# THE UHURU CATALOG OF X-RAY SOURCES

# R. GIACCONI, S. MURRAY, H. GURSKY, E. KELLOGG,

E. SCHREIER, AND H. TANANBAUM

American Science & Engineering, Cambridge, Massachusetts Received 1972 May 4

# ABSTRACT

A catalog of X-ray sources observed with the *Uhuru* satellite is presented. About 70 days of data have been analyzed for this catalog resulting in 125 sources. Approximately two-thirds of the sources are located within  $\pm 20^{\circ}$  of the galactic plane. Some of the sources at higher galactic latitudes are identified with known extragalactic objects. Most of the strong sources near the galactic plane are found to be variable.

#### I. INTRODUCTION

The X-ray observatory Uhuru has now been operating continuously for over a year. From time to time we have reported in this Journal, particularly exciting results on individual sources both galactic and extragalactic. These reports were based on the analysis of data processed specifically to study selected objects. A more comprehensive and time-consuming analysis is required to examine results about the X-ray sky as a whole. We have presently completed the analysis of data from the nighttime portion of about 70 days of observations. Although this represents a small fraction of the data that will ultimately be available, the coverage of the sky is sufficiently extensive to give at least a qualitative idea of the distribution of sources and of the relationship between sensitivity and the number of sources observed.

Previous reports on X-ray source locations have appeared in several letters in this *Journal* and in private communications to members of the astronomical community. There have also been two earlier catalogs of *Uhuru* sources, the 1 ASE list of 16 sources (Giacconi *et al.* 1971*a*) and the 2 ASE list of 116 sources (Giacconi *et al.* 1971*b*). These reports were preliminary, and the current catalog, 2 *Uhuru*, supersedes them.

#### II. DATA ANALYSIS

The Uhuru instrumentation has been described elsewhere in some detail (Giacconi et al. 1971c). In order to establish the existence of an X-ray source and its location, the analysis of data from the experiment proceeds along the following lines which are illustrated graphically in figure 1.

a) From the star sensor data, individual star sighting times are determined which yield the instantaneous direction of the X-ray collimators. A function, which describes the celestial position of the fields of view of the X-ray detectors with respect to time, is fitted to these data over an entire orbit. The functional form used in this fit takes into account all of the known significant physical effects that perturb the orientation of the satellite. The detailed mathematical forms for some terms have been determined empirically to maximize the quality of the fit. The resulting equation of motion for the direction of the X-ray detectors is precise to about 0.5, that is, the rms deviation of predicted star sightings from the actual sightings is 0.5 or less.

b) The equation of motion of the X-ray sensors for each orbit allows us to convert the observed X-ray counting rates versus time to counting rates versus azimuthal



azimuth

FIG. 1.—The processing of data is schematically illustrated. Star-sensor data are extracted from the telemetry data which were stored on magnetic disks, and an equation of motion for the X-ray detectors is determined. Using this, the X-ray data which are on the telemetry disk as counting rates versus time can be transformed to counting rate versus azimuth. The data from a single spinaxis orientation are summed (superposed), increasing the signal-to-noise ratio, and then these data are scanned for statistically significant peaks which are fitted to the collimator response using a minimum  $\chi^2$  technique.

angle in the band of the sky being scanned (see fig. 2). In addition, the orientation of the satellite is generally held constant over a day so that data from successive spins over several orbits can be superposed, thus providing increased sensitivity; typical exposure times are 10-20 seconds in the narrow field of view detector (side 1) and 100-200 seconds in the wide field of view detector (side 2). The superposed data for 68 spin-axis orientations is the base of data out of which this catalog has been constructed.



FIG. 2.—Band of the sky swept out by the *Uhuru* X-ray detectors during a satellite spin. The fields of view are indicated as the FWHM of each collimator. The angular position ( $\Theta$ ) of a detector is the relative location in this band with respect to a fixed direction in the sky (A). This coordinate is called the azimuth of the detector.

c) For each set of superposed X-ray data, a computer search is made for peaks above the local background which are statistically significant and consistent with the triangular response of the collimators. The local background used in this is calculated for each 3° in azimuth for side 1 and for each 10° in azimuth for side 2. The background calculation is an iterative process in which the statistically significant peaks are not included. The minimum significance levels which are accepted in the automatic scan are 2.4  $\sigma$  above local background in side 1 (X1) and 2.0  $\sigma$  above the local background in side 2 (X2). These levels were chosen so that the bulk of the sources with observed intensities greater than 1 count s<sup>-1</sup> could be picked out from the background while limiting the expected number of random peaks included to an acceptable low level. At the 2.4 and 2.0  $\sigma$  levels used, we expect about three peaks due to random fluctuations in side 1 and about one peak due to random fluctuations in side 2 for each set of data corresponding to a spin-axis orientation.



FIG. 3.—Lines of position which result from the computer scan of superposed data are plotted on an equal area projection of the sky in galactic coordinates. The line widths are  $\pm 1 \sigma$  as determined by the minimum  $\chi^2$  fits. There are 1171 lines on the plot.

# UHURU CATALOG OF X-RAY SOURCES

d) For each peak in the superposed data which is selected by the computer scan a minimum  $\chi^2$  fit is made to the triangular collimator response. The amplitude and location of the peak are the parameters of this fit. Those peaks for which a satisfactory fit can be obtained yield lines of positions on the sky which are about 10° long (the acceptance angle of the collimators along the spin-axis direction) and have widths determined by the accuracy of the fit. Analysis of the 68 sets of superposed data yielded 1171 lines of position. Based on the statistical cutoff levels of 2.4 and 2.0  $\sigma$ , we estimate that about 275 of these lines may be due to statistical fluctuations in the background. In figure 3 these lines of position are plotted in galactic coordinates giving a picture of the sky in X-rays as seen by *Uhuru*.

#### **III. SOURCE EXISTENCE**

The map of the sky generated from all of the lines of position as described in the previous section enables us to approximately locate the potential X-ray sources. These potential sources are assumed to be located where two or more lines of position of width  $\pm 3 \sigma$  in azimuth (as determined from the minimum  $\chi^2$  fit) intersect. The lines of position for each tentative source are then examined to determine if the following criteria are satisfied.

a) For intersections of only two lines of position we require that each line have no more than a 10 percent chance of being due to a statistical fluctuation of the background. This gives at most a 1 percent chance that the intersection is the chance coincidence of two random fluctuations; and at most an 18 percent chance that one of the two peaks is spurious and therefore the source is not located at the intersection of the lines. To satisfy these conditions we have determined that for our data set a peak from side 1 must be at least  $3.4 \sigma$  above background and a peak from side 2 must be at least  $2.4 \sigma$  above background.

b) For intersections of three lines of position, we require that all of the lines yield consistent intensities for the source, and that there be no more than a 1 percent chance of the intersection being due to a chance coincidence of random fluctuations of the background. For those intersections where a single intensity is not consistent with the data, we require that at least one of the peaks have a less than 1 percent chance of being spurious.

c) For intersections made by more than three lines of position, no additional requirements are made.

d) For weak sources with marginal statistics, we extend our analysis to lower statistical levels by searching the original superposed data for excesses above background to ascertain that the source was observed at the expected intensity when within the field of view of the detector.

The above requirements eliminate about one-half of the intersections at galactic latitudes greater than  $20^{\circ}$ , and impose a bias which discriminates against weak variable sources throughout the sky. The effect of such stringent criteria is that no more than one of the weak sources (of which there are about 50) is expected to be due to a chance coincidence of statistical fluctuations of the background. However, it is also likely that as many as 50 true sources are not included in this catalog as a result of the above conditions. The analysis of additional data for future editions of *Uhuru* catalogs will enable us to confirm the existence of these sources and to obtain their locations.

#### IV. LOCATION

In terms of position, the X-ray sky as seen by *Uhuru* can be categorized by regions where isolated sources are present and by more complex regions where it is necessary to postulate the existence of several sources to explain the observations. For isolated

sources, existence is established in a straightforward manner by application of the criteria given above. Then the lines of position assigned to a source are used to determine its location and a 90 percent confidence error box, as described below.

The complex regions, however, require an iterative approach in which the most obvious sources (those previously known, or those with many lines of position intersecting at one location, or some other properties which uniquely characterize a source) are eliminated from the region. That is, the lines of position which are due to known sources are eliminated from consideration. When no further simplification can be made in this manner, models are constructed to be consistent with the data, using the smallest number of sources possible and conforming with the criteria for source existence as given above.

This catalog contains the results from unraveling many complex regions, especially in the galactic plane where the density of sources is high. In some of these complex regions, both in and away from the galactic plane, our interpretation of the data may not be unique. One such example is the Large Magellanic Cloud (LMC) (fig. 4),



FIG. 4.—The Large Magellanic Cloud as seen with the narrow field of view *Uhuru* X-ray detector. Each line of position has a width of  $\pm 1 \sigma$  as obtained from a minimum  $\chi^2$  fit to the data. The four sources which are associated with the LMC as given in this catalog are indicated by crosses. *Filled circles*, the previously reported source locations (Leong *et al.* 1971). The radio source 30 Doradus is also shown.

286

which was initially thought to contain three sources of X-rays, one of which was extended (Leong *et al.* 1971). This model for the LMC was based on the analysis of a smaller sample of data than is included in this catalog. We now interpret the data as being consistent with three point sources ( $2U \ 0521-72$ ,  $2U \ 0539-64$ , and  $2U \ 0540-69$ ), which correspond to the previous model (see table 1), and an additional point source ( $2U \ 0532-66$ ) which was previously masked by the assumed extended source. Clearly, in complex regions additional data at more favorable scan orientations are necessary to enable us to find unambiguous models of source locations and strengths.

Once a source has been established to exist at an approximate location and the lines of position associated uniquely with that source are determined, then a precise location is calculated. The technique used is equivalent to a maximum-likelihood analysis subject to the condition that the set of lines of position used can be assigned to only one source. In practice a probability calculation is made as follows.

From each line of position an estimated location in one direction and a standard deviation for this location are known. Assuming that the experimentally determined location is a random variable with a normal distribution, we can calculate, for any point in space near the estimated location, the differential probability that it is the correct location. Each line of position is an independent measurement of the source location, and therefore the product of the one-dimensional probability density distributions gives the joint probability density distribution for the source location. The point with the maximum probability density is then the most likely source location, and by integrating the joint distribution over regions bound by iso-probability density contours a 90 percent confidence error box can be found. In this catalog the error boxes are approximated by quadrilaterals on a Cartesian projection of the sky near the source location. In some instances the joint probability density distribution is highly asymmetric due to a source being near the edge of the field of view of a

## EXPLANATION OF TABLE 1

Column (1): Source name is given in right ascension (1950) and declination (1950) truncated to minutes of right ascension and degrees of declination.

Column (2): Source locations are determined by using a probability density distribution as described in the text. The location of the maximum of this distribution is given in both equatorial (col. [2a]) and new galactic (col. [2b]) coordinates. The equatorial coordinates are given in time and arc notation and also in decimal degrees.

Column (3): Error-box corners are for a 90 percent confidence region obtained by integrating the joint probability density distribution as described in the text. The corner locations are given in equatorial coordinates; as for the source location, the coordinates are in time and arc notation and also in decimal degrees. The error box areas are also given (in units of square degrees).

Column (4): Intensities given are in counts per second from 2 to 6 keV as observed by *Uhuru*. These intensities are corrected for elevation in the collimator field of view by using either the location of the maximum of the probability density distribution given in column (2) or the location of the accepted X-ray counterpart (indicated by an asterisk). For sources with no apparent variability the intensity listed is the average for all sightings and the uncertainty is the statistical uncertainty derived from minimum  $\chi^2$  fits to the data as discussed in the text. For variable sources the maximum observed intensity and the ratio of the maximum to the minimum intensities are listed.

Column (5): The comments are divided into three areas. General comments give peculiar features of the X-ray emission. Counterparts indicate identification with radio or optical objects. Question marks (?) are used to indicate possible identification. Previous X-rays indicate reported X-ray observations which correspond to the *Uhuru* source. Tentative correspondence is indicated by a question mark (?). The lists of potential counterparts scanned is given in table 2 as well as the references for previous X-ray observations and general comments.

