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ABSTRACT 
The application of the method of maximum likelihood (ML) to the determination of the slope 

of the number-flux-density relationship is extended to include the presence of experimental errors 
in the flux-density measurements. It is shown that these experimental errors have a significant effect 
on the number counts at higher ratios of flux density to error than is often recognized. 

The case of noise-limited flux-density measurements is treated in some detail, and it is found 
that, provided the lower limit of a survey is chosen to be at least five times the rms noise, the 
enhancement in the source density as a function of flux density can be readily calculated. For the 
case of significant confusion errors in the flux-density measurements the importance of a Monte 
Carlo approach is emphasized. Several methods that have been used previously are discussed and a 
number of shortcomings noted. 
Subject heading: radio sources 

I. INTRODUCTION 

In a previous paper (Crawford et al. 1970, hereafter referred to as Paper I), we 
discussed the application of the maximum-likelihood (ML) method to the determina- 
tion of the exponent of the radio-source-count distribution. There we used the simpli- 
fying assumption that the observed flux density Fis identical with the true flux density 
S for all sources, an approximation that is only valid when the flux density of the 
source is much greater than the experimental errors. In this paper we give a theoretical 
treatment showing how the ML method can be used in the presence of experimental 
errors. We show that the effects of the errors are significant at rather higher ratios of 
flux density to error than is often recognized. 

The basic problem is to determine, over some range of flux density, the best estimate 
of the true flux-density distribution P{S)dS from the observed distribution P(F)dF, 
or rather from a limited though hopefully large number of observations. Here P(S) 
represents the probability density at S and P(S)dS gives the probability of any given 
source having true flux density in the range dS at S. The function P{F) has similar 
meaning in relation to the observed flux density F. 

In the presence of measurement errors of any type, the distributions P(S) and P{F) 
are not identical. The observation of an increased number of sources serves to better 
define P(F) but does not eliminate the difference between P{F) and P(S). 
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2 HUGH S. MURDOCH ET AL. Vol. 183 

In § II we discuss the error distribution which links the source distributions P{S) 
and P{F). In § III we discuss the use of the ML method to obtain the best estimate of 
P{S) from the individual measurements Fi and a knowledge of the error distribution. 

The ML method is ideally suited to a model-fitting approach. The most frequently 
used model is that, over a limited range of flux density, P{S) is given by a power law, 

P{S)dS = kS'^+^dS, (1) 

where a is the usual integral slope. However, any model which can be put in parametric 
form may readily be used. 

In § IV we examine whether it is possible to adopt an approach which is the antithesis 
of model fitting, namely, a direct correction to the experimental counts. We then give 
some examples of various approaches which have been made to the problem, most of 
them falling between the two extremes of model fitting and direct correction. 

II. THE ERROR DISTRIBUTION 

The distributions P(S)dS and P(F)dFaxz linked by the error distribution P{F\S)dF 
which is the probability that a source of flux density S will be observed with a flux 
density between F and F + dF. 

From the nature of probability it follows that 

P(F) = J P(F\S)P(S)dS. (2) 

Where the dominant source of error is additive random noise, the error distribution 
expressed in the form P(F — S\S) is independent of S and may be assumed to be 
Gaussian. In this case P(F) is the convolution of the error distribution with the flux- 
density distribution. Noise is the dominant source of error in certain unfilled aperture 
telescopes such as the 1-mile (1.6 km) Mills Cross of the Molonglo Observatory, or of 
the Northern Cross at Bologna. One should never neglect, however, a possible con- 
tribution including a mean bias from the fitting procedure used to deduce F from the 
record. This is discussed further at the end of this section. 

For most radio telescopes at low frequencies, the dominant source of error in the 
estimation of the flux density of an individual source is the presence in the beam of 
other, generally weaker sources, normally referred to as confusion. A typical example 
of an error distribution which includes significant confusion is given by Pilkington and 
Scott (1965) for the 4C survey. Here/^F — *S|*S')isprobably a slowly varying function 
of S and is asymmetric with positive errors predominating. Such an instrument is 
often said to be confusion limited, and measurements made on a single source are 
subject to a confusion error due to the presence, in the same beam area, of other 
weaker sources not physically associated. 

