult to make a good guess, particularly for eigenvalues of 
g-modes in highly degenerate stars, we have used the following method, which is 
similar to that used by Castor (1971) for the radial pulsation problem. If we set aside 
one of the boundary conditions while keeping the normalization condition (10), we 
can solve this system of equations with an arbitrary value of co2. We then substitute 
this solution into the missing boundary condition. In general, that condition is not 
satisfied for the arbitrary œ2, but the numerical value associated with the boundary 
condition serves as a discriminant for eigenvalues of the original system. Once we get 
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280 YOJI OSAKI AND CARL J. HANSEN Vol. 185 

Fig. 1.—Behavior of the discriminant as a function of o>2 for the ION model of 0.398 M© 

a reasonably good initial guess of the eigenvalue and corresponding eigenfunctions, 
we can use the relaxation code to obtain solutions for the full system. The boundary 
condition which has been chosen as a discriminant is 

!) = (/+ 1)^3 + y i at the outer boundary . (11) 

An example of the behavior of 2) as a function of <o2 is shown in figure 1. As can be 
seen in the figure, the g-branch and /7-branch of nonradial oscillations are well 
separated in a degenerate star. This figure also assures us that we have not missed any 
eigenmodes between o>2 = 0.04 ~ 2.5. 

b) Stability Integral in the Quasi-Adiabatic Approximation 

In the quasi-adiabatic approximation the stability or instability of a star to pulsa- 
tions is determined by the stability integral 

W = j (y)s(* - -P , (12) 

wherein IF > 0 for pulsational instability and IF < 0 for pulsational stability. The 
quantities ST/T and S(€ — p_1V*/r) represent the space parts of variations calculated 
from the adiabatic analysis. The quantity IF is related to the damping rate of the 
oscillation (Sr oc eiot~Kt) by 

where 

K = — W/4Ek , (13) 

Ek = kJ |8r|Wr (14) 
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No. 1, 1973 NONRADIAL OSCILLATIONS OF WHITE DWARFS 281 

is the kinetic energy of oscillation. Since cooling white dwarfs are not in thermal 
equilibrium, the effect of thermal imbalance may affect the stability integral. However, 
this effect has been neglected in this study, and it will be discussed in a separate paper 
of this series for radial pulsations (Van Horn, Cox, and Hansen 1973). The detailed 
expression of the stability integral for nonradial oscillations will be given in Appendix 
B. One of its characteristics for nonradial oscillations is the existence of an extra 
dissipation term due to the horizontal energy exchange. 

The quasi-adiabatic approximation is expected to be fairly good for the white- 
dwarf stars studied here because regions near the stellar surface that should be 
treated strictly nonadiabatically contain negligible mass and so have little effect on the 
overall stability. 

c) Gravitational Radiation From the Quadrupole Mode (/ = 2) 

If a star undergoes a nonradial quadrupole oscillation, gravitational radiation is 
emitted. The energy loss by gravitational radiation is given in the weak-field limit to 
general relativity as (Landau and Lifshitz 1962) 

where @aß is the mass quadrupole moment, defined as 

^aß = J p(x)(3xaxß - haßxy
2)dx . (16) 

Since the emission rate of gravitational radiation is the same for modes with different 
m belonging to the same 1 = 2 mode, we shall estimate it for the simplest case of 
1=2 and ra = 0. 

If we write 

p{x) = p0(r ) + pXr)Wyv2Y2\6,<l>y°\ (17) 

and recall that = ^22 = with the off-diagonal elements vanishing for the 
axisymmetric mode, we obtain 

= —(dE/dty — a6 ’ (18) 

where J^GW represents the time-averaged emission rate of gravitational radiation and 

£33 = 2(N2
0)112 f r2p'(r)47rr2dr . (19) 

Jo 

By using Poisson’s equation 

G0’ 

we finally obtain 

75c6 (21) 
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Here 

YOJI OSAKI AND CARL J. HANSEN Yol. 185 

dmtmi 

= (if-2faL = -5(ä)'-b <22> 

is the dimensionless mass quadrupole moment of oscillation. 