TABLE 1 UHURU CATALOG OF X-RAY SOURCES

|                    | LOCATIOI<br>MAXIMUM PRO                                                                 | N OF<br>DBABILITY                        | Err                                                                       | OR REGION FO                                                              | r 90 Percent (                                                                | CONFIDENCE                                                                   |                             |                         | COMME                                | NTS AND<br>Remarks                     |
|--------------------|-----------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|-------------------------|--------------------------------------|----------------------------------------|
|                    | DENSI                                                                                   | -                                        | -                                                                         | с<br>1                                                                    | ٠,                                                                            | 4                                                                            | Area                        | Average 0               | hs./                                 |                                        |
| Source Name<br>(1) | $   \alpha (1950)   \delta (1950)   \delta (1950)   (2a)   $                            | $b^{\mathrm{II}}_{b^{\mathrm{II}}}$ (2b) | α<br>δ<br>(3a)                                                            | α<br>α<br>(3b)                                                            | α<br>δ<br>(3c)                                                                | α<br>8<br>(3d)                                                               | (square<br>degrees)<br>(3e) | Maximum C(4a)           | fin.<br>bs. Counterparts<br>4b) (5a) | Previous<br>X-Ray<br>(5b)              |
| 2U 0022+63         | 0 <sup>h</sup> 22 <sup>m</sup> 0 <sup>s</sup><br>63°54′ 0″<br>5.50                      | 120°03<br>1°46                           | 0 <sup>h</sup> 22 <sup>m</sup> 48 <sup>s</sup><br>63°50′24″<br>5.70       | 0 <sup>h</sup> 22 <sup>m</sup> 41 <sup>s</sup><br>63°57′36″<br>5.67       | 0 <sup>h</sup> 20 <sup>m</sup> 58 <sup>s</sup><br>63°56′24″<br>5.24           | 0 <sup>h</sup> 21 <sup>m</sup> 2 <sup>s</sup><br>63°49' 12"<br>5.26          | 0.023                       | $10.7 \pm 0.3*$         | Tycho's<br>supernova<br>3C 10        | Cep XR-1 (1)<br>Tycho (2)<br>Cep 1 (3) |
| 2U 0022+42         | $\begin{array}{c} 63.90 \\ 0.22 \\ 42 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $ | 117.67 - 20.32                           | $\begin{array}{c} 63.84 \\ 1 & 8 & 0 \\ 43 & 0 & 0 \\ 17 & 0 \end{array}$ | $ \begin{array}{c} 63.96\\ 0.20\\ 43\\ 5.2\end{array} $                   | $\begin{array}{c} 63.94\\ 0.20 \ 48\\ 41 \ 0 \ 0\\ 52 \end{array}$            | $\begin{array}{c} 63.82 \\ 1 & 8 & 0 \\ 41 & 0 & 0 \\ 17.0 \end{array}$      | 17.000                      | $1.9 \pm 0.3^*$         | M31                                  |                                        |
| 2U 0033+24         | 2.52<br>42.0<br>0 33 41<br>24 9 36<br>8.42                                              | 118.55<br>- 38.31                        | $\begin{array}{c} 43.0\\ 1 & 8 \\ 24 & 36 \\ 17.2 \end{array}$            | $\begin{array}{c} 43.0\\ 0 & 30 & 0\\ 25 & 0 & 0\\ 7.5 & 0 \end{array}$   | 41.0<br>0 30 0<br>23 0 0<br>7.5                                               | $\begin{array}{c} 41.0\\ 1 & 8 & 24\\ 22 & 36 & 0\\ 17.1 \end{array}$        | 18.000                      | $5.9 \pm 1.2$           | NGC 169?                             |                                        |
| ž<br>2U 0043+32 …  | 24.16<br>0 43 7<br>32 48 0                                                              | 121.58<br>- 29.78                        | $\begin{array}{c} 24.6 \\ 0 \ 46 \\ 33 \ 4 \ 48 \\ 11 \ 50 \end{array}$   | 25.0<br>0 39 31<br>32 34 48                                               | $\begin{array}{c} 23.0 \\ 0 39 41 \\ 32 27 0 \\ 0 07 \end{array}$             | 22.6<br>0 46 10<br>32 58 12                                                  | 0.180                       | <b>7.8 ± 0.6</b>        |                                      |                                        |
| 2U 0114+63         | 10.78<br>32.80<br>1 14 24<br>63 24 0<br>18 60                                           | 125.84<br>0.94                           | 33.08<br>33.08<br>1 14 48<br>63 25 48<br>18.70                            | 32.58<br>32.58<br>1 13 58<br>63 25 48<br>18.49                            | 32.45<br>32.45<br>1 13 58<br>63 22 12<br>18.49                                | 32.97<br>32.97<br>1 14 48<br>63 22 12<br>18.70                               | 0.006                       | 70                      | ٢                                    |                                        |
| 2U 0115-73         | $\begin{array}{c} 63.40\\ 63.40\\ 1 15 2\\ -73 41 24\\ 18.76\end{array}$                | 300.48<br>43.58                          | $\begin{array}{c} 63.43\\ 63.43\\ 1 14 19\\ -73 39 0\\ 18.58\end{array}$  | $\begin{array}{c} 63.43\\ 63.43\\ 1 14 10\\ -73 41 24\\ 18.54\end{array}$ | $\begin{array}{c} 63.37\\ 1 15 41\\ -73 43 12\\ 18.92\end{array}$             | $\begin{array}{c} 63.37\\ 1 15 53\\ -73 41 24\\ 18.97\end{array}$            | 0.004                       | 28                      | ≥9 Spectru<br>at 2.<br>In SMC        | m cutoff<br>5 keV<br>SMC X-1 (7)       |
| 2U 0143 + 61       | $\begin{array}{c} -73.69\\ 1 43 17\\ 61 19 12\\ 25.82\end{array}$                       | 129.47<br>0.60                           | $\begin{array}{c} -73.65 \\ 1 \ 44 \\ 61 \ 24 \\ 26.00 \end{array}$       | -73.69     1 42 29     61 24 0     25.62                                  | $\begin{array}{c} -73.72 \\ 1 \ 42 \ 29 \\ 61 \ 14 \ 24 \\ 25.62 \end{array}$ | $\begin{array}{c} -73.69 \\ 1 \ 44 \ 0 \\ 61 \ 14 \ 24 \\ 26.00 \end{array}$ | 0.029                       | <b>7.2 ± 0.5</b>        |                                      |                                        |
| 2U 0227+43         | 61.32<br>2 27 12<br>43 42 0<br>36.80<br>43.70                                           | 141.16<br>                               | 61.40<br>3 2 0<br>43 24 0<br>45.50<br>43.40                               | 61.40<br>2 12 0<br>44 45 0<br>33.00<br>44.75                              | 61.24<br>2 11 48<br>43 15 0<br>32.95<br>43.25                                 | 61.24<br>3 0 0<br>42 9 0<br>45.00<br>42.15                                   | 13.000                      | <b>4.2</b> ± <b>0.6</b> | 3C 66?                               |                                        |

 $\circledcirc$  American Astronomical Society  $\, \bullet \,$  Provided by the NASA Astrophysics Data System

|             |              | INTENSITY        | May               | Average Obe / |
|-------------|--------------|------------------|-------------------|---------------|
|             |              |                  |                   | Area          |
| ed          | y Sources    |                  | CONFIDENCE        | V             |
| E 1-Continu | ALOG OF X-RA | 00 DEDCEME       | A JU FERCENT      | 3             |
| TABI        | UHURU CAT    | EPDOP RECION FOR | CREVE INEGION FUL | <b>,</b>      |

|                                                                                             |                                      | AC N      |                                                |                     |                                                |                     |         | INTENIO          | 2        |                      |                             |
|---------------------------------------------------------------------------------------------|--------------------------------------|-----------|------------------------------------------------|---------------------|------------------------------------------------|---------------------|---------|------------------|----------|----------------------|-----------------------------|
|                                                                                             | MAXIMUM PR                           | OBABILITY | ER                                             | ror Region fo       | <b>DR 90 PERCENT</b>                           | CONFIDENCE          |         | TENTT            | Mov      | COMMENT              | IS AND                      |
|                                                                                             | DENSI                                | -   XT    | -                                              | , c                 | 7                                              |                     | Åreg    | Average          | Ohe /    | UENEKAL F            | KEMAKKS                     |
| Sorn CE NAME                                                                                | $\alpha (1950)$                      | пц<br>11  | 4 8 4                                          | । ১ এ               | 1 84                                           | - 84                | (square | Movimum          | Min.     | Constanto            | Previous                    |
| SOURCE INAME (1)                                                                            | (2a)                                 | (2b)      | (3a)                                           | (3b)                | (3c)                                           | (3d)                | (3e)    | (4a)             | (4b)     | counterparts<br>(5a) | <b>A-Nay</b><br>(5b)        |
| 2U 0240+44                                                                                  | $2^{\rm h}40^{\rm m}$ 0 <sup>s</sup> | 142°98    | 2 <sup>h</sup> 42 <sup>m</sup> 48 <sup>s</sup> | $2^{h}37^{m}12^{s}$ | 2 <sup>h</sup> 37 <sup>m</sup> 36 <sup>s</sup> | $2^{h}43^{m}12^{s}$ | 0.310   | 3.1 + 0.4        |          |                      |                             |
|                                                                                             | 44°31′12″                            | -13.74    | 44°48′0″                                       | 44°36′0″            | 44°18′ 0″                                      | 44°30′0″            |         | 1                |          |                      |                             |
|                                                                                             | 40.00                                |           | 40.7                                           | 39.3                | 39.4<br>41.2                                   | 40.8                |         |                  |          |                      |                             |
| 2U 0258 + 13                                                                                | 44.32<br>2 58 7                      | 164.92    | $^{44.8}_{259}$                                | 44.0<br>2 56 55     | 44.3<br>2 56 43                                | 2, 59, 12           | 0.210   | 2.9 + 0.3        |          | Cluster: A hell      | 401 ?                       |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 13 3 0                               | -38.85    | 13 18 0                                        | 13 21 0             | 13 0 0                                         | 12 57 0             |         |                  |          |                      |                             |
|                                                                                             | 44.53                                |           | 44.85                                          | 44.23               | 44.18                                          | 44.80               |         |                  |          |                      |                             |
| 2U 0316+41                                                                                  | 3 16 35                              | 150.58    | 3 17 0                                         | 3 16 3              | 3 16 8                                         | 3 17 6              | 0.012   | 43.1 + 0.3*      |          | 0°7 e                | xtent                       |
|                                                                                             | 41 21 11                             | -13.23    | 41 25 59                                       | 41 19 12            | 41 15 54                                       | 41 22 30            |         |                  |          | Perseus cluster-     | <ul> <li>Per X-1</li> </ul> |
|                                                                                             | 49.145                               |           | 49.252                                         | 49.011              | 49.035                                         | 49.277              |         |                  |          | centered on          | (4)                         |
|                                                                                             | 41.353                               | 37 770    | 41.433                                         | 41.320              | 41.265                                         | 41.375              |         |                  | ,        | NGC 1275             |                             |
| 20 0328 – 52 · · ·                                                                          | - 57 28 48<br>- 57 78 48             | - 51.33   | 342 = 0<br>- 5024 0                            | 3 12 0<br>- 50 24 0 | 3120                                           | 3 42 0<br>- 54 24 0 | 18.000  | $1.7 \pm 0.4$    |          | C 1954?              |                             |
|                                                                                             | 52.00                                |           | 55.5                                           | 48.0                | 48.0                                           | 55.5                |         |                  | 4        |                      |                             |
|                                                                                             | - 52.48                              |           | -50.4                                          | - 50.4              | - 54.4                                         | - 54.4              |         |                  |          |                      |                             |
| 2U 0352+30                                                                                  | 3 52 10                              | 163.08    | 3 52 46                                        | 3 51 41             | 3 51 48                                        | 3 52 53             | 0.019   | $20.2 \pm 0.5$   | -        | Variable star: >     | K Per?                      |
|                                                                                             | 30 52 48                             | -17.16    | 30 58 48                                       | 30 52 12            | 30 48 0                                        | 30 54 36            |         |                  |          |                      |                             |
|                                                                                             | 30.04<br>30.88                       |           | 30.19                                          | 30.87               | 66.70<br>08.08                                 | 30.91               |         |                  |          |                      |                             |
| 2U 0410+10                                                                                  | 4 10 43                              | 182.42    | 4 27 43                                        | 4 10 24             | 4 10 41                                        | 4 28 0              | 1.100   | $3.0 \pm 0.4$    | Ŭ        | Cluster: Abell       | 1782                        |
|                                                                                             | 10 21 36                             | - 28.27   | 11 30 0                                        | 10 31 48            | 10 12 0                                        | 11 19 48            |         |                  | <b>m</b> | SC 113?              |                             |
| •                                                                                           | 62.68                                |           | 66.93                                          | 62.60               | 62.67                                          | 67.00               |         |                  |          |                      |                             |
|                                                                                             | 10.36                                |           | 11.50                                          | 10.53               | 10.20                                          | 11.33               | 1 000   |                  |          |                      |                             |
| ZU 0420-03                                                                                  | 4 70 34<br>50 37 10                  | 20.04     | 4 33 12<br>61 48 0                             | 4 30 24             | 4 21 17 4                                      | 4 23 30             | 000.1   | <b>2.0</b> ± 0.4 |          |                      |                             |
|                                                                                             | 21 /C 70                             |           | 683                                            | 0 74 TO -           | 653                                            | 0 0 0               |         |                  |          |                      |                             |
|                                                                                             | -63.62                               |           | -61.8                                          | -61.7               | -64.9                                          | -65.0               |         |                  |          |                      |                             |
| 2U 0426-10                                                                                  | 4 26 58                              | 205.61    | 4 34 0                                         | 4 26 0              | 4 26 0                                         | 4 34 0              | 1.600   | $2.3 \pm 0.3$    |          |                      |                             |
|                                                                                             | -10 19 12                            | -36.14    | -9360                                          | -9480               | -10420                                         | -10 18 0            |         |                  |          |                      |                             |
|                                                                                             | 66.74<br>- 10.32                     |           | 6.80<br>0.60                                   | 66.5<br>- 9.8       | 66.5<br>- 10.7                                 | - 10.3<br>- 10.3    |         |                  |          |                      |                             |

