THE STRENGTHS OF INFRARED CO AND H₂O BANDS IN LATE-TYPE STARS

J. RAND BALDWIN,* JAY A. FROGEL,* AND S. ERIC PERSSON* Harvard College Observatory, Cambridge, Massachusetts Received 1973 March 29

ABSTRACT

The strengths of absorption bands due to H_2O and CO at 2.1 and 2.3 μ have been measured for 163 supergiant, giant, and dwarf stars having spectral types from F2 to M8. The strengths of these bands are shown to correlate with spectral type and luminosity. Photometric indices that measure these band strengths should be useful in classifying late-type stars and determining the integrated spectral type of stellar systems.

Subject headings: infrared — molecules — late-type stars — spectral classification

I. INTRODUCTION

Spectra of about 70 late-type stars in the 2- μ spectral region at resolutions of 32 and 65 Å have been obtained by Frogel and Hyland (Frogel 1971). In this paper observations of 163 stars on an intermediate-band photometric system are presented. Many of these stars were included in the spectroscopic survey. The $[2.1 \mu] - [2.2 \mu]$ and $[2.3 \mu] - [2.2 \mu]$ colors are shown to be effective indicators of the absorption band strengths of H₂O and CO, respectively. Relationships between these indices and spectral type are shown to agree with corresponding relationships derived from analysis of the 2- μ spectra. For stellar measurements, however, the filter system has a limiting flux 15 times fainter than that of the spectrometer, even at low resolution.

II. OBSERVATIONS

Three filters, acquired from Optical Coating Laboratories, Inc., Santa Rosa, California, form the intermediate-band system. The effective wavelengths are 2.10, 2.2, and 2.31 μ , and the half-power bandwidths are 0.052, 0.080, and 0.095 μ , respectively. These wavelengths were chosen to facilitate measurement of the absorption strengths of the first overtone band of CO in the vicinity of 2.3 μ and the wings of the H₂O band at 1.87 μ . The transmission curves of these filters are shown in figure 1.

Two indices, designated $[2.1 \mu] - [2.2 \mu]$, and $[2.3 \mu] - [2.2 \mu]$, were used to compare the H₂O and CO band strengths, respectively, with the continuum at 2.2 μ . Both indices were formed relative to those of α Lyrae, the primary standard. An additional seven stars were used as secondary standards. To calibrate the indices for these stars, each standard was observed on a number of nights concurrently with α Lyrae.

Observations were obtained at the Cassegrain foci of the Mount Hopkins 60-inch (152-cm), and the Kitt Peak 36-inch (91-cm) and 50-inch (127-cm) telescopes.

A conventional dual-beam infrared photometer, similar to the instrument described by Becklin and Neugebauer (1968), was used for the observations. The PbS detector, focal-plane apertures, and a wide-band ($\Delta \lambda = 0.4 \mu$) blocking filter were thermally coupled to a reservoir of liquid nitrogen mounted inside an evacuated dewar. The uncooled intermediate-band filters were outside the dewar.

* Visiting Astronomer, Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

FIG. 1.—Response functions of the intermediate-band filters are shown together with the spectrum of U Ori, a star with strong H₂O absorption. The H₂O absorption extends shortward of 2.14 μ and the first-overtone CO band appears longward of 2.29 μ .

Except for the dwarfs and some of the supergiants, the stars were selected from the Bright Star Catalog. Double stars were included only if it could be determined that the companion would not affect the infrared measurements. Dwarf stars were selected from Johnson (1965) and Greenstein, Becklin, and Neugebauer (1970).

III. RESULTS AND DISCUSSION

The observed sample of 163 supergiant, giant, and dwarf stars includes spectral types F2 through M8. Table 1 summarizes the mean values and the 1 σ errors of both indices, determined from data acquired in 1971 and 1972. Most stars were observed on at least two nights. The colors of the seven secondary standards are also included in table 1. The spectral types, V magnitudes, and V - K colors were taken from the photometry of Johnson *et al.* (1966).