III. RESULTS OF CALCULATIONS 

a) Periods and Eigenfunctions 

The static white-dwarf models used here are the same as those of Paper I. Their 
details (except for very slight differences in envelope structure) may be found in the 
original paper (Savedoff, Van Horn, and Vila 1969). Extensive calculations have been 
done for the 0.398 MQ models with neutrino losses and a few supplementary calcula- 
tions with models of different mass. Adiabatic eigenfrequencies and eigenfunctions 
have been computed for g2, guf Pi, p2 models of quadrupole oscillation, and results 
are shown in figure 2 and in tables 1 and 2. As already noted, pressure modes (/?- 
branch) and gravity modes (g-branch) of nonradial oscillations are very clearly 
separated for white dwarfs. There is no difficulty in identifying the mode number for 
models given in tables 1 and 2 because pn- and gn-modes have «-nodes and the /-mode 
has no nodes in the variation of radial displacement. This is not always true when the 
central condensation of the static model is very high (see Robe 1968; Dziembowski 
1971). It is found that the dimensionless frequency œ2 and eigenfunctions of the 
/-mode and /7-modes are essentially determined by the degree of central concentration 
of mass in the static models and they are quite similar to those for the corresponding 

Log jo ( L/L©) 

Fig. 2.—Periods in seconds of the (top to bottom) g2, guf. Pu Pi modes of nonradial quadrupole 
oscillations (/ = 2) as functions of stellar luminosity for the 0.398 M© models. 
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No. 1, 1973 NONRADIAL OSCILLATIONS OF WHITE DWARFS 283 

TABLE 1 

Periods of Nonradial Quadrupole Oscillations (/ = 2) for Cooling White Dwarfs of 
M = 0.398 Mo with Neutrinos 

Periods (seconds) 

Model No. L/Lq R/Rq pdp g2 gi f Pi P2 

4N  4.44 4.14 x lO"2 90.1 68.19 49.02 39.88 32.05 25.15 
5N  3.55 3.25 x 10"2 58.8 64.55 42.88 30.22 23.06 17.89 
6N  1.32 2.40 x lO'2 30.5 67.43 42.95 22.11 15.36 11.62 
8N  0.406 1.98 x lO'2 19.1 74.56 48.27 19.10 11.81 8.718 
9N  7.65 x IO"3 1.50 x 10~2 9.19 127.5 91.94 17.10 8.292 5.829 

10N  8.77 x IO"4 1.43 x 10"2 7.90 185.7 135.7 16.99 8.018 5.412 
11N  7.38 x IO"5 1.39 x 10"2 7.28 291.1 209.8 16.97 7.957 5.299 

polytropes having the same pjp with T1 = 5/3. Eigenfunctions of radial displacement 
for the /-mode are shown in figure 3. 

On the other hand, g-modes behave quite differently in cooling white dwarfs. When 
the star is fairly luminous, the weak degeneracy in the core is not strongly felt by the 
g-spectrum and the periods of g-modes decrease as the star contracts (from 4N to 5N 
of 0.398 M©). However, when the degeneracy in the core becomes sufficiently high, 
the periods of g-modes tend to increase as the star continues to cool. Thus there exist 
minimum periods in cooling white dwarfs, which are Pmin ~ 42 s for the gx-mode and 
Anin^ 64 s for the g2-mode of the 0.398 M0 models. We can infer from figure 2 that 
periods of the gi-mode for models with white-dwarf luminosities are very well repre- 
sented by a period-luminosity relation 

logio P(seconds) = 1.587 — 0.178 log10 (L/LQ), (23) 

for 

M = 0.398 M0 and K)-4L0 10-2LG. 