<sup>289</sup> 

TABLE 1—Continued UHURU CATALOG OF X-RAY SOURCES

|                    | LOCATIO<br>MAXIMUM PRO                                                      | N OF<br>OBABILITY                              | ER                                                     | ROR REGION FC                                                       | DR 90 PERCENT                                                               | CONFIDENCE                                                          |                       | INTENSI                          | L L             | COMMEN                    | TS AND                               |
|--------------------|-----------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------|----------------------------------|-----------------|---------------------------|--------------------------------------|
|                    | DENAL                                                                       |                                                | -                                                      | (<br>)                                                              | 7                                                                           | V                                                                   | Area                  | Average                          | Max.            | CENERAL                   | KEMARKS                              |
| Source Name<br>(1) | $ \begin{array}{c} \alpha \ (1950) \\ \delta \ (1950) \\ (2a) \end{array} $ | $b^{\mathrm{II}}_{\mathrm{b}\mathrm{II}}$ (2b) | α<br>δ<br>(3a)                                         | α<br>8<br>(3b)                                                      | α<br>8<br>(3c)                                                              | م<br>م<br>(3d)                                                      | (square degrees) (3e) | Avelage<br>or<br>Maximum<br>(4a) | Min. C (4b) - C | counterparts<br>(5a)      | Previous<br>X-Ray<br>(5b)            |
| U 0440+07          | 4 <sup>h</sup> 40 <sup>m</sup> 19 <sup>s</sup><br>7°2′24″<br>70.08          | 190°27<br>- 24°38                              | 4 <sup>h</sup> 43m41 <sup>s</sup><br>7°43′12″<br>70.92 | 4 <sup>h</sup> 36 <sup>m</sup> 5 <sup>s</sup><br>6°29' 24"<br>69.02 | 4 <sup>h</sup> 36 <sup>m</sup> 34 <sup>s</sup><br>6°16′12″<br>69.14         | 4 <sup>h</sup> 44 <sup>m</sup> 7 <sup>s</sup><br>7°27′ 0″<br>71.03  | 0.600                 | <b>4.7 ± 0.8</b>                 |                 | luster:<br>V Zw 0444.     | 7+0828?                              |
| J 0447+44          | 7.04<br>4 47 2<br>44 58 48<br>71.76                                         | 160.56<br>0.38                                 | 7.72<br>4 48 0<br>45 10 48<br>72.00                    | $\begin{array}{c} 6.49 \\ 4.45 \\ 44 \\ 58 \\ 71.43 \end{array}$    | $\begin{array}{c} 6.27 \\ 4 \ 45 \ 58 \\ 44 \ 47 \ 24 \\ 71.49 \end{array}$ | 7.45<br>4 48 17<br>44 57 36<br>72.07                                | 060.0                 | 5.5 ± 0.9                        | ŘŘ              | C 129?<br>C 129.1?        |                                      |
| J 0449 + 66        | 44.98<br>4 49 55<br>66 51 36<br>72.48                                       | 143.63<br>14.47                                | 45.18<br>4 53 36<br>67 6 0<br>73.4                     | 44.97<br>4 48 0<br>66 54 0<br>72.0                                  | 44.79<br>4 48 0<br>66 36 0<br>72.0                                          | 44.96<br>4 53 36<br>66 48 0<br>73.4                                 | 0.170                 | 7.7 ± 2.3                        |                 |                           |                                      |
| J 0515–34          | 66.86<br>5 15 36<br>-34 27 36<br>78 90                                      | 237.94<br>- 33.40                              | 67.1<br>5 46 5<br>-30 42 0<br>86 52                    | 66.9<br>5 41 50<br>-29 20 24<br>85 46                               | $\begin{array}{r} 66.6 \\ 5 12 50 \\ -34 18 0 \\ 78 21 \end{array}$         | 66.8<br>5 17 12<br>-35 34 48<br>79 30                               | 12.000                | <b>4.4 ± 0.7</b>                 |                 |                           |                                      |
| J 0521 – 72        | -34.46<br>5 21 36<br>-72 1 12<br>80.40                                      | 283.10<br>- 32.66                              | -30.70<br>5 21 41<br>-71 56 24<br>80.42                | -29.34<br>5 20 14<br>-72 3 0<br>80 06                               | -34.30<br>5 21 14<br>-72 6 0<br>80 31                                       | -35.58<br>5 22 38<br>-72 0 36<br>80.66                              | 0.014                 | 14.9 ± 1.0                       | II              | LMC                       | LMC X-2 (7)                          |
| J 0525-38          | -72.02<br>525<br>-38<br>0<br>81.28                                          | 242.53<br>32.26                                | -71.94<br>5 28 0<br>-35 49 12<br>82.00                 | -72.05<br>5 7 50<br>-38 43 12<br>76.96                              | -72.10<br>5 18 34<br>-40 0<br>79.64                                         | -72.01<br>5 39 50<br>-37 21 36<br>84 96                             | 12.000                | 2.0 ± 0.3                        |                 |                           |                                      |
| J <b>0525</b> -06  | $-\frac{38.00}{525}$<br>$-\frac{525}{12}$<br>-67 12<br>81.30                | 208.75<br>- 21.39                              | -35.82<br>5 42 48<br>-4 0 0<br>85.7                    | -38.72<br>5 14 48<br>-7 6 0<br>78.7                                 | -40.00<br>5 15 36<br>-7 24 0<br>78.9                                        | $\begin{array}{r} -37.36\\ 5\ 44\ 24\\ -4\ 12\ 0\\ 86.1\end{array}$ | 2.700                 | <b>3.8 ± 0.4</b>                 | ΣO              | 142?<br>Drion radio n     | ebula ?                              |
| J 0531+22          | -6.12<br>5 31 24<br>22 0 0<br>82.85<br>22.00                                | 184.53<br>- 5.80                               | -4.0<br>5 31 30<br>+22 2 6<br>82.876<br>22.035         | $^{-7.1}_{53116}$<br>$^{22}_{82.815}$<br>$^{22.035}_{22.035}$       | -7.4<br>5 31 16<br>21 57 54<br>82.815<br>21.965                             | -4.2<br>5 31 30<br>21 57 54<br>82.876<br>21.965                     | 0.004                 | 947 ± 21*                        | ΰz              | rab nebula 7<br>P 0531? ( | Fau X-1 (1)<br>Crab (2)<br>Fau 1 (3) |

 $<sup>\</sup>ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

| U      |
|--------|
| -      |
| 00     |
| Ň      |
|        |
|        |
| •      |
| œ      |
| $\sim$ |
| -      |
| •      |
| •      |
|        |
| ь.     |
|        |
| - Оч   |
| ⊿.     |
| ~      |
| 24     |
| 1~     |
| 0      |
| -      |

TABLE 1—Continued UHURU CATALOG OF X-RAY SOURCES

|                    | LOCATIO                                                                           | N OF<br>OBABILITY                        | чн                                                                             | ROR REGION EC                                                                    | DEPCENT                                                                             | CONFIDENCE                                                                     |                                     | INTENSI                          | ΓY                     | COMMEN               | TS AND                    |
|--------------------|-----------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|----------------------------------|------------------------|----------------------|---------------------------|
|                    | DENSI                                                                             | ry                                       | -                                                                              |                                                                                  |                                                                                     |                                                                                | Area                                | Average                          | Max.                   | GENERAL              | REMARKS                   |
| SOURCE NAME<br>(1) |                                                                                   | $b^{\mathrm{II}}_{b^{\mathrm{II}}}$ (2b) | 1<br>δ<br>(3a)                                                                 | 2<br>م<br>(3b)                                                                   | , α<br>δ<br>(3c)                                                                    | 4<br>δ<br>(3d)                                                                 | Alca<br>(square<br>degrees)<br>(3e) | Avelage<br>or<br>Maximum<br>(4a) | Min.<br>Obs. C<br>(4b) | ounterparts<br>(5a)  | Previous<br>X-Ray<br>(5b) |
| 2U 0532-66         | 5 <sup>h</sup> 32m19 <sup>s</sup><br>-66°37′12″<br>83.08                          | 276°60<br>- 32°55                        | 5 <sup>h</sup> 34 <sup>m</sup> 48 <sup>s</sup><br>- 66°16′12″<br>83.70         | 5 <sup>n</sup> 32 <sup>m</sup> 0 <sup>s</sup><br>- 66°14′ 24″<br>83.00           | 5 <sup>h</sup> 30 <sup>m</sup> 24 <sup>s</sup><br>- 66°57′0″<br>82.60               | 5 <sup>h</sup> 32 <sup>m</sup> 48 <sup>s</sup><br>- 66°59′24″<br>83.20         | 0.190                               | 9.4 ± 2.1                        | I                      | LMC                  | LMC X-4 (7)               |
| 2U 0539–64         | -66.62<br>5 39 22<br>-64 4 48<br>84.84                                            | 273.54<br>32.01                          | -66.27<br>5 39 41<br>-64 1 12<br>84.92                                         | -66.24<br>5 38 14<br>-64 6 36<br>84.56                                           | -66.95<br>5 39 2<br>-64 9 0<br>84.76                                                | -66.99<br>5 40 24<br>-64 3 36<br>85.10                                         | 0.014                               | 20.7 ± 1.0                       | I                      | I LMC                | LMC X-3 (7)               |
| 2U 0540-69         | $\begin{array}{r} -64.08 \\ 5 40 58 \\ -69 48 \\ 85.24 \end{array}$               | 280.23<br>31.44                          | $\begin{array}{c} -64.02 \\ 5 \ 41 \ 46 \\ -69 \ 42 \ 36 \\ 85.44 \end{array}$ | $\begin{array}{r} -64.11 \\ 5 40 \\ -69 42 \\ 85.08 \\ 85.08 \end{array}$        | $ \begin{array}{r} -64.15 \\ 5 40 \\ -69 53 \\ 85.08 \\ \end{array} $               | $\begin{array}{r} -64.06\\ 5 41 46\\ -69 53 24\\ 85.44\end{array}$             | 0.022                               | 19.3 ± 1.3                       | In                     | LMC                  | LMC X-1 (7)               |
| 2U 0544–39         | -69.80   544 43   -39 0 0   86.18                                                 | 244.62<br>28.72                          | -69.71     6219     -36712     90.58                                           | -69.71<br>5 38 58<br>-34 50 24<br>84.74                                          | -69.89<br>5 28 43<br>-41 4 48<br>82.18                                              | -69.89<br>546<br>-4226<br>86.50                                                | 28.000                              | 3.3 ± 0.9                        |                        |                      |                           |
| 2U 0601+21         | $\begin{array}{c} -39.00\\ 6 & 1 & 46\\ 21 & 57 & 36\\ 90 & 44 \end{array}$       | 188.21<br>0.20                           | $\begin{array}{c} -36.12 \\ 6 20 24 \\ 24 31 48 \\ 95 10 \end{array}$          | $\begin{array}{c} -34.84 \\ 5 57 50 \\ 22 22 12 \\ 89.46 \end{array}$            | $\begin{array}{c} -41.08 \\ 5 59 24 \\ 20 54 \\ 89 85 \end{array}$                  | $\begin{array}{c} -42.44 \\ 6 \ 22 \ 17 \\ 23 \ 30 \ 0 \\ 95 \ 57 \end{array}$ | 7.500                               | 3.8 ± 0.6                        | 30<br>10               | C 443 (SNR)<br>C 157 |                           |
| 2U 0613+09         | 21.96<br>6 13 41<br>9 8 24<br>93.42                                               | 200.81<br>3.52                           | 24.53<br>6 14 29<br>9 15 36<br>93.62                                           | 22.37<br>6 13 12<br>9 9 0<br>93.30                                               | 20.90<br>6 13 17<br>93.32<br>93.32                                                  | 23.50<br>6 14 38<br>9 9 36<br>93.66                                            | 0.036                               | 63                               | S                      |                      |                           |
| 2U 0628 – 54       | 9.14<br>6 28 58<br>- 54 54 0<br>97.24                                             | 263.84<br>24.90                          | 6 32 24<br>- 54 13 48<br>- 98.1                                                | -55 15 36<br>95.7                                                                | -55 34 12<br>96.3                                                                   | $\begin{array}{c} 5.10 \\ 6 & 34 \\ -54 & 33 \\ 98.6 \end{array}$              | 0.750                               | 3.7 ± 0.4                        |                        |                      |                           |
| 2U 0757-53         | $\begin{array}{r} -54.90 \\ 757 \\ -53 \\ 119.36 \\ -53.12 \\ -53.12 \end{array}$ | 267.07<br>— 12.20                        | -54.23<br>75848<br>-525512<br>119.7<br>-52.92                                  | $\begin{array}{c} -55.26 \\ 756 \\ -53 \\ 119.0 \\ -53.25 \\ -53.25 \end{array}$ | $\begin{array}{c} -55.57 \\ 7.57 \\ 12 \\ -53 \\ 24 \\ 119.3 \\ -53.40 \end{array}$ | $\begin{array}{c} -54.55\\ 8&0\\ -53&4&48\\ 120.0\\ -53.08\end{array}$         | 0.120                               | 3.4 ± 0.6                        |                        |                      |                           |