Ideally one would like a model of the source distribution, with suitable adjustable 
parameters, which would predict the distribution of total observed flux density per 
beam area, including not only a dominant source but any weaker sources as well. We 
discuss in § IV the limited use which has been made of such a method developed by 
Scheuer (1957). The difficulty in applying such a method is that one needs a model of 
the source distribution over a wide range of flux densities. We restrict our attention 
here to the common situation where one wishes to deduce the form of the distribution 
in the range of measured flux densities, without the need to know anything about the 
distribution at very low flux densities. 

We can then adopt the usual point of view that a strong source is confused by any 
weaker sources present in the beam, and regard the incremental flux density as a 
confusion error. Weak sources which cannot be individually detected may be said to 
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No. 1, 1973 DISTRIBUTION OF RADIO SOURCES 3 

constitute confusion noise as distinct from the blending of two sources, each of which 
would be separately detectable if they occurred far enough apart. The total confusion 
error may be much greater than the confusion noise. Where two sources, each of which 
would be separately detectable, are blended due to random association, one observes 
the presence only of a single source; in this case it seems desirable to preserve the 
distinction that the stronger source is confused by the weaker source, and that the 
weaker source is obscured by the stronger source. In any multiple blend, the strongest 
source should be regarded as confused by the weaker ones which are in turn obscured 
by the strongest source. With the above definition of confusion error, the probability 

1refers to the probability that a source S will be observed in the range F to 
F + dF, and that it is the strongest source contributing to the observed flux density F. 
If the latter condition is not fulfilled, then P(F\S) = 0, since the source S is obscured 
by one or more stronger sources. 

The fitting procedure for determining F will normally assess the local background 
or base-line level as the mean of receiver noise plus confusion noise. The combined 
error due to noise, confusion, gain fluctuations, and any error due to the fitting process, 
may be either positive or negative. The preponderance of positive errors in the case 
of confusion comes from sources which are strong enough to be detected if occurring 
singly, but which happen in fact to be obscured by stronger sources. 

For a digitally recorded survey it is very convenient to use the Monte Carlo method 
to obtain directly the error distribution PCFIS). Simulated sources can be added to 
the record at random positions and then analyzed as though they were real sources. 
Any error due to the fitting procedure, including any mean over- or underestimation 
is therefore included as well as noise and confusion errors, but errors due to calibration 
and to gain fluctuations are not included. The method also gives the probability of a 
source being obscured by a stronger source. This situation is recognized where a 
randomly inserted Monte Carlo source happens to occur at such a position on the 
record as to be blended with a source stronger than itself which already exists on the 
record. Whatever the source of error, it is necessary to determine the error distribution 
for positive errors out to quite low levels of probability. The reason for this will become 
clear in the next section. 

III. THE ML METHOD 

a) Outline of the Method 

The ML method for determining P(S) was first introduced by Jauncey (1967), and 
its use in both grouped and ungrouped form was further discussed in Paper I. Since 
nothing is gained by grouping the data, we will discuss here only the ungrouped form 
although the method can readily be adapted for grouped data. 

The method consists of maximizing the probability of occurrence of the observed 
values of F¿, given any assumed form of the distribution. Following Paper I, this 
reduces to maximizing 

M 

L = np^) • (3) 
i = l 

It is usually more convenient to maximize J27 = ln L given here by 

M 

^=2 ln/5^)> (4) i -1 

where the summation is over all the observed flux densities. The treatment in Paper I 
covers the case Fj = Si for all S*. 
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Here P (Fi) is given from equation (2) by 

P(Fd = V Í” P(F\S)P(S)dS, (5) 
*^0 

where iV is a normalizing factor given by 

N-1 = r ^15^(5)^^^ (6) 
•'o 

and where F0 and Fu are the predetermined1 lower and upper limits of observed flux 
density. Where no upper limit is set, Fu = oo. For a source distribution of the form 
of equation (1), 

P(irf) = N Í PiF\S)S^a+1)dS. (7) 
Jo 

In practice the lower limit of integration of S will be not zero but some chosen value 
S0 for 5, for which the integrand is close to zero. This is discussed in § III. 