A similar relation can be obtained for a 1 M0 white dwarf with the same luminosity 
range, namely, 

log10 P(seconds) = 1.331 - 0.171 log10 (L/L0). (24) 

Period-luminosity relations given as equations (23) and (24) can be easily understood. 
As Cowling (1941) first pointed out, the square of the frequency of the g-mode is 
proportional to the quantity A of equation (5), i.e. (see also Ledoux and Walraven 
1958; Chanmugam 1972), 

og
2oc-A, (25) 

TABLE 2 
Periods of Nonradial Quadrupole Oscillations (/ = 2) for 1 M0 Models 

Periods (seconds) 

Model No. L/L© R/Rq pdp g2 gi f Pi P2 

6N.  5.27 x 103 1.12 x lO'2 81.17 12.53 8.15 3.514 2.906 2.395 
9N  1.16 x IO"2 6.06 x 10"3 14.02 62.96 45.98 2.703 1.493 1.009 

11N  6.4 x 10"5 5.99 x 10"3 13.54 156.1 111.9 2.703 1.494 1.007 
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284 YOJI OSAKI AND CARL J. HANSEN Vol. 185 

Fig. 3.—Eigenfunctions of the radial displacement Sr/r for the /-mode as a function of radial 
coordinate r/R for various 0.398 M© models. 

if the stratification is nearly neutral. The quantity A is approximately given in the 
degenerate core of white dwarfs as 

— A oc cvT oc Ta , (26) 

where cv = cv(ion) + ^(electron) is the specific heat. If ions are the only source of 
thermal energy, then a = 1 ; and if degenerate electrons dominate, then a = 2. On 
the other hand, the luminosity of a white dwarf is related to the temperature at the 
edge of the degenerate core (Schwarzschild 1958) by 

LozT*, 

where ß = 3.5 for Kramers opacity (k = kqpT'3-5). By substituting equations (26) 
and (27) into equation (25), we obtain a period-luminosity relation 

logio i^g-mode) = const. — (a/2ß) log10 L . (28) 

The slope of the period-luminosity relation is then given by a/2ß = 0.14, if we put 
a = 1 and ß = 3.5. The difference between this slope and those of equations (23) and 
(24) is presumably attributable to the fact that the exponent of the luminosity- 
temperature relation is less than 3.5 in realistic white-dwarf models (Savedoff et al. 
1969), and that the contribution of degenerate electrons to the specific heat is not 
negligible for low-mass white dwarfs (Van Horn 1971). 

Eigenfunctions of radial displacement for the gi-mode are shown in figure 4. It is 
seen that the position of the node moves toward the surface, as the white dwarf cools 
down. The amplitude of the eigenfunction in the degenerate core becomes so small in 
the highly evolved models that the gx-mode looks like a surface oscillation. 

Envelopes of all static models used in these calculations are radiative. However, it 
has been pointed out by Böhm and Cassinelli (1971) and Van Horn (1970) that cool 
white dwarfs have extensive outer convection zones, which appreciably reduce core 
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No. 1, 1973 NONRADIAL OSCILLATIONS OF WHITE DWARFS 285 

temperatures. The existence of the outer convection zone in a cool white dwarf can 
affect g-mode oscillations in two ways : (i) by lowering the core temperature, and (ii) by 
forcing A of equation (5) to zero in the outer envelope. Both effects tend to reduce 
g-mode frequencies. For instance, if the presence of envelope convection reduces the 
core temperature by a factor of 4, the period of the gi-mode will be increased by a 
factor of 2 as seen from equations (25) and (26) with a = 1. In order to study the 
effect of (ii) on the frequencies of g-modes in an approximate way, we have computed 
periods of g-modes for the coolest white dwarf (1 IN model of 0.398 M©) by artificially 
setting in the pulsation equations 

^4=0 for r > rf, (29) 

where rf is the radius at the bottom of the assumed convective envelope. Results are 
shown in table 3, where columns (2), (3), and (4) indicate radius, temperature, and the 
degeneracy parameter of the bottom of the convective envelope, respectively. It is 
evident that periods of g-modes increase drastically if the bottom of the convection 
zone reaches the degenerate core. It should be pointed out, however, that there is a 
measure of inconsistency in this approach because modifications on the structure of 
the static envelope have not been taken into account. We do not believe our qualitative 

TABLE 3 
Periods of ^-Modes for 11N Model of 0.398 M0 with the Convective Envelope 