TABLE 1-Continued UHURU CATALOG OF X-RAY SOURCES

|                    | LOCATIO<br>MAXIMUM PRO                                                                 | N OF<br>OBABILITY         | ER                                                                     | ROR REGION F                                                                                 | OR 90 PERCENT                                                                                     | CONFIDENCE                                                             |                             | INTENSI                          | L<br>بر      | COMMEN                                                   | TS AND                                           |
|--------------------|----------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|----------------------------------|--------------|----------------------------------------------------------|--------------------------------------------------|
|                    | DENSI                                                                                  |                           | -                                                                      | )<br>(                                                                                       | 6                                                                                                 |                                                                        | Aran                        | Average                          | Max.         | GENERAL                                                  | KEMARKS                                          |
| SOURCE NAME<br>(1) | $lpha (1950) \ \delta (1950) \ (2a) \ (2a)$                                            | $b^{\mathrm{II}}$<br>(2b) | α<br>δ<br>(3a)                                                         | α<br>8<br>(3b)                                                                               | α<br>(3c)<br>3c)                                                                                  | + ∞<br>∞<br>(3d)                                                       | (square<br>degrees)<br>(3e) | Avciage<br>or<br>Maximum<br>(4a) | Min.<br>(4b) | Counterparts<br>(5a)                                     | Previous<br>X-Ray<br>(5b)                        |
| 2U 0757-26         | 7 <sup>h</sup> 57m55 <sup>s</sup><br>-26°22′48″<br>119.48                              | 244°12<br>1°78            | 8 <sup>h</sup> 3 <sup>m</sup> 48 <sup>s</sup><br>-25°27' 36″<br>120.95 | 7 <sup>b</sup> 52 <sup>m</sup> 29 <sup>s</sup><br>- 26°54' 36"<br>118.12                     | 7 <sup>h</sup> 52 <sup>m</sup> 29 <sup>s</sup><br>-27°16′48″<br>118.12                            | 8 <sup>h</sup> 3 <sup>m</sup> 48 <sup>s</sup><br>-25°49′ 12″<br>120.95 | 0.930                       | 3.0 ± 0.5                        |              |                                                          |                                                  |
| 2U 0821–42 …       | -26.38<br>8 21 26<br>-42 39 36<br>125.36                                               | 260.36<br>-3.19           | -25.40<br>8 21 43<br>-42 31 12<br>125.43                               | $   -20.91 \\   8 20 48 \\   -42 39 0 \\   125.20 $                                          | -2/.28<br>8 20 48<br>-42 51 0<br>125.20                                                           | -25.82<br>8 21 43<br>-42 43 12<br>125.43                               | 0.034                       | 7.6 ± 0.7                        | H            | up A du                                                  | /el XR-2 (1)?<br>up A (2)                        |
| 2U 0832-45         | $ \begin{array}{r} -42.66\\ 8 32 29\\ -45 7 12\\ 128 12 \end{array} $                  | 263.52<br>- 3.02          | $ \begin{array}{r} -42.52\\ 8 33 19\\ -45 4 48\\ 128 33\end{array} $   | $ \begin{array}{r} -42.65\\ 8 32 24\\ -45 0 0\\ 128 10 \end{array} $                         | -42.85<br>8 31 36<br>-45 10 48<br>127 90                                                          | -42.72<br>8 32 0<br>-45 16 12<br>128 00                                | 0.037                       | 10 ± 3                           |              | Vela X<br>SR 0833?                                       | /el XR-1 (1)?<br>/el XR-2 (1)?<br>/ela X (7)     |
| 2U 0900-40         | -45.12<br>9 0 19<br>-40 22 48<br>135.08                                                | 263.09<br>3.93            | -45.08<br>9 0 41<br>-40 23 24<br>135.17                                | -45.00<br>9 0 19<br>-40 19 12<br>135.08                                                      | -45.18<br>-45.18<br>8 59 55<br>-40 21 0<br>134 08                                                 | -45.27<br>9 0 19<br>-40 25 12<br>135.08                                | 0.007                       | LL<br>LL                         | ŝ            |                                                          | 3X 263 + 3 (2)<br>(el XR-1 (1)?<br>/el 1 (3)     |
| 2U 1005–32         | -40.38<br>-40.38<br>10 5 50<br>-32 24 0<br>151.46                                      | 267.38<br>18.72           | -40.39<br>-40.39<br>-33 13 28<br>-33 13 48<br>153.37                   | -40.32<br>9 58 17<br>-31 6 0<br>149.57                                                       | -40.35<br>-40.35<br>9.57 12<br>-31 18 0<br>149.30                                                 | -40.42<br>-40.42<br>10 13<br>-33 39<br>36<br>153.27                    | 1.400                       | <b>5.8</b> ± 0.7                 |              | VGC 3095?<br>VGC 3087?<br>VGC 3087?                      |                                                  |
| 2U 1022–55         | $\begin{array}{r} -32.40\\ 10\ 22\ 14\\ -55\ 28\ 48\\ 155.56\end{array}$               | 283.20<br>1.39            | $-\overline{33.23}$<br>10 24 48<br>-55 36 0<br>156.20                  | -31.10<br>10 20 43<br>-55 12 36<br>155.18                                                    | -31.30<br>10 19 43<br>-55 21 36<br>154.93                                                         | -33.66<br>10 24 0<br>-55 45 0<br>156.00                                | 0.140                       | $10.5 \pm 0.7$                   |              |                                                          |                                                  |
| 2U 1119-60         | $\begin{array}{c} -55.48\\ 11 & 19 & 0\\ -60 & 19 & 12\\ 169.75\\ -60 & 37\end{array}$ | 292.08<br>0.36            | -55.60<br>11 18 55<br>-60 16 12<br>169.73<br>-60 27                    | $\begin{array}{r} -55.21 \\ 11 & 18 & 38 \\ -60 & 18 & 36 \\ 169.66 \\ -60 & 31 \end{array}$ | $\begin{array}{r} -55.36\\ 11 & 19 & 7\\ -60 & 22 & 12\\ 169.78\\ -60 & 37\\ -60 & 37\end{array}$ | -55.75<br>11 19 26<br>-60 19 48<br>169.86<br>-60 33                    | 0.005                       | 160                              | ≥ 20         | Pulses with 4<br>and has 2 <sup>4</sup> 08<br>(1)<br>Cen | *842 Period<br>712 period.<br>t)<br>XR-3 (1, 2)? |
|                    |                                                                                        |                           |                                                                        |                                                                                              |                                                                                                   |                                                                        |                             |                                  |              | CC                                                       | 1 X-3 (5, 14)<br>13 (3) ?                        |

| 7.0      |
|----------|
| Ċ.       |
| -        |
| 00       |
| 01       |
| ~ ~      |
| •        |
| •        |
| œ        |
|          |
| <u> </u> |
| -        |
| •        |
| •        |
|          |
| Ь        |
| õ        |
| 4        |
| Кų       |
| $\sim$   |
|          |
| 0        |
| - :      |

TABLE 1—Continued UHURU CATALOG OF X-RAY SOURCES

|                    | LOCATION<br>MAXIMIIM PRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V OF<br>BABILITY                         | Η                                                                            | BOR REGION EC                                                                       | DR 90 DERCENT                                                                                 | CONFIDENCE                                                                                |                                     | INTENSI                          | ž                    | COMMENT                                      |                                     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|----------------------|----------------------------------------------|-------------------------------------|
|                    | DENSIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y -                                      | -  <br>                                                                      | c                                                                                   | 3                                                                                             |                                                                                           | V                                   | V romon                          | Max.                 | GENERAL R                                    | EMARKS                              |
| Source Name<br>(1) | $\alpha \ (1950) \\ \delta \ (1950) \\ (2a) \ $ | $b^{\mathrm{II}}_{b^{\mathrm{II}}}$ (2b) | (3a)                                                                         | α<br>δ<br>(3b)                                                                      | ر<br>ه<br>(3c) م                                                                              | 4<br>م<br>(3d)                                                                            | Alca<br>(square<br>degrees)<br>(3e) | Average<br>or<br>Maximum<br>(4a) | Min.<br>Obs.<br>(4b) | Counterparts<br>(5a)                         | Previous<br>X-Ray<br>(5b)           |
| 2U 1134–61         | 11 <sup>h</sup> 34 <sup>m</sup> 26 <sup>s</sup><br>-61°36′0″<br>173.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 294°26<br>- 0°27                         | 11 <sup>h</sup> 35 <sup>m</sup> 29 <sup>s</sup><br>-61°43′12″<br>173.87      | 11 <sup>h</sup> 34 <sup>m</sup> 48 <sup>s</sup><br>-61°30′36″<br>173.70             | 11 <sup>h</sup> 33m19 <sup>s</sup><br>-61°32′24″<br>173.33                                    | 11 <sup>h</sup> 34 <sup>m</sup> 24 <sup>s</sup><br>-61°43' 12"<br>173.60                  | 0.031                               | 8.5 ± 1.1                        | ÷.                   |                                              |                                     |
| 2U 1144 + 19       | -61.60<br>11 44 0<br>19 43 12<br>176.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 236.83<br>73.26                          | -61.72<br>11 45 36<br>19 37 48<br>176.40                                     | $\begin{array}{c} -61.51\\ 11 \ 43 \ 12\\ 20 \ 1 \ 48\\ 175.80\\ 775.80\end{array}$ | -61.54<br>11 42 24<br>19 50 24<br>175.60                                                      | -61.72<br>11 44 38<br>19 25 48<br>176.16                                                  | 0.190                               | 3.6 ± 0.3                        |                      | NGC 3862 = 3<br>Cluster: Abell 1<br>Cluster: | C 264?<br>367?                      |
| 2U 1146–61         | 11 46 10<br>-61 37 12<br>176.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 295.61<br>0.08                           | $-61$ $\frac{19,00}{46}$ $\frac{11}{25}$ $\frac{46}{24}$ $\frac{29}{176.62}$ | 20.05<br>11 45 53<br>-61 35 24<br>176.47<br>61 50                                   | $\begin{array}{c} 19.84 \\ 11 45 53 \\ -61 39 36 \\ 176.47 \\ 21 6.47 \\ 21 6.47 \end{array}$ | $\begin{array}{c} 19.43 \\ 11 \ 46 \ 29 \\ -61 \ 39 \ 36 \\ 176.62 \\ 176.62 \end{array}$ | 0.005                               | 72                               | S.                   | 11 ZW 1142.1                                 | + 2120                              |
| 2 2U 1207+39       | -01.02<br>12 7 31<br>39 46 48<br>181.88<br>20 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 155.14<br>74.93                          | -01.39<br>12 9 36<br>39 51 0<br>182.40                                       | -01.39<br>12 5 46<br>39 51 0<br>181.44                                              | -01.00<br>12 5 22<br>39 39 36<br>181.34                                                       | -01.00<br>12 9 31<br>39 39 36<br>182.38                                                   | 0.150                               | $3.5 \pm 0.4^{*}$                |                      | NGC 4151 NG                                  | C 4151 (10)                         |
| 2U 1211–64         | $-64$ $\frac{39.76}{12}$<br>$-64$ $\frac{33}{36}$<br>182.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 298.94<br>- 2.26                         | -64 26 24<br>-64 26 24<br>-182.94                                            | $\begin{array}{c} 122.03 \\ 1210 \\ -64 \\ 182.58 \\ 182.58 \end{array}$            | -64 39 36<br>-64 39 36<br>182.58                                                              | $\begin{array}{c} 39.00\\ 12 11 46\\ -64 39 36\\ 182.94\end{array}$                       | 0.034                               | 6.0 ± 0.6                        |                      |                                              |                                     |
| 2U 1223-62         | -04.50<br>12 23 41<br>-62 28 48<br>185.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300.08<br>- 0.02                         | -64.44<br>12 23 50<br>-62 21 0<br>185.96                                     | -04.44<br>12 23 22<br>-62 21 0<br>185.84                                            | - 04.00<br>12 23 22<br>- 62 37 48<br>185.84                                                   | $\begin{array}{r} -64.66\\ 12 \ 24 \ 5\\ -62 \ 37 \ 48\\ 186.02\end{array}$               | 0.019                               | 32                               | ŝ                    | Very flat s <sub>f</sub><br>Star ¢ Cru?      | ectrum<br>GX 301+0<br>(6)           |
| 2U 1224+02         | -02.48<br>12 24 58<br>2 18 0<br>186.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 289.07<br>64.25                          | -62.35<br>12 26 53<br>2 26 24<br>186.72                                      | -02.35<br>12 22 48<br>2 22 12<br>185.70                                             | -62.03<br>12 22 53<br>2 9 36<br>185.72                                                        | $\begin{array}{c} -02.03 \\ 12 \ 26 \ 58 \\ 2 \ 14 \ 24 \\ 186.74 \end{array}$            | 0.210                               | 4.2 ± 0.5*                       |                      | 3C 273 3C 2                                  | 73 (1, 2, 11)                       |
| 2U 1228+12         | 2.30<br>12 28 5<br>12 42 0<br>187.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 283.56<br>74.51                          | 2.44<br>12 28 34<br>12 45 0<br>187.14<br>1375                                | 2.37<br>12 27 36<br>12 45 0<br>186.90                                               | 2.10<br>12 27 36<br>12 39 36<br>186.90                                                        | 2.24<br>12 28 34<br>12 39 36<br>187.14                                                    | 0.021                               | 21.7 ± 0.3                       |                      | 0°7 ext<br>Virgo cluster V<br>M87 = Vir A N  | ent<br>7ir XR-1 (1)<br>487 (2) (11) |
| 2U 1231 + 07       | $\begin{array}{c} 12.70\\ 12 & 31 & 22\\ 7 & 9 & 36\\ 187.84\\ 7.16\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 290.52<br>69.33                          | 12 36 0<br>6 54 0<br>189.0<br>6.9                                            | 12 24 48<br>7 48 0<br>186.2<br>7.8                                                  | $\begin{array}{c} 12.00\\ 12 & 24 & 48\\ 7 & 36 & 0\\ 186.2\\ 7.6\end{array}$                 | $\begin{array}{c} 12.00\\ 12 36\\ 6 36\\ 189.0\\ 6.6\end{array}$                          | 0.690                               | $6.8 \pm 1.4$                    |                      | IC 3576?                                     |                                     |