In the error-free case discussed in Paper I it was possible to obtain an analytic 
solution for the ML estimate a of a, and also obtain the exact sampling distribution 
and hence the standard deviation aa of a. In general, where P(F\S) is not known 
analytically, it is not possible to obtain an exact solution either for a or for its sampling 
distribution. However, it is possible in such cases to form the likelihood distribution 
given by L as a function of a. This is not itself a probability distribution but has the 
well-known property that for large M, it approaches the sampling distribution which 
is asymptotically Gaussian. From the properties of the Gaussian distribution it follows 
that, to obtain the standard deviation of a, it is merely necessary to note the values 
#1 and a2 of a for which is 0.5 less than its maximum value. The standard deviation 
of a is then given by <ja = di — a ~ a — a2- The concept of the likelihood distribution 
asymptotically approaching the sampling distribution can readily be extended to cases 
where more than one parameter is fitted. 

Having obtained the ML estimation a of a from equation (4) it is necessary to test 
the goodness of fit to equation (1). To do this the transformation 

Yi = ¡Fip(F)dF (8) 

may be used and, as in Paper I, the Yi tested for uniformity in the range 0 to 1 by the 
Kolmogorov test (see, e.g., Kendall and Stuart 1961). This does not require grouping 
of the data as does the x2 test. 

If the data are not a good fit to equation (1), then a more complicated form of 
distribution must be used. It is often very useful, as a guide to the correct form, to 
obtain estimates over several intermediate ranges of flux density. In using these as a 
guide for a more complex expression, it is necessary not only to take account of the 
separate values of a, but also to ensure the correct normalization where various ranges 
of flux density join. 

Sometimes observations are made over a wide area of sky for strong sources and 
over a restricted region for weaker sources. In some such cases it may be desirable to 
fit a value of a separately for each region in the first instance. It is very easy, however, 

1 Our use of the symbol Sm for the predetermined upper limit in Paper I was confusing since in 
equation (4) of that paper it could have been interpreted as the flux density of the strongest source. 
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to test the general applicability of any assumed form of distribution over the whole 
range of S. 

If F0j and Fuj are the designated upper and lower limits of flux density for a region 
of sky whose area (in steradians) is Aj, then the probability density PC^y) of observing 
a source with flux density F* in area j is given by 

PiFi,) = NAt r P(F\S)P(S)dS (9) 
Jo 

with 

N-1 = AÂ P(F\S)P{S)dSdF. (10) 
i JFoj Jo 

The best fit maximizes 2i ln ^(^ij)- In applying the goodness of fit test, equation (8) 
becomes 

y, = 2 f PiF^dF,. (11) 
3' Jp OJ 

In this case the use of the relative area factors Aj automatically ensure the correct 
normalization of the combined result for the whole area. The derivation of the ML 
estimate for the error-free case is given in the Appendix. 

b) Application to Gaussian Noise 

We will now discuss in more detail the application of the method in the simple 
situation where the error distribution, P(F\S), is Gaussian of standard deviation a. 
This should be approximately the case in a noise-dominated situation. Writing 
0(5, F) for the product P(F\S)P(S) in equation (5), we have 

—(F2l5>T <12> 

For convenience we shall express S and F in the dimensionless ratios s = S/o-, and 
r = F/a, and in order to indicate the form of this distribution we have plotted in 
figure 1 for a = 1.5, 

r) = (sir)-«*» exp [-i(s - r)2] (13) 

as a function of slr(= *S/F). Note that large positive errors are expressed by small 
values of s/r. For example, the s/r = 0.5 point on the r = 5 curve represents an error 
of 2.5 a, and in this case is by no means negligible. For comparison the Gaussian 
curve for r = 5 is also drawn. 

The (f> curves represent the relative probability of a given ratio of true-to-observed 
flux density for a given signal-to-noise ratio r (Jauncey 1968 ; Jauncey et al, in prepara- 
tion). For r < 5 it is readily apparent that there is appreciable probability of a given 
observed flux density being chiefly due to noise. The accuracy of the curves at low 
s/r depends on the validity of the assumption that the noise error is Gaussian out to 
many standard deviations. It also depends on the assumed form of the source distribu- 
tion P(S) being valid for S « F. 