Figure 2 compares the $[2.3 \mu] - [2.2 \mu]$ color with the spectroscopically determined equivalent width of the first overtone band of CO. Appearing in the figure are all the nonvariable stars observed on the intermediate-band system for which spectroscopic data are available. The quantity W(CO) is the equivalent width of the absorption in the wavelength region from the (2, 0) up to the (5, 3) band head of the first overtone band of ${}^{12}C^{16}O$ (Frogel 1971). Note that the (2, 0) and (3, 1) band heads of ${}^{13}C^{16}O$ also contribute to the absorption in this spectral interval. The passband of the 2.31- μ filter encompasses the spectral regions affected by all these band heads as well as the (5, 3) band head of ${}^{12}C^{16}O$, although the latter feature is below the 15 percent transmission level of the filter. The equivalent-width data and the $[2.3 \mu] - [2.2 \mu]$ data should, therefore, exhibit a high degree of correspondence, as figure 2 demonstrates.

428

TABLE I

INTERMEDIATE-BAND INFRARED PHOTOMETRY OF STARS

Star	Spectral Type	v	V-K	[2.1 µ Index]-[2.2 µ] lo Error	[2.3 µ] Index	-[2.2 μ] 1σ Error	No. Observations
HR0175	G8III	5.33	•••	•023	± •014	•016	± •008	2
HR0207	GOIB			.005	.012	•016	.018	2
HR0276	G5111	6.32		.033	.014	•052	.010	2
HR0337	MOIII	2.05	3.88	.019	.001	.105	.001	13
HR0351	G8III	4.66		•020	.008	•049	.007	3
HR0356	GBIII	•••		•052	•007	.061	.006	3
HR0371	K1III	•••		.019	.012	.036	.014	2
HR0399	KOIII	4.74		.012	.011	•048	.012	ī
HR0430	G9III	•••		•024	•014	•044	.011	2
HR0464	KJIII	3.57	2.78	•025	.015	•071	.015	1
HR0469	GSIII	•••		• 0 08	.023	.001	.028	1
HR0603	KJIII	2.10	2.91	.015	.012	.094	.012	2
HR0834	K3IB+B9V	3.79	3.70	.012	.010	•115	.011	2
HR0867	M6III			.044	•006	•123	.005	2
HR0911*	M2III	2.53	4.21	.016	.007	•115	.006	7
HR0921	M4IIIA	3.39	5.32	.024	.012	•122	.013	2
HR0926	KOIII			.010	.009	•055	.009	3
HR0941	KOIII	3.81	2.16	.014	.005	•031	005	3
HR0942	G9III			.017	.018	.075	019	3
HR0946	KJIII			.018	.012	.054	.017	2
HR0947	KOIII	4.64		.012	.009	.055	.009	3
HR0949	K5III			.017	.010	.072	.010	2
HR0951	K2III	4.37	2.29	.030	.008	.046	010	3
HR0999	K4III	4.47		.025	.009	.093	008	ä
HR1009	MOII			.020	017	.149	015	้า
HR1015	KJIII			.030	009	.083	.009	2
HR1017	F5IB	1.79	1.23	.019	006	.003	-006	1
HR1030	G8111	3.60	2.02	001	005	-016	.006	ŝ
HR1052	K3111	4.38	3.16	015	012	.075	.012	2