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

| U      |
|--------|
| -H     |
| œ      |
| $\sim$ |
| •      |
| •      |
| ω      |
|        |
|        |
| •      |
|        |
|        |
| Ь      |
| ៍      |
| 7      |
| 21     |
| 2      |
| 5      |
| 5      |
|        |

TABLE 1-Continued UHURU CATALOG OF X-RAY SOURCES

| COMMENTS AND<br>GENERAL REMARKS   | Previous<br>Sunterparts X-Ray<br>(5a) (5b)                 | GC 4696 =<br>PKS 1245 – 41<br>outbour of the second | ouncer and                                |                                                                          | 0°6 extent<br>oma Coma cluster<br>cluster (1)                              | Coma X-1 (8)<br>Very flat spectrum<br>GX 304-1 (6)                     | Spectrum cutoff<br>at 2.7 keV<br>GC 5128 = NGC 5128                                        | usters? (11)                                    | GC 5604?<br>uster:<br>I Zw 1417.5–0239?                                     |
|-----------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------|
| INTENSITY<br>Max.                 | Average Obs./ –<br>or Min.<br>Maximum Obs. Cc<br>(4a) (4b) | $5.9 \pm 0.4 \qquad \text{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4.7 \pm 0.3$                             | <b>25.3</b> ± 0.6                                                        | $14.9 \pm 0.3 \qquad Cc$                                                   | 47 4                                                                   | $7.4 \pm 0.4^*$ No                                                                         | 3.8 ± 0.9 CI                                    | 3.9 ± 0.6 NG                                                                |
|                                   | Area<br>(square<br>degrees)<br>(3e)                        | 0.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.360                                     | 0.004                                                                    | 0.011                                                                      | 0.017                                                                  | 0.092                                                                                      | 13.000                                          | 0.660                                                                       |
| CONFIDENCE                        | 4<br>8<br>(3d)                                             | 12 <sup>h</sup> 50 <sup>m</sup> 0 <sup>s</sup><br>-41°10′ 48″<br>192.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -21.10<br>12 56 53<br>-28 51 0<br>194.22  | $\begin{array}{c} -28.85 \\ 12 54 38 \\ -69 3 36 \\ 193.66 \end{array}$  | -69.00<br>12 57 48<br>28 8 24<br>194.45                                    | 28.14<br>12 57 50<br>-61 30 0<br>194.46                                | -61.50<br>13 24 5<br>-42 46 48<br>201.02                                                   | -42.78<br>14 2 0<br>23 12 0<br>210.5            | 25.2<br>14 23 19<br>-3 2 24<br>215.83<br>-3.04                              |
| DR 90 PERCENT                     | 3<br>(3c)<br>3c)                                           | 12 <sup>h</sup> 44 <sup>m</sup> 24 <sup>s</sup><br>-41°10′48″<br>191.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -29.636<br>-29.636<br>192.70              | $\begin{array}{r} -29.11 \\ 12 54 \\ -69 1 48 \\ 193.50 \\ \end{array}$  | - 69.03<br>12 56 55<br>28 11 24<br>194.23                                  | $\begin{array}{c} 28.19\\ 12 57 31\\ -61 18 36\\ 194.38\end{array}$    | $\begin{array}{c} -61.31 \\ 13 & 21 & 12 \\ -42 & 51 & 36 \\ 200.30 \\ 200.30 \end{array}$ | -42.80<br>13 41 12<br>22 48 0<br>205.3<br>205.3 | $^{22.8}_{-3.10}$ $^{14.17}_{-3.10}$ $^{214.30}_{-3.17}$ $^{-3.17}_{-3.17}$ |
| ROR REGION FC                     | 2<br>8<br>(3b)                                             | 12 <sup>h</sup> 44 <sup>m</sup> 24 <sup>s</sup><br>-41° 1' 12"<br>191.1<br>11 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -285136<br>-285136<br>192.65              | $\begin{array}{r} -28.86\\ 12 54 10\\ -68 58 48\\ 193.54\end{array}$     | $\begin{array}{c} -68.98 \\ 12.57 \\ 28.14 \\ 24.26 \\ 194.26 \end{array}$ | 28.24<br>12 58 10<br>-61 13 12<br>194.54                               | -61.22<br>13 21 50<br>-42 39 36<br>200.46                                                  | -42.00<br>13 39 12<br>25 48 0<br>204.8<br>204.8 | 22.8<br>14 17<br>-2 44 24<br>214.28<br>-2.74                                |
| ER                                | 1<br>δ<br>(3a)                                             | 12 <sup>h</sup> 50 <sup>m</sup> 0 <sup>s</sup><br>-41° 1′ 12″<br>192.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -41.02<br>12 56 24<br>-28 34 48<br>194.10 | -28.58   -28.58   -69   -69   -69   -0   -0   -0   -0   -0   -0   -0   - | -69.00<br>12 57 55<br>28 11 24<br>194.48                                   | $\begin{array}{c} 28.19\\ 1258 \ 26\\ -6124 \ 36\\ 194.61 \end{array}$ | -61.41<br>13 24 19<br>-42 34 48<br>201.08                                                  | -42.38<br>14 0 48<br>25 42 0<br>210.2           | 25.7<br>14 23 12<br>-2 36 36<br>215.80<br>- 2.61                            |
| I OF<br>BABILITY<br>Y             | $l^{\mathrm{III}}_{b^{\mathrm{III}}}$ (2b)                 | 302°64<br>21°52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 304.25<br>33.75                           | 303.49<br>6.43                                                           | 56.33<br>87.97                                                             | 304.08<br>1.24                                                         | 309.57<br>19.43                                                                            | 23.98<br>76.21                                  | 342.55<br>52.57                                                             |
| Location<br>Maximum Pro<br>Densit | α (1950)<br>δ (1950)<br>(2a)                               | 12 <sup>b</sup> 47 <sup>m</sup> 12 <sup>s</sup><br>-41° 4′ 48″<br>191.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -41.00<br>12 53 46<br>-28 50 24<br>193.44 | $\begin{array}{c} -28.84 \\ 12 54 29 \\ -69 1 12 \\ 193.62 \end{array}$  | $\begin{array}{c} -69.02 \\ 12 57 29 \\ 28 11 24 \\ 194.37 \end{array}$    | 28.19<br>12 58 0<br>-61 20 24<br>194.50                                | -61.34<br>13 22 48<br>-42 44 24<br>200.70                                                  | - 42.74<br>13 48 58<br>24 26 24<br>207.24       | $^{24.44}_{-2.54}$ $^{24.44}_{-2.54}$ $^{-2.54}_{-2.90}$ $^{-2.90}_{-2.90}$ |
|                                   | SOURCE NAME<br>(1)                                         | 2U 1247–41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2U 1253–28                                | 2U 1254–69                                                               | t 2U 1257+28                                                               | 2U 1258–61                                                             | 2U 1322-42                                                                                 | 2U 1348+24                                      | 2U 1420–02                                                                  |