For r < 5 there is an appreciable contribution to the integral F(F¿) from the un- 
certain region of low s/F. It is in fact necessary to assume some modification to F(Fj) 
at small s/F, for example a cutoff at t0 = Sq/F, in order to get a finite answer. If the 
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Fig. 1.—The function r) (eq. [13]) is plotted as a function of the ratio of true to observed 
flux density for several values of the ratio r of observed flux density to rms error. Dashed curve is 
the corresponding Gaussian error distribution for r = 5. 

deduced value of a is to be essentially independent of P(S) at very small s, then the 
assumed cutoff must have a negligible effect on the integrals P(F^). 

In table 1 we present, for a = 1.5, the value of the ratio R of the number of sources 
observed with flux density F to the number of sources which in fact have this value of 
flux density. R is given by 

0(5, F)dS. (14) 

For r less than 5, the value of R is very sensitive to tQ. On the other hand, for r 
greater than 5, it is virtually independent of tQ within fairly wide limits, provided one 

TABLE 1 
R as a Function of r and t0 for a = 1.5 

to 

r 0.05 0.1 0.2 

3   7.200 4.445 3.038 
3.5  3.500 2.523 2.087 
4   1.901 1.684 1.584 
5   1.253 1.249 1.247 
6   1.149 1.149 1.149 
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TABLE 2 
R as a Function of r and a (for t0 = 0.1) 

r 1.0 1.2 1.4 1.5 1.6 1.8 2.0 

5   1.157 1.189 1.228 1.249 1.272 1.325 1.390 
6   1.099 1.117 1.138 1.149 1.161 1.187 1.215 
7   1.068 1.081 1.095 1.103 1.111 1.128 1.146 
8   1.047 1.060 1.071 1.076 1.082 1.094 1.107 
10   1.032 1.037 1.043 1.047 1.050 1.057 1.065 
12  1.022 1.025 1.030 1.032 1.034 1.039 1.044 
15  1.014 1.016 1.019 1.020 1.021 1.024 1.028 
20  1.008 1.009 1.010 1.011 1.012 1.014 1.015 
30  1.003 1.004 1.005 1.005 1.005 1.006 1.007 

ignores the apparent divergence as s approaches zero. The justification for ignoring 
this region is given at the end of § IIIc. In table 2 we present values of the correction 
factor R as a function of signal-to-noise r for r > 5 and for various values of a. In 
this region R is virtually independent of t0 and the figures may be of practical utility 
in making corrections. In table 3, we present corresponding ratios of the total count 
above a flux-density limit F0 to the corresponding count above the same limiting flux 
density in the absence of errors. Here r0 is the signal-to-noise ratio at the lower limit; 
F0 = r0(j. 

From the values of R as a function of r in tables 1 and 2 we may calculate the 
effect on the estimation of a of completely ignoring the errors in the estimation of the 
individual flux densities Ff. To do this for any given a, we apply the ML method of 
Paper I to P(S) as defined by equation (5) with Gaussian P(F\S): 

i = f \n (FIF0)P(F)dF. (15) 

The results are presented in tables 4 and 5 where the deduced value a! is plotted as a 
function of r0 and a. The deduced estimate a! of a depends significantly on for r0 

less than 5, while for r0 greater than 5 it is essentially independent of i0* In table 5 
we present values of a! as a function of a for r0 > 5. 

TABLE 3 
Ratio of Total Count to Error-free Total Count 

r0 1.0 1.2 1.4 1.5 1.6 1.8 2.0 

5   1.043 1.062 1.081 1.092 1.103 1.128 1.157 
6   1.031 1.041 1.053 1.060 1.066 1.081 1.098 
7    1.022 1.029 1.037 1.042 1.047 1.057 1.069 
8   1.016 1.022 1.028 1.031 1.035 1.043 1.051 
10  1.010 1.014 1.017 1.020 1.022 1.026 1.032 
12  1.007 1.009 1.012 1.013 1.015 1.018 1.022 
15  1.005 1.006 1.008 1.008 1.009 1.011 1.014 
20  1.003 1.003 1.004 1.005 1.005 1.006 1.008 
30  1.001 1.001 1.002 1.002 1.002 1.003 1.003 
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TABLE 4 
Fitted Value a' for a = 1.5 (ignoring errors) 

to 

r0 0.05 0.1 0.2 

3   2.734 2.242 2.010 
3.5  1.974 1.838 1.775 
4   1.697 1.672 1.661 
5   1.580 1.580 1.580 