HR1150	K4III			021	009	.095	.009	2
HR1155	MZIIA	4 48	5.14	.019	.009	.142	007	2
HR1159	G9111			.029	.013	.058	019	2
HR1373	KOIII	3.76	2.12	- 036	.010	.018	011	2
HR1457	K5III	-86	3.67	.017	.003	.100	003	3
HR1612	K511 +B	3.75	3.60	.021	006	.006	004	2
HR1708 *	G8III+F	-08	1.86	.018	001	.020	.004	2
HR1845	M2IB	4.35	5.24	.036	.006	.170	004	2
HR2061	M1-M2IAB	42	4.42	-027	.004	-144	.006	2
HR2091	M3.5II	4.25	5.10	.023	005	123	004	2
HR2190	MIIAB			.035	.008	.109	.007	2
HR2197	MIIA		•••	.048	.015	.144	015	3
HR2216	MBIII	3.28	4.59	.031	001	.121	.001	
HR2219	GBIII	4.35	2.41	.020	.011	.038	000	8
HR2230	G5111	6.09		- 001	024	.005	.025	1
HR2286	MAIII	2.87	4.76	028	011	.115	.011	2
HR2473	GBIB	2.98	2.76	025	007	-085	.009	2
HR2580	KJIAB	3.92	3.47	-047	.012	.149	017	2
HR2646	MOIAB	3-43	3.92	027	.016	.143	014	1
HR2649	KJIII			.009	-006	-102	.005	* 4
HR2693	FBIA	1.84	1.42	-004	.016	020	026	7
HR2697	K2111	4 4 2	2.83	.025	.002	-058	002	• 4
HR2717	M4111			-026	007	.128	.008	7
HR2725	MITT			-009	.005	-105	.008	2
HR2808 *	GRITI	•••	•••	.005	.010	.024	.000	2
HR2821	KOITI	3.79	2.33	-019	.015	.029	015	č,
HR2828	GRIII	4.99	2033	.014	014	043	.015	1
HR2864	K2111	4.55	•••	027	015	0045	.017	+
HR2905	MOITI	4.06	3.76	.023	005	.001	.015	į
HR2943	F51V-V	- 27	1.01	000	001	•097	.005	
HR2970	KOTTT	3.03	2.21	004	013		.001	12
HR2073		4 20	2031	.008	.015	•037	.012	2
HP2079	KOITI	7827	2.04	.028	.013	•031	.012	2
HP2000	KOIII	•••	•••	.050	.018	•069	.025	2
HP3240	KOIII KAIII	1 . 1 4	2.23	.021	.011	•031	.011	2
HD3376	N 7 1 1 1	5.25	3.31	.015	.007	.090	.006	2
HU3340	CO111	4.22	3.01	.004	.006	•097	.010	2
HD 34 60	GALLI	•••		•020	.010	•050	.010	1
NR 34 34	GZID	4.61	•••	•015	.019	.005	.016	2
HU3413		3.94	2.43	.010	.008	•047	.005	2
10 20 12	6810-11	4.50		.034	.011	•054	.010	2
	08111		•••	.020	.011	.018	.007	2
HD 34 4 4	KUIII	•••	•••	.020	.010	.025	.012	2
	90111	•••	•••	.023	.017	.005	.017	2
	MUIII	3.13	3.74	.023	.005	.097	.005	٦
115131	KZIII	4.46	2.78	.019	.009	.060	.009	2
1153/48 1103355	K4111	1.97	3.16	•026	.004	•088	.004	4
115 3173	KDIII	4.31	3.69	•024	.007	.093	.007	2
00867	68111	4.55		.011	.007	.021	.006	2
115 3843	Kalli	3.91	3.01	.021	.007	.071	.006	2
5888 MD 3007	FZIV	3.81	.81	002	.024	003	.020	1 1
NK 3905	KZIII	3.88	2.66	.024	.003	.069	.004	5
00000	MZIII	4.70	4.20	.028	.002	.110	.002	7
11K 3480	KAIII	4.37	3.33	•042	.015	.090	.015	1
mK4008	MOIII	•••	•••	.025	.001	.109	.002	3