© American Astronomical Society • Provided by the NASA Astrophysics Data System

|                    |                                                                                  |                                            |                                                                                                   | UHURU CAI                                                                | talog of X-Ra                                                                    | Y SOURCES                                                                               |                                     |                                  |                              |                                                 |                                        |
|--------------------|----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|------------------------------|-------------------------------------------------|----------------------------------------|
|                    | Locario                                                                          | N OF                                       | Ē                                                                                                 | Gr Horor D                                                               | 00 Draces                                                                        |                                                                                         |                                     | INTENSI                          | тү                           | COMMENT                                         |                                        |
|                    | MAXIMUM PR(<br>DENSI1                                                            | OBABILITY<br>ry                            |                                                                                                   | KOK KEGION H                                                             | JK 30 FERCENT                                                                    | CONFIDENCE                                                                              |                                     | -                                | Max.                         | GENERAL H                                       | LEMARKS                                |
| Source Name<br>(1) |                                                                                  | $p^{\mathrm{III}}_{b^{\mathrm{III}}}$ (2b) | $\begin{matrix} 1\\ \alpha\\ \delta\\ (3a) \end{matrix}$                                          | 2<br>8<br>(3b)                                                           | а<br>8<br>(3с)                                                                   | 4<br>δ<br>(3d)                                                                          | Area<br>(square<br>degrees)<br>(3e) | Average<br>or<br>Maximum<br>(4a) | Min.<br>Min.<br>Obs.<br>(4b) | Counterparts<br>(5a)                            | Previous<br>X-Ray<br>(5b)              |
| 2U 1440-39         | 14 <sup>h</sup> 40 <sup>m</sup> 0 <sup>s</sup><br>- 39° 9′ 36″<br>220.00         | 325°39<br>18°58                            | $\begin{array}{c} 14^{\rm h}40^{\rm m} \ 0^{\rm s} \\ - 38^{\circ}30' \ 0'' \\ 220.0 \end{array}$ | 14 <sup>h</sup> 36 <sup>m</sup> 0 <sup>s</sup><br>-39° 6′ 0″<br>219.0    | 14 <sup>h</sup> 40 <sup>m</sup> 0 <sup>s</sup><br>-39°18′ 0″<br>220.0            | 14 <sup>h</sup> 42 <sup>m</sup> 48 <sup>s</sup><br>- 38°54' 0"<br>220.7                 | 0.530                               | $3.2 \pm 0.4$                    |                              |                                                 |                                        |
| 2U 1443 + 43       | $ \begin{array}{c} -39.16 \\ 14 \ 43 \\ 43 \ 2 \ 24 \\ 220.76 \\ \end{array} $   | 74.66<br>62.16                             | -38.5<br>14 44 48<br>43 12 0<br>221.2<br>221.2                                                    | - 39.1<br>14 41 12<br>43 12 0<br>220.3                                   | -39.3<br>14 41 12<br>42 54 0<br>220.3                                            | - 38.9<br>14 44 48<br>42 54 0<br>221.2                                                  | 0.200                               | $3.0 \pm 0.7$                    | -                            | Cluster:<br>III Zw 1445.                        | 0+4259?                                |
| 2U 1509–58         | $\begin{array}{r} 43.04 \\ 15 & 9 & 31 \\ -58 & 51 & 36 \\ 227.38 \end{array}$   | 320.31<br>- 1.05                           | 43.2<br>15 10 24<br>-58 46 48<br>227.60                                                           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                    | $\begin{array}{c} 42.9\\ 15 & 8 & 36\\ -58 & 57 & 36\\ 227.15 \end{array}$       | $ \begin{array}{r} 42.9 \\ 15 \\ 16 \\ 50 \\ -58 \\ 57 \\ 36 \\ 227.71 \\ \end{array} $ | 0.053                               | <b>6.8 ± 0.5</b>                 |                              | MSH 15-52A<br>MSH 15-52B                        | (SNR)?<br>(SNR)?                       |
| 2U 1516–56         | - 58.86<br>- 15 16 43<br>- 56 58 48<br>229.18<br>- 56.98                         | 322.11<br>0.05                             | - 58.78<br>15 17 2<br>- 56 57 0<br>- 229.26<br>- 56.95                                            | - 58.78<br>15 16 24<br>- 56 57 0<br>229.10<br>- 56.95                    | -58.96<br>15 16 24<br>-57 1 48<br>-229.10<br>-57.03                              | $\begin{array}{r} -58.96\\ 15 17 2\\ -57 1 48\\ 229.26\\ -57.03\end{array}$             | 0.007                               | 720                              | ≥20                          | Large intens<br>in seco<br>Lup<br>Cir X         | ity changes<br>onds<br>XR-1 (1, 2)?    |
| 2U 1536–52         | $\begin{array}{r} 15 36 48 \\ -52 10 48 \\ 234.20 \end{array}$                   | 327.22<br>2.37                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                     | $\begin{array}{c} 15 & 35 & 34 \\ -52 & 15 & 0 \\ 233.89 \end{array}$            | $\begin{array}{c} 15 & 37 & 55 \\ -52 & 15 & 0 \\ 234.48 \end{array}$                   | 0.043                               | $11.4 \pm 0.8$                   |                              | N N N                                           | or XR-2 (1)?<br>or 2 (3)?              |
| 2U 1542–62         | $\begin{array}{r} -52.18\\ 15 42 34\\ -62 25 12\\ 235.64\end{array}$             | 321.66<br>- 6.27                           | -52.13<br>15 43 17<br>-62 22 48<br>235.82                                                         | $\begin{array}{r} -52.13 \\ 15 41 41 \\ -62 24 36 \\ 235.42 \end{array}$ | $\begin{array}{r} -52.25 \\ 15 \ 41 \ 41 \\ -62 \ 28 \ 12 \\ 235.42 \end{array}$ | $\begin{array}{r} -52.25 \\ 15 \ 43 \ 17 \\ -62 \ 26 \ 24 \\ 235.82 \end{array}$        | 0.011                               | 35                               | 7                            |                                                 |                                        |
| 2U 1543–47         | $\begin{array}{r} -62.42 \\ 15 \ 43 \ 50 \\ -47 \ 33 \ 36 \\ 235.96 \end{array}$ | 330.93<br>5.36                             | -62.38<br>15 43 55<br>-47 34 48<br>235.98                                                         | -62.41<br>15 43 41<br>-47 31 48<br>235.92                                | -62.47<br>15 43 48<br>-47 32 24<br>235.95                                        | -62.44<br>1544 2<br>-4735 24<br>236.01                                                  | 0.001                               | 2000                             | 7                            | Nova-like so<br>observed in 19<br>Intensity dec | ource first<br>71 August.<br>reased by |
| 2U 1544–75         | -47.56<br>15 44 19<br>-75 43 12<br>236.08<br>-75.72                              | 313.28<br>16.74                            | -47.58<br>15 46 55<br>-75 32 24<br>-75.54<br>-75.54                                               | -47.53<br>15 40 31<br>-75 40 12<br>235.13<br>-75.67                      | -47.54<br>15 40 48<br>-75 55 48<br>-335.20<br>-75.93                             | -47.59<br>15 47 19<br>-75 47 24<br>-236.83<br>-75.79                                    | 0.100                               | $3.2 \pm 0.3$                    |                              | ×2 as of 197<br>NGC 5967?                       | November.                              |

TABLE 1—Continued

295

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

1972ApJ...178..281G

TABLE 1—Continued UHURU CATALOG OF X-RAY SOURCES

|                    | LOCATIO                                                                                | N OF                                       | ц<br>Ц                                                                           | a Morord ao a                                                                    | The of the second se |                                                                                       | T.                                  | INTENSI                          | IY                               |                                            |                                         |
|--------------------|----------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|----------------------------------|--------------------------------------------|-----------------------------------------|
|                    | DENSI                                                                                  | UBABILILY                                  |                                                                                  |                                                                                  | UK 20 FERCENT                                                                                                   | CONFIDENCE                                                                            |                                     |                                  | Max.                             | GENERAL ]                                  | IS AND<br>REMARKS                       |
| Source Name<br>(1) |                                                                                        | $l^{\mathrm{III}}_{b^{\mathrm{III}}}$ (2b) | 1<br>δ<br>(3a)                                                                   | α<br>α<br>(3b)<br>3b)                                                            | ر<br>ع<br>(3c) م<br>ع                                                                                           | 4 م<br>م<br>(3d)                                                                      | Area<br>(square<br>degrees)<br>(3e) | Average<br>or<br>Maximum<br>(4a) | Obs./<br>Min.<br>Obs. Co<br>(4b) | unterparts<br>(5a)                         | Previous<br>X-Ray<br>(5b)               |
| 2U 1556–60         | . 15 <sup>h</sup> 56 <sup>m</sup> 48 <sup>s</sup><br>-60°38′24″<br>239.20              | 324°11<br>5°97                             | 15 <sup>h</sup> 57 <sup>m</sup> 36 <sup>s</sup><br>- 60°35′24″<br>239.40         | 15 <sup>h</sup> 56 <sup>m</sup> 5 <sup>s</sup><br>-60°35′24″<br>239.02           | 15 <sup>h</sup> 56 <sup>m</sup> 5 <sup>s</sup><br>-60°40′ 48″<br>239.02                                         | 15 <sup>h</sup> 57m36 <sup>s</sup><br>- 60°40' 48"<br>239.40                          | 0.017                               | 17.6 ± 1.0                       |                                  | Nor<br>Nor                                 | XR-2 (1, 2)?<br>2 (3)?                  |
| 2U 1617-15         | -00.04<br>16 17 10<br>-15 32 24<br>244.29                                              | 359.09<br>23.76                            | - 00.39     16 17 16     -15 32 6     244.317                                    | -00.39<br>16 17 1<br>-15 30 36<br>244.255                                        | -00.00<br>16 17 1<br>-15 32 24<br>244.255                                                                       | -60.00<br>16 17 16<br>-15 34 12<br>244.317                                            | 0.002                               | 17,000*                          | 2.5 Blu                          | e star<br>Sco X-1) at<br>= $16^{h}17^{m}4$ | Sco X-1<br>(1, 2)<br>(1, 2)<br>(1, 2)   |
| 2U 1624–49         | $\begin{array}{c} -15.54 \\ 16 \ 24 \ 19 \\ -49 \ 6 \ 0 \\ 246.08 \\ \end{array}$      | 334.91<br>- 0.27                           | $\begin{array}{c} -15.535 \\ 16 \ 24 \ 48 \\ -49 \ 7 \ 48 \\ 246.20 \end{array}$ | $\begin{array}{c} -15.510 \\ 16 \ 24 \ 12 \\ -49 \ 2 \ 24 \\ 246.05 \end{array}$ | $\begin{array}{c} -15.540 \\ 16 \ 23 \ 53 \\ -49 \ 4 \ 12 \\ 245.97 \\ 245.97 \end{array}$                      | $\begin{array}{c} -15.570 \\ 16 \ 24 \ 34 \\ -49 \ 9 \ 36 \\ 246.14 \end{array}$      | 0.007                               | <b>43.6 ± 1.4</b>                | ŝ                                | i = -15°31'<br>Nor<br>Nor                  | 13″<br>XR-1 (1, 2)?<br>1 (3)?           |
| 2U 1626–67         | $\begin{array}{r} -49.10\\ 16\ 26\ 29\\ -67\ 24\ 0\\ 246.62\end{array}$                | $321.70 \\ -13.07$                         | -49.13<br>16 27 0<br>-67 19 12<br>246.75                                         | -49.04<br>16 25 43<br>-67 23 24<br>246.43                                        | -49.0/<br>16 25 58<br>-67 28 48<br>246.49                                                                       | -49.16<br>16 27 17<br>-67 24 36<br>246.82                                             | 0.013                               | 13.3 ± 0.8                       |                                  |                                            |                                         |
| 2U 1630–47         | $\begin{array}{r} -67.40 \\ 16 30 \\ -47 15 36 \\ 247.50 \end{array}$                  | 336.89<br>0.31                             | -67.32<br>16 30 29<br>-47 16 48<br>247.62                                        | -67.39<br>16 29 55<br>-47 12 36<br>247.48                                        | -67.48<br>16 29 26<br>-47 12 36<br>247.36                                                                       | -67.41<br>16 30 17<br>-47 19 12<br>247.57                                             | 0.008                               | 150                              | 2                                | Nor<br>Nor                                 | XR-1 (1, 2)?<br>1 (3)?                  |
| 2U 1637–53         | -47.26<br>16 37 17<br>-53 40 48<br>249.32                                              | 332.93<br>4.87                             | -47.28<br>16 37 36<br>-53 42 0<br>249.40                                         | -47.21<br>16 37 2<br>-53 38 24<br>249.26                                         | -47.21<br>16 36 48<br>-53 40 12<br>249.20                                                                       | -47.32<br>16 37 24<br>-53 43 48<br>249.35                                             | 0.005                               | 256 土 4                          |                                  |                                            |                                         |
| 2U 1639–62         | $\begin{array}{r} -53.68\\ 16 39 2\\ -62 43 12\\ 249.76\end{array}$                    | 326.19<br>                                 | $\begin{array}{r} -53.70 \\ 16 \ 40 \ 19 \\ -62 \ 35 \ 24 \\ 250.08 \end{array}$ | -53.64<br>16 37 17<br>-62 41 24<br>249.32                                        | $\begin{array}{r} -53.67 \\ 16 37 53 \\ -62 51 0 \\ 249.47 \end{array}$                                         | -53.73<br>16 40 48<br>-62 45 36<br>250.20                                             | 0.062                               | 9.4 ± 2.3                        |                                  |                                            |                                         |
| 2U 1641–45         | $\begin{array}{r} -62.72 \\ 16.41 \\ -45.28 \\ 250.44 \\ -45.48 \\ -45.48 \end{array}$ | 339.57<br>0.00                             | - 62.29<br>16 42 26<br>- 45 29 24<br>250.61<br>- 45.49                           | -62.69<br>16 41 22<br>-45 25 48<br>250.34<br>-45.43                              | - 62.85     - 62.85     16 41     0     - 45 29     24     250.25     - 45.49     - 45.49                       | $ \begin{array}{c} -62.76\\ 16.42\\ -45.33\\ 250.52\\ -45.56\\ -45.56\\ \end{array} $ | 0.016                               | 400                              | 7                                | GX<br>Ara<br>(L3,<br>(1                    | 340+0 (12)<br>1 (3)?<br>GX 340-2)<br>)? |

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

| U        |
|----------|
| -        |
| 00       |
| $\sim$   |
| •        |
|          |
| m        |
| ~        |
| <u>`</u> |
| 1        |
|          |
|          |
| _        |
| 2        |
| Ω.       |
| 4        |
| $\sim$   |
| 5        |
| 9        |
| _        |