The above results show that provided the lower limit of a survey is chosen to be at 
least five times the rms noise, one may readily calculate for any given a\ (a) the 
enhancement in the observed source density as a function of flux density, and (b) the 
error to be expected in the deduced estimate of a if noise errors in the measurement 
are ignored. 

One may also use the ML method to obtain the best estimate of a. On the other 
hand, if one attempts to carry the counts from a survey to lower values of flux density, 
the calculations are meaningless in the absence of precise knowledge of both the error 
distribution and the form of the source distribution at very much lower flux densities 
than those observed. 

The results of tables 1 and 2 also show that if the lower limit of the survey is set at 
five times the rms error, then the enhancement in rate due to noise errors at the lower 
limit, and the effect of the latter on the deduced estimate for a, are both quite sub- 
stantial. Only at much higher flux densities is it valid to ignore the errors altogether. 
An a*o ~ 5 represents a fairly sharp transition from a region where the errors still 
have a significant effect but may be readily taken into account, to a region where it is 
pointless to try. 

Extending the counts from a given survey below this limit greatly increases the 
source numbers and hence reduces the sampling errors. This reduction, however, is 
offset by the increased uncertainty in accounting for the measurement errors, and by 
the need to know the form of P{S) at flux densities much below the survey limits. This 
results in the curious situation whereby the addition of sources of low r may serve 
to increase rather than decrease the uncertainty in determining P{S). 

c) The Case Where Confusion Error Is Significant 

In the case of confusion, the error distribution cannot be treated analytically as 
readily as can Gaussian noise. The error distribution should be obtained by 

TABLE 5 
Values of a' as a Function of a and r0 {t0 = 0.1) 

r0 1.0 1.2 1.4 1.5 1.6 1.8 2.0 

5   1.030 1.248 1.468 1.580 1.693 1.924 2.162 
6   1.021 1.231 1.444 1.551 1.659 1.878 2.099 
7   1.015 1.222 1.431 1.536 1.642 1.854 2.069 
8   1.011 1.216 1.423 1.527 1.631 1.840 2.051 
10  1.007 1.210 1.414 1.517 1.619 1.825 2.032 
20  1.002 1.202 1.403 1.504 1.605 1.806 2.008 
30 4  1.001 1.201 1.402 1.502 1.602 1.803 2.003 
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the Monte Carlo method discussed in § II. The error F — S is not necessarily inde- 
pendent of S but may be a slowly varying function of S, as can be seen from the error 
histograms of Pilkington and Scott (1965). Since a range of values of S corresponds to 
any given observed F, the points on each F) curve will come from different values 
of S and hence from different F(F\S) curves. Provided P(F-S\S) varies slowly with 
S, it is sufficient in practice to establish the function at several values of S by the use 
of Monte Carlo sources of those particular values of S. The curve for intermediate 
values can be obtained by interpolation. 

As the error distribution is asymmetric toward large errors, the (/> curves will be 
relatively larger for s less than 1 than for the case of symmetric Gaussian errors. The 
lower limit of flux density will need to be chosen by an actual plot of the </> curves. 
This will to some extent be influenced by the need to use a large number of Monte 
Carlo sources to determine with sufficient precision the upper tail of the error distri- 
bution. 