Periods (seconds) 
Degeneracy    

Model No. xf = rfIR TfITc Xt f gi g2 

0.398 M0, 11N  (radiative) ... ... 16.97 209.8 291.1 
Convective 1   0.970 0.803 0.472 16.97 264.9 411.5 
Convective 2  0.852 0.963 0.117 16.95 527.5 
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conclusions would change if this were done, but what is eventually needed is better 
evolutionary models. 

b) Damping of Nonradial Oscillations 

Since the basic static models have no nuclear sources, we do not expect pulsational 
instabilities in these models and this has been confirmed by our numerical results. 
Damping rates of nonradial oscillations due to radiative heat leakage, neutrino losses, 
and gravitational radiation have been computed, and they are shown in table 4 for the 
11N model of 0.398 M0 and the 9N model of 1 MQ. The EK in column (2) is the total 
kinetic energy of the oscillation, and and J^GW are the time-averaged dissipa- 
tion rates of oscillations due to radiative heat leakage, neutrino losses, and gravita- 
tional radiation, respectively, and they are given by 

and ^GW by equation (21). The quantity r(ph + r) = /c-1 in table 4 is the damping 
time due to radiation and neutrinos, and r(total) is the total damping time, which 
includes the emission of gravitational radiation. It may be remarked here that the 
quantities EK and SE are normalized by the condition hR\R = 1 at the surface so that 
they are proportional to the square of the amplitude of the oscillations: 

Ek = (EK)0a
2 and = ^Qa

2, (32) 

where 

a = 8R/R. 

From table 4 one finds that the emission of gravitational waves is the most efficient 
mechanism for damping of/- and /7-modes of nonradial quadrupole oscillations, while 
radiative losses are the most important for damping of g-modes. Ordinary dissipation 
is smallest for the /-mode, and it is very large for g-modes (see cols. [3] and [7] of table 
4). This is because g-mode eigenfunctions in a white dwarf have large amplitudes only 
near the surface so that the interior is practically stationary (as seen in fig. 4). Since 
the emission rate of gravitational waves is proportional to the sixth power of the 
oscillation frequency, it is important only for /- and /?-modes. The /-mode emits 
gravitational waves most efficiently because the mass quadrupole moment is the high- 
est for that mode. Neutrino losses are not important for the dissipation of oscillations 
even when they are the dominant energy loss mechanism in the static model. The 
emission of gravitational waves is so efficient that the damping time of the /-mode of 
the 1 Mq model is as short as 40 years. We note that the damping times of nonradial 
oscillations of white dwarfs range from a few tens of years to some 105 years—times 
which are much shorter than the cooling times of white dwarfs. This may be con- 
trasted with the damping times of radial pulsations of Paper I, which are close to the 
cooling times. 

IV. COMPARISONS WITH OBSERVATIONS AND DISCUSSION 

In table 5 we review some pertinent data for 10 ultrashort-period variables, most of 
which have been discovered recently. All of them are supposed to be white dwarfs 
either because white-dwarf spectra are seen or because they are components of nova- 
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TABLE 5 
Ultrashort-Period Variables 

Star Sp. or Nature 
Period 

(seconds) Remarks References 

Z Cam... 

CN Ori.. 

UX UMa 

AH Her. . 
DQ Her. . 

G61-29  

HZ 29 (AM CVn) 

R548  

G44-32  

dwarf nova 

dwarf nova 

DA, nova-like 
binary 

dwarf nova 
nova 

DB, nova-like? 