Star	Spectral Type	v	V-K	[2.1 µ Index]-[2.2 µ] 1σ Error	[2.3 µ Index]-[2.2 μ] 1σ Error	No. Observations
HR4044	KIIII			•023	+ .005	•067	+ .005	
HR4069*	MOIII	3.05	3.93	.030	.001	.108	.001	14
HR4094	K4III	3.79	3.42	•022	.008	•104	.009	2
HR4232	K2III	3.11	2.83	•031	.010	•084	•010	2
HR4267	M5111	•••	• • •	.050	•011	.120	.011	2
HR4278	MZIII	6.00	•••	•040	.008	•123	.004	2
HE4301	KUIII	1.79	2.44	.013	•006	•056	•006	2
HR4336	M2III	3.01	2.01	.036	.031	•069	•032	2
HR4434	MOILI	3.85	3.99	.024	.005	-110	00/	2
HR4517	MIIII	4.04	3.96	.036	.008	.115	007	2
HR4518	KOIII	3.72	2.77	025	.009	•066	-006	2
HR4608 *	GBIII	4.12	2.22	.022	.006	.034	.005	4
HR4666	MIIII	•••		.017	.018	.092	.018	i
HR4667	KOIII	•••	•••	.029	.009	•026	.006	2
HR4690	MIIII	•••	• • •	• 0 09	• ⁰¹⁵	•117	.010	2
HR4695	KIIII	4.96	2.77	.025	.008	•079	.007	2
HR469/	G8111	4.74	•••	•024	.003	•038	.002	6
HD4714	67111	•••	• • •	•024	.025	•033	.028	1
HR4725	KOTT	4.80		.012	.009	•020	.009	2
HR4741	GRITI	0.03	•••	-014	.011	•038	.008	Z
HR4779	68111		•••	.015	.031	•036	.028	1
HR4783	KOIII	•••	•••	027	.013	017	.019	1
HR4784	K1111	•••	•••	-002	.023	-034	015	2
HR4786	G5111	2.64	1.94	.029	.008	•036	.006	2
HR4792	K2111			014	008	.034	.008	2
HR4812	KIIII			019	021	.025	.030	ĩ
HR4813	K2III	4.67	• • • •	.035	.013	.061	.013	ī
HR4837	GBIIIP	5.93		•028	• 0 20	001	.024	1
HR4902	MBIII	4.80	4.67	•033	.005	•125	.005	2
HR4910	MBIII	3.38	4.63	.027	.002	.072	.001	8
HR4932	0911=111 METIT	2.84	2.04	•024	.003	•021	.003	1
HR5020	Getti	3.00	5.83	•048	.009	•130	.011	2
HR5270	GOIV	5.00	2.02	.019	.005	•036	.006	3
HR5340	K2IIIP	05	2.95	018	.007	.013	.004	1
HR5370	K3III	4.86	2075	.035	.010	-059	.010	14
HR5429 *	KJIII	3.59	2.93	024	001	081	.001	10
HR5430	K4III	4.25		.020	.007	•048	.006	
HR5502	KOIII	4.60	2.17	•027	.009	.029	.008	2
HR5563	K4III	2.08		.032	.011	.101	.013	2
HK5602	GBIII	3.50	2.16	.022	.007	•033	.008	3
HD5401	M4111 Colli	3.27	4.67	•063	.008	.116	.009	2
HR5744	KSTIT	3.49	2.41	•023	.008	•028	.009	3
HR5854	K2III	2.64	2.01	028	.007	•059	.007	3
HR5879	MIIII	4.09	4.06	.026	-004	-118	005	4
HR6056	MIIII	2.75	3.97	.024	-006	.108	.006	5
HR6075	G9111	3.23	2.24	.018	008	.039	005	2
HR6134	M1-M2IAB	•91	4.69	.042	005	.163	005	2
HR6146	MGIII	5.01	7.02	.049	.005	.129	.008	3
HR6299	K2III	3.20	2.56	.022	.007	•070	.007	3
HK6337	M3III	4.98	4.46	.021	.006	•119	•007	3
	M511+G511	3.06	6.57	.045	.002	•143	.002	7
HPLLO	KZIII	2.17	2.54	.026	.005	•067	.006	3
HR6705	KETT	3.73	2.12	.012	.006	•061	.008	3
HR7009	M4-5I-118	2.22	3.30	.029	.006	•102	.005	3
HR7139	MAII	4.30	5.53	.034	.009	•157	.009	4
HR7157	M5III	4.00	6.09	.031	.015	-143	.010	2
HR7429	KJIII	4.45	2.69	.035	.008	.055	-006	2
HK 7576	KJIII			.034	.013	.073	.014	1
HR7941	M5II-III			.074	.002	.151	002	i
	M7II-111	•••	•••	.095	.005	.148	.004	2
SHVIR BTVID	MTIII	•••	•••	.060	.005	•136	.004	2
	MBIII	•••	•••	•124	•006	•143	.006	2
RXBCO	M(111 M(111	•••	•••	.096	.010	•137	.011	2
Y498 +	MAV		· · · · · ·	•114	.001	•138	.001	1
Y1305	DM5	11 40	5.21	.168	.027	018	.019	1
Y1609	DM3	9,00	4.90	.123	.023	֥037	.018	1
Y1668 +	DM6	11,49		.191	020	010	.007	Z
¥1755	DMS	9.82	4.99	.092	-000	-021	.000	1
Y2553	DMB	13.53		135	.021	020	-014	1
	KOV	4.69	1.83	013	005	- 013	-005	1
14607								
14607 15077A	K5V	5.23	2.82	.058	.008	056	.004	2
14607 15077A 150776	K5V K7V	5.23	2.82 3.28	.058 .012	.008 .003	056 020	.004 .003	2