TABLE 1—Continued UHURU CATALOG OF X-RAY SOURCES

|                    | LOCATION<br>MAXIMUM PRC                                                | M OF<br>BABILITY                         | ER                                                                                     | ROR REGION FC                                                                               | jr 90 Percent                                                         | CONFIDENCE                                                                                |                             | INTENSI               | TY           | COMMEN                                                                          | ITS AND                                |
|--------------------|------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|-----------------------|--------------|---------------------------------------------------------------------------------|----------------------------------------|
|                    | DENSII                                                                 | X                                        | 1                                                                                      | ,<br>,                                                                                      | 2                                                                     | V                                                                                         | Area                        | Average               | Obe /        | GENERAL                                                                         | KEMAKKS                                |
| Source Name<br>(1) | $_{\delta}^{\alpha} (1950) \\ _{\delta} (1950) \\ (2a)$                | $l^{\mathrm{II}}_{b^{\mathrm{II}}}$ (2b) | α<br>δ<br>(3a)                                                                         | α<br>δ<br>(3b)                                                                              | ر م<br>ک<br>(3c)                                                      | α<br>β<br>(3d)                                                                            | (square<br>degrees)<br>(3e) | Maximum<br>Or<br>(4a) | Min.<br>(4b) | Counterparts<br>(5a)                                                            | Previous<br>X-Ray<br>(5b)              |
| 2U 1642 + 04       | 16 <sup>b</sup> 42 <sup>m</sup> 5 <sup>s</sup><br>4°14' 24"<br>250.52  | 21°30<br>29°98                           | 16 <sup>h</sup> 49m12 <sup>s</sup><br>4°12′ 0″<br>252.3                                | 16 <sup>h</sup> 44 <sup>m</sup> 24 <sup>s</sup><br>4°54' 0″<br>251.1                        | 16 <sup>h</sup> 39m36 <sup>s</sup><br>3°36′0″<br>249.9                | 16 <sup>h</sup> 47 <sup>m</sup> 36 <sup>s</sup><br>2°42' 0"<br>251.9                      | 2.900                       | $6.7 \pm 1.0$         |              | 6 · · · § ·                                                                     |                                        |
| 2U 1658–46         | $\begin{array}{c} 4.24 \\ 16 58 58 \\ -46 42 \\ 254.74 \\ \end{array}$ | 340.53 - 3.08                            | $\begin{array}{c} 4.2 \\ 16 59 55 \\ -46 42 \\ 254.98 \\ 254.98 \end{array}$           | $\begin{array}{c} 4.9 \\ 16 58 19 \\ -46 38 24 \\ 254.58 \end{array}$                       | $\begin{array}{c} 3.6 \\ 16 58 10 \\ -46 43 12 \\ 254.54 \end{array}$ | $\begin{array}{c} 2.7\\ 16\ 59\ 43\\ -46\ 46\ 48\\ 254.93\end{array}$                     | 0.024                       | 42 ± 3                |              | GX :<br>Ara 1<br>(L2,                                                           | 40-2 (2)<br>(3)?<br>L3, M2) (1)        |
| 2U 1700–37         | -46.70 $   -3748 $ $   -3748 $ $   255.08$                             | 347.71<br>2.19                           | -46.70<br>17 2 48<br>-37 18 0<br>255.7<br>255.7                                        | -46.64<br>16 57 36<br>-37 18 0<br>254.4                                                     | -46.72<br>165736<br>-3800<br>254.4                                    | -46.78<br>17 2 48<br>-38 0 0<br>255.7                                                     | 0.720                       | 102                   | ŝ            |                                                                                 |                                        |
| 2U 1701–31         | -3/.80<br>17 1 46<br>-31 50 24<br>255.44                               | 352.63<br>5.59                           | $\begin{array}{c} -37.3 \\ 17 \\ 55 \\ -32 \\ 12 \\ 0 \\ 256.48 \\ 256.48 \end{array}$ | -3/.5<br>16 57 50<br>-31 9 0<br>254.46                                                      | -38.0<br>16 57 34<br>-31 24 0<br>254.39                               | -38.0<br>17 5 36<br>-32 20 24<br>256.40                                                   | 0.400                       | $11.9 \pm 1.5$        |              |                                                                                 | T8 (I).                                |
| 2U 1702–36         | -31.84<br>17 2 29<br>-36 21 36<br>255.62                               | 349.11<br>2.73                           | -32.20<br>17 2 58<br>-36 22 12<br>255.74                                               | -31.15<br>17 2 10<br>-36 18 36<br>255.54                                                    | -31.40<br>17 1 55<br>-36 20 24<br>255.48                              | -32.34<br>17 2 41<br>-36 24 36<br>255.67                                                  | 0.00                        | 715                   | 2            | CS<br>SS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>C | 349+2 (2)<br>XR-2, L6,<br>-10.7) (1, 2 |
| 2U 1704–42         | -30.36<br>17 4 38<br>-42 51 36<br>256.16<br>250.0                      | 344.19<br>                               | $\begin{array}{c} -36.37\\ 17 5 10\\ -42 54 0\\ 256.29\\ 250.09\end{array}$            | $\begin{array}{c} -36.31\\ 17 & 4 & 22\\ -42 & 47 & 24\\ 256.09\\ 270 & 70 & 70\end{array}$ | -36.34<br>17 4 2<br>-42 49 12<br>256.01                               | $\begin{array}{r} -36.41 \\ 17 & 4 & 53 \\ -42 & 55 & 48 \\ 256.22 \\ 256.22 \end{array}$ | 0.011                       | 108                   | 4            | CO<br>V<br>V<br>V                                                               | 2 (5)<br>ra XR-1 (1)<br>X – 14.1 (2)   |
| 2U 1705–44         | -42.00<br>17 5 22<br>-44 2 24<br>256.34<br>256.34                      | 343.33<br>2.35                           | -42.50<br>17 5 50<br>-44 4 12<br>256.46                                                | -42.72<br>17 5 26<br>-44 1 48<br>256.36<br>24 02                                            | -42.02<br>17 5 12<br>-44 2 24<br>256.30                               | -42.33<br>17 5 36<br>-44 4 48<br>256.40<br>256.40                                         | 0.002                       | 280                   | ς            |                                                                                 |                                        |
| 2U 1705–22         | -44.04<br>17 5 22<br>-22 44 24<br>256.34<br>-22.74                     | 0.49<br>10.36                            | -44.07<br>17 6 53<br>-22 53 24<br>-256.72<br>-22.89                                    | -44.05<br>17 4 7<br>-22 33 36<br>-22.56                                                     | -44.04<br>17 3 58<br>-22 37 12<br>255.99<br>-22.62                    | -44.08<br>17 6 43<br>-22 58 12<br>256.68<br>-22.97                                        | 0.057                       | 42                    | 9            |                                                                                 | Jph XR-2 (1<br>Jph 2 (3)               |

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

TABLE 1-Continued UHURU CATALOG OF X-RAY SOURCES

|                    | Locatio<br>Maximim Pr                                                               | N OF<br>ORABILITY          | а<br>Ц                                                                            | A REGION B                                                                         | O Dub Centr                                                          |                                                                                |                                     | INTENSI                          | ž                             |                                                                        |                                            |
|--------------------|-------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|----------------------------------|-------------------------------|------------------------------------------------------------------------|--------------------------------------------|
|                    | DENSI                                                                               | IY                         |                                                                                   |                                                                                    | ON JO I ENCENI                                                       | CONFIDENCE                                                                     | 6<br>                               |                                  | Max.                          | GENERAL ]                                                              | ts and<br>Remarks                          |
| SOURCE NAME<br>(1) | α (1950)<br>δ (1950)<br>(2a)                                                        | $b^{\mathrm{III}}$<br>(2b) | 1<br>α<br>(3a)                                                                    | a 2<br>8<br>(3b)                                                                   | 3c) ∞ ≈ <i>ч</i>                                                     | 4<br>δ<br>(3d)                                                                 | Area<br>(square<br>degrees)<br>(3e) | Average<br>or<br>Maximum<br>(4a) | Obs./<br>Min.<br>Obs.<br>(4b) | Counterparts (5a)                                                      | Previous<br>X-Ray<br>(5b)                  |
| 2U 1705+34         | . 17 <sup>h</sup> 5 <sup>m</sup> 30 <sup>s</sup><br>34°52′ 12″<br>256.375<br>3.1 87 | 57°91<br>35°52             | 17 <sup>h</sup> 13m19 <sup>s</sup><br>34°33′ 0″<br>258.33                         | 16 <sup>b</sup> 57m29 <sup>s</sup><br>35°31' 12"<br>254.37                         | 16 <sup>b</sup> 57m17 <sup>s</sup><br>35°15′ 0″<br>254.32            | 17 <sup>h</sup> 13 <sup>m</sup> 7 <sup>s</sup><br>34°18′ 0″<br>258.28          | 0.880                               | 100                              | )<br>∧I                       | Pulses with 1<br>and has 1 <sup>4</sup> 7(<br>In Hercules (1)          | \$238 period<br>000 period.<br>t)          |
| 2U 1706+78         | $\begin{array}{c} 34.07\\ 17 & 6 & 24\\ 78 & 38 & 24\\ 256.60 \end{array}$          | 110.94<br>31.80            | 256.0<br>256.0                                                                    | 25.22<br>16 59 36<br>78 59 24<br>254.9                                             | 25.25<br>17 8 48<br>78 8 24<br>257.2                                 | 34.30<br>17 12 0<br>78 22 12<br>258 0                                          | 0.220                               | <b>2.9 ± 0.3</b>                 |                               | Cluster:<br>IV Zw 1653.<br>Cluster:                                    | 9+7856?                                    |
| 2U 1718–39         | 78.64<br>17 18 34<br>- 39 3 36<br>259.64                                            | 348.81<br>- 1.43           | 79.10<br>17 19 55<br>-38 57 36<br>259 98                                          | 78.99<br>17 17 2<br>- 38 57 36<br>259 26                                           | $\begin{array}{c} 78.14 \\ 17 17 2 \\ -39 9 0 \\ 750 76 \end{array}$ | $\begin{array}{c} 78.37 \\ 78.37 \\ 17 19 55 \\ -39 9 0 \\ 750 08 \end{array}$ | 0.110                               | 16 ± 2                           |                               | Abell 2256?<br>(Sco XR-2, L6<br>(1)?                                   | , GX-10.7)                                 |
| 8<br>2U 1726–33    | $\begin{array}{c} -39.06 \\ 17 \ 26 \\ -33 \ 37 \ 12 \\ 261.52 \end{array}$         | 354.15<br>0.39             | -38.96<br>17 26 50<br>-33 40 12<br>261.71                                         | -38.96<br>17 25 34<br>-33 32 24<br>261.39                                          | -39.15<br>-39.15<br>-33.36<br>-33.36<br>261.34                       | -39.15<br>-39.15<br>-33.43<br>-33.43<br>261.68                                 | 0.021                               | 73                               | m                             | (J) (2-20, 2K-2) (J)<br>(Sco 2, Sco 5)<br>(GX 354<br>(M4, G)<br>GX-5.( | (3)?<br>+0 (13)<br>X 354-5)(1)<br>5 (1, 2) |
| 2U 1728–24         | -33.62<br>17 28 22<br>-24 39 36<br>262.09                                           | 1.90<br>4.94               | -33.67<br>17 29 4<br>-24 41 49<br>262.269                                         | -33.54<br>17 27 48<br>-24 34 30<br>261.948                                         | -33.60<br>17 27 41<br>-24 37 30<br>261 920                           | $\begin{array}{r} -33.73 \\ 17 28 55 \\ -24 45 18 \\ 767 730 \end{array}$      | 0.019                               | 60 ± 3                           |                               |                                                                        | 3X 1+4 (15)<br>gr 6 (3)?                   |
| 2U 1728–16         | $\begin{array}{c} -24.66 \\ 17 28 50 \\ -16 57 0 \\ 262.21 \end{array}$             | 8.49<br>9.02               | -24.697<br>17 29 12<br>-1658 12<br>262.300                                        | $\begin{array}{c} -24.575 \\ 17 \ 28 \ 34 \\ -16 \ 54 \ 36 \\ 262.140 \end{array}$ | -24.625<br>17 28 31<br>-165548<br>262.130                            | 24.755<br>24.755<br>17 29 7<br>16 59 24<br>262.280                             | 0.004                               | 205 ± 3                          |                               | Х<br>Ю<br>О<br>О                                                       | 9+9 (1, 2)<br>1 3 (3)                      |
| 2U 1735–28         | -10.95<br>17 35 24<br>-28 27 0<br>263.85                                            | 359.57<br>1.56             | $\begin{array}{c} -16.97 \\ 17 35 36 \\ -28 18 0 \\ 263.90 \\ 263.20 \end{array}$ | $\begin{array}{c} -16.91 \\ 17 34 48 \\ -28 27 0 \\ 263.70 \\ 263.70 \end{array}$  | -16.93<br>17 35 12<br>-28 36 0<br>263.80                             | -16.99<br>17 36 0<br>-28 27 0<br>264.00                                        | 0.040                               | 565                              | ≥10                           | Transient sou<br>in 1971 ]<br>GX                                       | rce observed<br>March<br>359+2 (13)        |
| 2U 1735+43         | 263.96<br>17 35 50<br>43 13 12<br>263.96<br>43.22                                   | 69.00<br>31.21             | - 28.30<br>17 39 41<br>45 34 48<br>264.92<br>45.58                                | -26.43<br>17 30 5<br>45 3 36<br>262.52<br>45.06                                    | - 28.60<br>17 37 46<br>35 46 48<br>264.44<br>35.78                   | -28.45<br>17 47 22<br>36 25 12<br>266.84<br>36.42                              | 17.000                              | 17.2 ± 2.4                       |                               | NGC 6433?<br>IC 1265?<br>3C 361?                                       |                                            |