DBp 

DA 

DC 

HLTau  DA 

17 

24 

29 

31 
71 

105 

115 
1015, orbital? 
213 
273 
600 
8221 

1638J 
746 

orbital ? 

variable period 
(16-19 s) 

eclipsing binary 
(4M3m) 

eclipsing binary 
(4h39m) 

eclipsing binary 
(6h16m) 

multiple periods 
(626, 661, 701, 992) 

Robinson 1973 

Warner and 
Robinson 1972 

Warner and 
Robinson 1972 

Warner et al. 
1972 

Richer et al. 1973 

Warner and 
Robinson 1972 

Lasker and Hesser 
1971 

Lasker and Hesser 
1971 

Warner and 
Robinson 1972 

like binaries. Their periods range from 17 to 747 s if possible cases of orbital periods 
of binaries are excluded. Three groups may be distinguished from the observed 
periods: a short-period group (P = ~ 17-31 s), an intermediate-period group 
(P = ~ 71-213 s), and a long-period group (P = 600 and 747 s), although this 
classification is somewhat arbitrary. To date, several suggestions have been made to 
explain these periods. One of the most interesting of these is that what is observed is 
rotation periods of oblique magnetic white dwarfs (Ostriker and Hesser 1968). 
However, it seems difficult to explain multiple periods of R548, HL Tau 76 by this 
model. Let us examine, therefore, if these periods can be interpreted as those of non- 
radial oscillations as proposed by Warner and Robinson (1972). From tables 1 and 2, 
one finds that periods of gi-modes for typical white dwarfs {M = ~0.4-1 M0 and 
L = ~ lO^-lO-2 L©) are ~ 50-200 s, which are consistent with those of the inter- 
mediate period group. Stars in the short-period group are all U Gem type stars except 
UX UMa, and regular light variations have been found only during the eruptions of 
their outburst cycles (Warner and Robinson 1972). Since amplitudes of outbursts of 
dwarf novae are ~ 3-5 mag and their absolute magnitude at minimum light is around 
<My> ~ +7.5 (Kraft and Luyten 1965), the luminosity during the eruptions is 
supposed to be ~l-102Lo. Because of the period-luminosity relations given as 
equations (23) and (24), hot white dwarfs have shorter periods for g-modes than the 
ordinary white dwarfs, and it is possible to explain observed periods of the short- 
period group by those of gi-modes, if masses of their white-dwarf components are 
larger than about 0.5 MQ. As for the two stars with long periods, it would be difficult 
to say they are g-mode oscillators (at least if they were white dwarfs of typical mass 
with radiative envelopes). However, if these stars have convective envelopes, it may 
not be impossible to have gi-periods of the order of 10 min as already discussed in 
§ Ilia. In fact, these two stars are located on the two-color diagram in regions where 
envelope convection becomes important (Lasker and Hesser 1971). 

Since all models studied here are found to be pulsationally stable, one may wonder 
about the connection between the models and the observed variables. Several of the 
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latter are novae and dwarf novae, and they need no special excitation mechanisms 
because oscillations can certainly be excited by their outbursts (Ostriker 1969). Some 
of them (UX UMa, HZ 29, and G44-32) are close binaries or suspected close binaries 
in which secondary components are thought to overflow their Roche limits, thereby 
causing accretion of hydrogen-rich material on their white-dwarf companions. The 
resulting hydrogen-shell burning is known to be thermally unstable. Defouw (1970) 
has shown that the thermal instability in such a situation tends to manifest itself as 
overstable convection, i.e., overstability of g-modes, if nonspherical perturbations are 
considered. 

Finally we shall estimate the gravitational radiation from a typical nova outburst. 
The energy of a single outburst is estimated to be 1045 ergs. As a consequence the 
postnova star may undergo violent oscillations, whose kinetic energy is considered to 
be of the same order of magnitude as that of the outbursts. Suppose that one-tenth 
of this energy goes into the /-mode of quadrupole oscillation and that the postnova 
is a 1 Mq white dwarf. We then find from equation (32) and table 4 that the amplitude 
of the /-mode oscillation thus excited would be a2 ~ 10"6 and that the emission rate 
of gravitational waves would be J^GW ~ 1035 ergs s-1. However, this result depends 
strongly on the mass, and we have ~ 3 x 1032 ergs s_1 if M = 0.398 M© is 
adopted. Although the emission rate of ~ 1035 ergs s_1 is probably somewhat 
of an overestimate, we expect that the gravitational radiation from nova outbursts 
may be fairly large in any case. Since novae are much more frequent than supernovae, 
though much less energetic, we conclude that gravitational radiation from nova 
outbursts may be a common phenomenon in our Galaxy. 