* Standard stars

† Stars not included in figures 3 and 4

STRENGTHS OF IR CO AND H₂O BANDS

FIG. 2.—Equivalent width of the absorption from the (2, 0) to the (5, 3) band head of the first overtone band of ${}^{12}C^{16}O$ is compared with the [2.3 μ] – [2.2 μ] index.

Furthermore, examination of medium-resolution spectra of 70 stars in the region from 2.0 to 2.4 μ (Frogel 1971) revealed no atomic or molecular absorption features whose strengths are at all comparable with those of CO and H₂O. Since the range in luminosity and spectral type spanned by the spectroscopic survey is virtually identical to that covered in the present work, we proceed on the assumption that the intermediate-band system responds primarily to the absorption strengths of CO and H₂O. Except for the dwarfs, as discussed below, the slope of the stellar continuum does not significantly affect the indices.

Figures 3 and 4 show the two observed indices as functions of spectral type. The dashed lines in both figures represent the predicted dispersion computed from the errors in the individual observations of luminosity class III stars. The agreement between the observed and predicted dispersion for these stars indicates that the observed dispersion is due solely to observational uncertainties.

Several trends stand out in figure 3. The CO index increases with increasing luminosity. The giant and supergiant sequences are parallel, with a separation of about 0.04 in the index. The division between the dwarfs and giants for spectral types later than K0 is most pronounced. The CO index increases strongly with decreasing temperature in the giants and supergiants.

The appearance of CO absorption in the spectra of late-type stars has been discussed by many authors and reviewed by Spinrad and Wing (1969). Frogel (1971) discusses mechanisms that could account for the kind of variation in the CO absorption described above. There are four parameters that can affect the integrated band intensities: the temperature, pressure, column density of CO, and the microturbulent velocity of the gas. Calculations by V. G. Kunde (personal communication) have shown that changes of ~5 km s⁻¹ in the microturbulent velocity can produce large changes in the strength of the CO absorption bands. These changes are considerably 432

FIG. 3.—The mean relations between CO index, referred to α Lyrae, and spectral type for stars of luminosity classes I–V. Dashed lines represent the dispersions in CO index for class III stars, and are consistent with the 1 σ errors of observation of a single star.

greater than any change produced by reasonable variations in any of the other parameters including CO abundance. An increase in microturbulence with decreasing temperature among the giants and supergiants, and a similar increase with increasing luminosity from dwarfs to supergiants, could then account for the observed variation of CO absorption. This effect would be strongest if the bands were saturated.

A systematic increase in line blanketing with increasing luminosity and advancing spectral type may also affect the observed photometric indices. Model stellaratmosphere analyses (Mihalas 1970) have shown that extensive line absorption results in a lowering of the boundary temperature relative to an unblanketed model. Moreover, the associated backwarming effect redistributes the flux blocked by the lines into the neighboring continuum. Both of these effects conspire to produce a line whose core is darker, relative to the continuum, than would be expected if the processes of line and continuum formation were decoupled. An accurate assessment of the influence of line blanketing on the present observations cannot be made until more detailed infrared spectra and reliable model atmospheres become available for very late-type stars.

A final comment on the relation between the CO index and spectral type concerns

No. 2, 1973

FIG. 4.—The mean relations between H_2O index, referred to α Lyrae, and spectral type for stars of luminosity classes I–V. Dashed lines represent the dispersions in H_2O index for class III stars through spectral type M6, and are consistent with the 1 σ errors of observation of a single star.

the apparently anomalous behavior of $[2.3 \mu] - [2.2 \mu]$ in dwarfs later than type K0. This decrease in CO index with decreasing temperature is not due to the absence of CO in dwarfs; rather, it reflects a flattening of the continuum in the 2.2- μ region as shown by the medium-resolution spectra (Frogel 1971).