There is a further problem with confusion which is best illustrated by means of an 
example. Suppose a 1.0 flux unit inserted Monte Carlo source combines with a genuine 
source of 1.3 f.u. to produce a flux density of 2.3 f.u. The straightforward interpreta- 
tion is that the 1.0-f.u. source is obscured by the 1.3-f.u. source. Another possibility 
is that the 1.3-f.u. source is itself a blend of two or more sources, each less than 1.0 f.u. 
In this case the correct interpretation is that the 1.0-f.u. source is subject to a confusion 
error of 1.3 f.u. This is much less likely at flux levels where the mean number of beam 
areas per source is large, but the uncertainty can be a problem at low flux-density 
levels. In any case it can only arise for s less than 0.5. Hence, an additional safety 
criterion is that the lower limit of flux density should be chosen so that <f> is very small 
at 51 = 0.5. If this criterion were applied to Gaussian noise, it would lead to r0 of a 
little greater than 5 which is very close to the limit suggested in § Illè using quite a 
different criterion. Any analysis to lower levels than suggested here requires a detailed 
treatment of multiple blending. 

It should be noted that at S levels for which blending becomes important, P(F|S) 
and hence i/t(F, S) are sharply reduced since P(F\S) is the probability that a source 
S will appear as a source F without any contribution to the blend by a source stronger 
than *S. Hence for very small values of s, P(F\S) and ^{F, S) approach zero. Even for 
a noise-limited instrument, blending will occur for sufficiently small values of s, since 
the total number of beam areas is finite. The blending of sources in a finite beam is 
ignored in the calculation of the curves of figure 1. This is valid in a noise-dominated 
situation except at very low sjr where multiple blending occurs, and hence all the <f> 
and ip curves approach zero as s approaches zero. Thus irrespective of whether the 
dominant source of error is noise or confusion, the apparent divergence of as ¿ 
approaches zero may be ignored. 

The above analysis shows that, for any reliable attempt at estimating the number- 
flux-density relationship from a radio survey, the lowest flux-density level considered 
should be no less than five times the rms flux-density error. Even then it is important 
to realize that the effects at the lowest flux-density levels of the survey are still quite 
significant. While the number-flux-density relationship may be deduced from the 
observations, the survey is complete at the lower limit only in the statistical sense. Near 
the limit of the catalog many of the individual sources will in fact be weaker than the 
survey limit, and similarly, others which are above the limit will have been missed. 
This should be particularly borne in mind if the sources are subdivided into different 
categories, as is done, for example, in a division on the basis of optical identifications. 

IV. OTHER METHODS 

We have shown that the ML method is ideally suited to a model-fitting approach 
to the solution of the basic problem. In many circumstances one would like to be able 
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to correct the measured distribution directly for the effect of measurement errors, in 
order to obtain the true distribution in an empirical form rather than as an analytic 
expression with one or more fitted parameters. This would have the great advantage 
that no assumptions would need to be made in advance about the true distribution. 

Eddington (1913), in discussing the distribution of stellar magnitudes, considered 
the general question of whether the true distribution can be obtained analytically from 
the observed distribution and the error function. He obtained, for a Gaussian error 
distribution, an expression for the true distribution in the form of a series expansion 
involving the successive even-numbered derivatives of the observed distribution. This 
requires a high order of precision in smoothing the observed distribution, and hence 
it is impractical. For the form of P{S) considered here, there is the additional problem 
that the series begins to diverge after the first few terms. 

In a later paper (1940) Eddington gave an expression for the mean overestimation 
of individual sources which involves only the observed distribution and its first 
derivative. One might be tempted to think that this method could be used to correct 
the individual values for mean overestimation and then deduce the source distribution 
empirically from the corrected values. Eddington (1940) shows, with the help of an 
example, that this procedure cannot be expected to lead to the true source distribution. 

To obtain the true source-count distribution from the observed results, it is necessary 
to assume something about that distribution. This assumption will either be about the 
form of distribution (but with one or more parameters to be fitted as in the ML method), 
or it may be an approximate assumption about the distribution itself in order to obtain 
a first-order correction to the observed distribution. To illustrate these approaches 
we will briefly discuss some methods which have been used in the past. 

Mills and Slee (1957) calculated, for an assumed true distribution of constant 
a = 1.5, the fraction of sources in any given flux-density interval which would be 
carried to an adjacent interval due to noise errors. They also calculated the effect of 
blending to several orders of multiple blending. This gave a percentage correction as a 
function of flux density to be applied to the true distribution in order to predict the 
observed distribution. Strictly, this procedure should be iterated until the predicted 
distribution leads to the observed distribution after allowing for errors. Theirs is a 
model-fitting approach similar to that discussed here, and remains one of the most 
thorough treatments of the subject. 