We should like to thank Dr. J. P. Cox for helpful discussions and Dr. H. M. Van 
Horn for sending us much of the white-dwarf data used here. This work was sup- 
ported in part by NSF grant GP-36245 through the University of Colorado. 

APPENDIX A 

FOUR FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS OF 
NONRADIAL OSCILLATIONS 

Following Dziembowski (1971), we adopt the four variables given in equation (8). 
We then obtain the four first-order linear differential equations describing adiabatic 
nonradial oscillations from equations (l)-(4). These are written as 

r 
dyi 
dr 

yx(,VIY1 - 3) + 
/(/ + 1) 

CjCO2 + yÁVirj, (Al) 

yi(cio>2 + rA) + y2{\ - U - rA) + y3rA , (A2) 

^ = J3
(1 - £/) + (A3) 

and 

r^ = -yxUrA + y2UV!Y1 + yM + 1) - t/F/rj - y.U, (A4) 
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d\nP _ grp 
dlnr p 

(l\3— 
W Mr' 

The inner boundary conditions are given by 

2 
Tl - J2 = o, lys- y* = 0, (AS) 

and the outer boundary conditions are 

^(/+l) + y4 = 0, (A6) 

+-4 - H'*'} ++- ' - ']'k} - ° • 

(Note that the first of these conditions is the “discriminant” D of equation [11].) 
The normalization condition is given by equation (10). In the actual numerical com- 
putations, we have adopted a; = In (rip) as an independent variable. 

APPENDIX B 

where 

and 

U = 
din Mr 

dlnr 

STABILITY INTEGRAL FOR NONRADIAL OSCILLATIONS 

The Lagrangian variation of the energy equation, which appears in the stability 
integral of equation (12), is written as 

(Bl) 

where e = p-1V*/r = dLr/dMr and F' is the Eulerian perturbation of the radiation 
flux, which is calculated from the transfer equation 

4ac T3 
(B2) 

3 Kp 

In what follows, a common factor (A^)"1/2 7^(0, <£) is suppressed for simplicity. By 
separating F' into the radial and the horizontal components, we find 

P 
_L_ + in + n (1^11 
4Trr2p dr ■ ' Airr^p dIn TjdIn r ’ 

(B3) 

where L/ = 47rr2F/ and the second term of the right-hand side of equation (B3) 
represents the radiative heat leakage due to the horizontal temperature difference. 
We now introduce a nonradial analog SLr to the Lagrangian perturbation of luminosity 
in radial pulsation problems, defined as 

SLr = Lr’ + ^ï>r. (B4) 
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By using equations (B3), (B4), and the continuity equation (2), we finally obtain 

L, 

= 4»,., 
Se + /(/ + 1) L_ TL l(d\nT\ 

•3P T/ \ dlnrj 

/(/+1) 1 d(8Lr) 
+ e »2 y 2 CxOJ 47rr2p dr 

where &Lr is given by 

SL 
L 

:r Ahr A ST Sk d(8T/T) ¡¡d\n T\ /(/ + 1) 
- - 47 + 4t - - + - -3-^ 

Therefore, the stability integral for nonradial oscillations is written as 

W2+ W3 

with 

w'- ( {y)l*h"’p* ’ 

and 

=i:mf 

/(/ + i) d(8Lr) 
Ciw2 ^’2 dr 

dr 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

(BIO) 

The quantity W1 represents a contribution to the stability integral due to thermo- 
nuclear sources or sinks (if any), which include the neutrino loss (ev < 0). On the 
other hand, the effect of radiative heat leakage is represented by two quantities W2 

and W3. We have separated this into two parts because, in nonradial oscillations, 
there exists a horizontal energy exchange represented by W2 in addition to the usual 
energy dissipation in the radial direction (given by W3). It is evident that we recover 
the ordinary expressions for the stability integral of radial pulsations if we set / = 0 
in equations (B6)-(B10). 
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