The sensitivity of the $[2.3 \mu] - [2.2 \mu]$ index to luminosity and temperature suggests its use in conjunction with broad-band infrared photometry, as a classification parameter for late-type stars. In particular, the marked distinction between late-type giants and dwarfs with regard to both indices has been applied to a study of stellar populations in galaxies (Baldwin *et al.* 1973).

The increased strength of the H₂O index in the spectra of dwarfs with respect to that in stars of higher luminosity is clearly visible in figure 4, which shows the $[2.1 \mu] - [2.2 \mu]$ color as a function of spectral type. This is due both to the appearance of the 1.87- μ H₂O band at an earlier spectral type in dwarfs than in giants, and to the flatness of the dwarf continuum relative to that of giants.

For giants and supergiants earlier than M6, the H₂O index is relatively constant. The spectra of stars of these types observed in common with Frogel (1971) showed no absorption due to the 1.87- μ band of H₂O. Thus, apparently none of these stars observed in the present study has noticeable H₂O absorption in this spectral region. A similar conclusion for this and other spectral regions was reached by Johnson *et al.* (1968), Johnson and Mendez (1970), and Spinrad and Wing (1969). The sudden upturn of the H₂O index in small-amplitude irregular variables of types M7 III and M8 III is compatible with the data of Frogel (1971) and the 1- μ observations of Spinrad and Newburn (1965).

J. RAND BALDWIN ET AL.

IV. SUMMARY

We have shown that a photometric system, consisting of three intermediate-band filters in the 2.2- μ spectral region, can serve as an indicator of the absorption strengths of the first overtone band of CO near 2.3 μ and the 2.1- μ wing of the 1.87- μ H₂O absorption. We find no evidence to within the observational errors for a dispersion in the CO or H₂O band strengths of luminosity class III stars. The CO index increases with increasing luminosity and, in giants and supergiants, with decreasing temperature. The photometric system is useful for identifying and classifying late-type stars, and has been used for obtaining information on the stellar content of galaxies (Baldwin et al. 1973). The H_2O index is small and relatively constant for giants and supergiants between spectral types F2 and M6. It is substantially larger in small-amplitude irregular variables of types M7 III and M8 III and in late-type dwarfs.

We thank the staff of Kitt Peak National Observatory for their assistance. Mr. B. van't Sant provided technical assistance at Mount Hopkins Observatory. Mr. C. Lada assisted in making some of the observations. We appreciate a critical reading of this manuscript by Dr. I. J. Danziger. One of us (J. R. B.) was supported during the course of this work by a National Defense Education Act Title IV Fellowship.

REFERENCES

Baldwin, J. R., Danziger, I. J., Frogel, J. A., and Persson, S. E. 1973, Ap. Letters, 14, 1.

Backlin, E. E., and Neugebauer, G. 1968, Ap. J., 151, 145. Frogel, J. A. 1971, Ph.D. thesis, California Institute of Technology. Greenstein, J. L., Becklin, E. E., and Neugebauer, G. 1970, Ap. J., 161, 519. Johnson, H. L. 1965, Ap. J., 151, 170.

Johnson, H. L., Coleman, I., Mitchell, R. I., and Steinmetz, D. L. 1968, Comm. Lunar and Planetary Lab., 7, 83.

Johnson, H. L., and Mendez, M. E. 1970, A.J., 75, 785. Johnson, H. L., Mitchell, R. I., Iriarte, B., and Wisniewski, W. Z. 1966, Comm. Lunar and Planetary Lab., 4, 99.

Mihalas, D. 1970, Stellar Atmospheres (San Francisco: W. H. Freeman & Co.).

Spinrad, H., and Newburn, R. L. 1965, Ap. J., 141, 965.

Spinrad, H., and Wing, R. F. 1969, Ann. Rev. Astr. and Ap., 7, 249.

434