Bennett (1962) calculated the correction to be applied to the observed rate as a 
function of S and a by obtaining a series expansion in terms of the moments of the 
error distribution for an expression of the form of equation (2). His error distribution 
was for a phase-switched interferometer, but a similar expression can be derived for 
the general situation. Bennett considered only the first few terms of the expansion, but 
if more terms are calculated the series diverges, as does the Eddington series. The 
series-expansion method cannot circumvent the problem raised in § \l\b of rapid rise 
and uncertain value of the rate for r less than 5. Indeed, it is only under the conditions 
for which the rate is essentially independent of t0 that the series-expansion method is 
valid. The use of Bennett’s method must therefore be treated with considerable cau- 
tion, and it certainly cannot improve on the results obtained here. Harris and Kraus 
(1970) claim to have used a method similar to Bennett’s to obtain corrected source 
counts at low flux levels for the Ohio survey. The corrections were carried to flux- 
density levels less than twice the rms confusion error and less than three times the 
confusion noise as defined in § II. No details of the calculation are given, but it is 
difficult to see how they could have failed to encounter the divergence problem dis- 
cussed here. The effect of random errors appears to have been more than counteracted 
by the mean underestimation of weak sources pointed out by Jauncey and Niell (1971), 
and subsequently acknowledged for much of the survey (Harris and Kraus 1971). It is 
by no means clear how the uncorrected counts presented by Kraus (1972) are affected 
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by random and systematic errors, but uncorrected counts at flux densities down to 
about 1 s.e. cannot be taken seriously. 

It should also be noted that Bennett’s correction is an approximation, because it is 
necessary to assume a value of a to obtain the correction. Gower (1966) used a Monte 
Carlo technique to obtain an approximate correction. The inserted sources were 
distributed at discrete flux densities but with a smoothed integral distribution that was 
similar to the observed integral distribution. The distribution of observed flux density 
for the inserted Monte Carlo sources (obtained by analyzing them as for real sources) 
was compared with their true distribution (i.e., the distribution of inserted values). A 
percentage correction as a function of flux density was therefore obtained. This too 
is an approximate direct correction, not an exact solution. Its weakness lies in starting 
with the assumption that the true distribution is like the observed distribution. Ideally, 
this process should be iterated until the assumed true distribution of Monte Carlo 
sources in fact leads to the actual observed distribution. There is unfortunately no 
guarantee that the process will converge in this way. There are other criticisms which 
can be made of Gower’s calculations. For example, it would have been preferable to 
allow for multiple blending by adding Monte Carlo sources down to somewhat less 
than 0.625 times the minimum flux density of the survey and also at more closely 
spaced intervals of flux density. It should be noted that Gower’s Monte Carlo treat- 
ment is quite different from the Monte Carlo treatment advocated here to obtain the 
error distribution. His method requires the insertion of a whole range of flux densities 
simulating the source distribution. In the present method a large number of sources 
of identical S are inserted at each of several well-chosen values of S in order to obtain 
the error distribution for those values of S. 

The best overall compromise seems to us to be to obtain an approximate solution 
first, and then attempt to put the solution in a parametric form. Having done this, one 
can then take full advantage of the ML method to obtain the optimum value of the 
parameters. The chosen form should be no more complicated than necessary to give a 
good fit to the data. 

The methods we have just been discussing were all designed to obtain an approxi- 
mate correction in the region where the flux density is still significantly larger than the 
rms error. Scheuer (1957) adopted a somewhat different approach. He calculated, for 
an assumed distribution of constant a = 1.5, the probability distribution P(D) of 
deflections D at arbitrary points on the record, a method that is particularly suitable 
for a phase-switched interferometer. He did not allow for noise, but the method was 
later extended by Hewish (1961) to include noise. The method was specifically designed 
to find out something about the form of the distribution at levels of flux density below 
which sources can be individually measured and counted. Hewish was able to set 
certain broad limits on the form of the distribution at low S. The best use of this 
method is also in conjunction with ML since 

^ = 2ln/>(A). (16) 
t 

The chief disadvantage of all the methods discussed here for calculating the correc- 
tion to the observed distribution is that they take too simplistic a view of radio 
sources. It is usual to insert only Monte Carlo “point” sources. This will generally 
give an underestimate of confusion error. Ideally, one should insert a set of sources 
having the correct distribution in structure as well as in flux density. Unfortunately 
this is generally unknown for the weak sources contributing to confusion. 

This also raises the question of randomness of sources. If there is any clustering of 
sources, insertion of Monte Carlo sources at random will also give an underestimate 
of confusion error. One must also choose some degree of resolution at which two 
sources are regarded as separate. It is not always easy to tell whether there is a genuine 
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physical association of two close or partially resolved sources. These disadvantages 
are common to any method which to our knowledge has been used so far. 

Ideally, one needs a more sophisticated model of radio sources, their distribution 
in space, luminosity, physical size, and structure, from which one can predict all the 
way to the observed flux densities or to the observed deflections on the record. This 
seems a fair way off yet, but may be necessary before radio-source counts can make 
any definitive contribution to cosmology. In the meantime it is important to make 
best use of the available data. We have shown that this requires a careful consideration 
of the interaction of the source-count distribution with the error distribution, especially 
near the lower limit of most surveys. 

V. CONCLUSIONS 

In Paper I we demonstrated that the ML method is superior to any other method of 
model fitting to obtain the slope of the source-count distribution. We restricted the 
treatment there to an idealized error-free situation. We also showed that, contrary to 
previous treatments, there is no need to group the data. 

The main conclusions of the present paper are: (1) The ML method can readily be 
extended to take account of errors in the recorded flux densities due to noise and 
confusion. (2) It has long been recognized by cautious workers in this field that surveys 
and source counts should be restricted to flux densities at least five times the rms error. 
We have shown here that there is a sound theoretical basis for this restriction. Below 
this level it is virtually impossible to make valid corrections to the observed counts 
because of the high probability of an observed source being spurious (i.e., boosted 
by noise or confusion error from a very low value of flux density). (3) To obtain a 
reliable estimate of the true source-count distribution, a detailed knowledge of the 
error distribution is necessary, including any systematic bias and also the non-Gaussian 
tail in the confusion-error distribution. The latter is crucial in a confusion-limited 
survey and should be obtained by Monte Carlo techniques. 

For a noise-limited survey free of systematic bias, a Gaussian error distribution is 
a good approximation. We have treated this case analytically and have given numerical 
tables for the correction factors. These show that the corrections can still be appreciable 
at flux density levels much greater than 5 a. These results should be applicable to any 
noise-limited survey. It is not possible to give a general treatment for confusion-limited 
surveys, because of the specific nature of the confusion-error distribution for any given 
instrument. 

We would like to thank the Science Foundation for Physics within the University 
of Sydney for facilities provided in the Basser Computing Department. H. S. M. would 
like to thank the National Astronomy and Ionosphere Center, Arecibo, and the 
Center for Radiophysics and Space Research, Cornell University, for hospitality. 

APPENDIX 

We consider here the analytical treatment of the multiarea case in an error-free 
situation. Suppose one decides to accept sources in area Aj with flux densities between 
Spy and Suj, then the probability density PiS^) of a source of flux density in area 
j is given by 

PiS«) = aK-iAjS^“*», 

where 

X' = 2 ¿¿(Sor01 — Suj~
a) . 

í 
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Hence 
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:S? = Min a - Min /£ + 2 In - (« + 1) 2 2 ln ’ 
y * y 

where = the number of sources observed in area j and 

y 
We define the derivatives 

^ = -2 AÁSora In s0i - Su)~
a In SuJ) , 

* = Sí = 2 ^y[Soy-“(ln S0i)
2 - SUJ-%\n Sujf]. 

Then the maximum-likelihood value for a is obtained by solving 

dj? 
da 

M MK 
a K rri = 0 = - - ^-221q^- 

i y 

The standard deviation of this estimate is given, in the limit of large numbers, by 
the relation 

Or 

cr-2 = -(d2&lda2y . 

a2 = a2M - ^1 -1| (K2 - ü:â:) I " , 

where, to sufficient approximation, we may replace a by its estimated value. 
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