© American Astronomical Society • Provided by the NASA Astrophysics Data System

TABLE 1—Continued UHURU CATALOG OF X-RAY SOURCES

|                    | Location<br>Maximum Pro                                                            | N OF<br>DBABILITY      | ER                                                                                  | ROR REGION FC                                                                      | jr 90 Percent                                                                      | CONFIDENCE                                                                              |                                     | INTENSI                          | TY<br>Mov                             | COMMEN                                                                        | VTS AND                                                                  |
|--------------------|------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|---------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Source Name<br>(1) | $\alpha$ (1950)<br>$\delta$ (1950)<br>(2a)                                         | $b^{\mathrm{II}}$ (2b) | 1<br>α<br>(3a)                                                                      | 2<br>%<br>(3b)                                                                     | 3c)<br>δ<br>3c)                                                                    | 4<br>δ<br>(3d)                                                                          | Area<br>(square<br>degrees)<br>(3e) | Average<br>or<br>Maximum<br>(4a) | Min.<br>Obs./<br>Min.<br>Obs.<br>(4b) | Counterparts (5a)                                                             | Previous<br>X-Ray<br>(5b)                                                |
| 2U 1743–29         | 17 <sup>h</sup> 43 <sup>m</sup> 36 <sup>s</sup><br>-29° 7′ 48″<br>-29.13<br>-29.13 | 359°95<br>- 0°33       | 17 <sup>h</sup> 45 <sup>m</sup> 12 <sup>s</sup><br>- 29° 6′ 0″<br>- 266.3<br>- 29.1 | 17 <sup>h</sup> 43 <sup>m</sup> 12 <sup>s</sup><br>- 29° 0′ 0″<br>- 29.0<br>- 29.0 | 17 <sup>b</sup> 42 <sup>m</sup> 24 <sup>s</sup><br>-29° 6′ 0″<br>265.6<br>-29.1    | 17 <sup>h</sup> 43 <sup>m</sup> 36 <sup>s</sup><br>- 29°18′ 0″<br>265.9<br>- 29.3       | 0.092                               | 40 ± 5                           | -                                     | 2° extent, co<br>and infrar<br>(KE 56,<br>KE 55) ?<br>(SNR<br>1742-28,<br>SNR | ntains Sgr A<br>ed sources<br>GCX (13)<br>Sgr 1 (3)?<br>(L13, M1<br>(1)? |
| 2U 1744–26         | 17 44 38<br>-26 32 24<br>266.16                                                    | 2.28<br>0.83           | 17 45 2<br>-26 34 12<br>266.26                                                      | 17 44 26<br>-26 29 24<br>266.11                                                    | $\begin{array}{c} 17 \ 44 \ 17 \\ -26 \ 31 \ 12 \\ 266.07 \end{array}$             | 17 44 58<br>-26 36 0<br>266.24                                                          | 0.006                               | 460                              | ю                                     | 1741–29)?<br>GX 3+1 (GX<br>L14, Sgr XI<br>GX 3+1 (2)                          | (+2.6,<br>R-1) (1)<br>Sgr 6 (                                            |
| 2U 1757–33         | -26.54<br>17577<br>-335624<br>269.28                                               | 357.28<br>- 5.26       | -26.57<br>-34 3 36<br>-269.89                                                       | -26.49<br>17555<br>-334348<br>268.77                                               | -26.52<br>17 55 0<br>-33 49 48<br>268.75                                           | -26.60<br>17 59 10<br>-34 10 12<br>269.79                                               | 0.110                               | $18.7 \pm 2.0$                   |                                       | SS                                                                            | X-2.5 (1) (<br>o XR-6 (1)                                                |
| 2U 1757–25         | -35.94<br>17 57 55<br>-25 4 48<br>269.48                                           | 5.06<br>- 0.99         | -34.06<br>17 58 18<br>-25 5 13<br>269.574                                           | -33.73<br>175748<br>-2530<br>269.450                                               | -33.83<br>17.57 44<br>-25 3 36<br>269.434                                          | -34.17<br>17580<br>-2560<br>269.500                                                     | 0.003                               | 1000                             | 2                                     | GX 5-1 (GX<br>Sgr XR-3) (<br>GX5-1 (2)                                        | (+ 5.2, L27,<br>1)<br>Sgr 5 (                                            |
| 2U 1758–20         | -25.08<br>17 58 34<br>-20 31 48<br>269.64                                          | 9.08<br>1.15           | -25.08/<br>175836<br>-20326<br>269.650                                              | -25.050<br>175823<br>-203029<br>269.596                                            | -25.060<br>17 58 19<br>-20 31 30<br>269.578                                        | -25.100<br>17 58 32<br>-20 33 18<br>269.635                                             | 0.001                               | 600                              | 7                                     | GX 9+1,<br>L18, L<br>Sgr 3 (                                                  | (GX+9.1,<br>19, M(3)) (1<br>3)                                           |
| 2U 1808+50         | $\begin{array}{c} -20.53\\ 18 & 8 & 48\\ 50 & 24 & 0\\ 272.20\\ 50.40\end{array}$  | 78.24<br>26.96         | -20.535<br>18 2 0<br>51 17 24<br>270.5<br>51.29                                     | $\begin{array}{c} -20.508\\ 18 & 0 & 24\\ 50 & 54 & 0\\ 270.1\\ 50.90\end{array}$  | $\begin{array}{c} -20.525\\ 18\ 24\ 0\\ 48\ 43\ 12\\ 276.0\\ 48.72\end{array}$     | $\begin{array}{c} -20.555 \\ 18 \ 20 \ 0 \\ 49 \ 27 \ 36 \\ 275.0 \\ 49.46 \end{array}$ | 1.400                               | <b>5.6 ± 0.4</b>                 | -                                     | GX 9+<br>NGC 6582?<br>3C 367?<br>Cluster: Abell<br>Cluster:                   | . (1 (2)<br>2298?                                                        |
| 2U 1811–17         | 18 11 34<br>-17 10 48<br>272.89<br>-17.18                                          | 13.50<br>0.12          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                               | $\begin{array}{c} 18 \ 11 \ 26 \\ -17 \ 11 \ 46 \\ 272.860 \\ -17.196 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                    | 0.002                               | 294 土 4                          |                                       | 111 Zw 1810<br>SNR ((<br>1811–17?<br>G<br>G<br>G<br>G<br>G                    | 2+4949?<br>3X+13.5,<br>L20 Sgr XH<br>2) (1)<br>X 13+1 (1)<br>X 13+1 (2)  |
|                    |                                                                                    |                        |                                                                                     |                                                                                    |                                                                                    |                                                                                         |                                     |                                  |                                       | S                                                                             | gr 2 (3)                                                                 |

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

TABLE 1—Continued UHURU CATALOG OF X-RAY SOURCES

| AND                              | MARKS<br>Previous<br>X-Ray<br>(5b)                                                   | $\begin{array}{c} 17+2, \\ 17+16.7) \\ 18, 16.7) \\ 20, 21 \\ 20, 21 \\ 10? \\ 10? \\ 10? \end{array}$ | R-2 (1)?                                                                              | R-4 (1)<br>(3)                                                          |                                                                                  | (3)<br>R-6 (1)?                                                                   | 8104?                                           |                                                                                     | 5.3, Ser<br>(1)?<br>[(2),<br>3)                                                  |
|----------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| COMMENTS                         | Counterparts (5a)                                                                    | Coincides GX<br>with (G<br>weak (1,<br>variable (L21<br>radio 2)<br>source Ser 2                       | (16) Ser XI                                                                           | Sgr X<br>Sgr 4                                                          |                                                                                  | Sgr 7 ,<br>Sco X                                                                  | 3C 390.3?<br>Cluster:<br>IV Zw 1842.0+          |                                                                                     | (GX+3(<br>XR-1)<br>Ser XR-1<br>Ser 1 (                                           |
| ALI                              | Max.<br>Obs./<br>Min.<br>Obs.<br>(4b)                                                | 1.7                                                                                                    |                                                                                       |                                                                         |                                                                                  |                                                                                   |                                                 |                                                                                     |                                                                                  |
| INTENS                           | - Average<br>or<br>Maximum<br>(4a)                                                   | 560                                                                                                    | 10 ± 3                                                                                | 200 ± 8                                                                 | 40 ± 5                                                                           | 15 ± 3                                                                            | 3.6 ± 0.4                                       | 7.0 ± 1.3                                                                           | 179 ± 5                                                                          |
|                                  | Area<br>(square<br>degrees)<br>(3e)                                                  | 0.002                                                                                                  | 0.270                                                                                 | 0.003                                                                   | 0.072                                                                            | 0.210                                                                             | 0.930                                           | 0.330                                                                               | 0.014                                                                            |
| CONFIDENCE                       | 4<br>8<br>(3d)                                                                       | 18 <sup>b</sup> 13 <sup>m</sup> 9 <sup>s</sup><br>-14° 4′ 30″<br>273.287<br>-14.075                    | 18 14 58<br>-12 34 48<br>273.74                                                       | -12.36<br>18 20 26<br>-30 23 42<br>275.107                              | $\begin{array}{c} -30.395 \\ 18 \ 23 \ 31 \\ -0 \ 10 \ 12 \\ 275.88 \end{array}$ | -0.17<br>-18 25 7<br>-37 17 24<br>276.28                                          | -37.29<br>18 37 12<br>79 32 24<br>279.3         | 79.54<br>- 5 44 24<br>278.94                                                        | -5.74<br>18 36 48<br>4 59 24<br>279.200<br>4.990                                 |
| r 90 Percent                     | 3<br>δ<br>(3c)                                                                       | 18 <sup>h</sup> 12 <sup>m</sup> 53 <sup>s</sup><br>- 14° 3′ 32″<br>273.220<br>- 14.059                 | 18 11 34<br>-12 14 24<br>272.89                                                       | -12.24<br>18 19 56<br>-30 22 41<br>274.982                              | $\begin{array}{c} -30.378 \\ 18 & 20 & 55 \\ 0 & 11 & 24 \\ 275.23 \end{array}$  | $\begin{array}{c} 0.19\\ 18 & 20 & 48\\ -37 & 17 & 24\\ 275.20\\ \end{array}$     | -5/.29<br>18 14 48<br>81 56 24<br>273.7         | 81.94<br>18 30 17<br>-5 13 12<br>277.57                                             | $\begin{array}{c} -5.22\\ 18 35 34\\ 5 3 0\\ 278.892\\ 5.050\end{array}$         |
| ROR REGION FC                    | 2<br>α<br>(3b)                                                                       | 18 <sup>b</sup> 12 <sup>m</sup> 54 <sup>s</sup><br>- 14° 1′ 41″<br>273.225<br>- 14.028                 | -11 58 12<br>-11 58 12<br>272.96<br>-11 07                                            | $\begin{array}{c} 18 \\ 18 \\ -30 \\ 274.985 \\ 274.985 \\ \end{array}$ | $\begin{array}{c} -30.350\\ 18\ 21\ 12\\ 0\ 15\ 36\\ 275.30\end{array}$          | $\begin{array}{c} 0.20\\ 18\ 20\ 48\\ -37\ 3\ 0\\ 275.20\\ 275.20\\ \end{array}$  | -37.03<br>18 20 0<br>82 26 24<br>275.0          | 22.44<br>18 30 50<br>-5 1 48<br>277.71<br>277.71                                    | $\begin{array}{c} -2.03\\ 18 & 35 & 34\\ 5 & 5 & 6\\ 278.892\\ 5.085\end{array}$ |
| ER                               | 1<br>α<br>(3a)                                                                       | 18 <sup>h</sup> 13 <sup>m</sup> 10 <sup>s</sup><br>- 14° 2′ 35″<br>273.292<br>- 14.043                 | $\begin{array}{rrrr} 18 & 15 & 17 \\ -12 & 15 & 36 \\ 273.82 \\ -12 & 76 \end{array}$ | $-30\ 21\ 54$<br>-375.110                                               | $\begin{array}{c} -30.303 \\ 18 \ 23 \ 43 \\ -0 \ 4 \ 48 \\ 275.93 \end{array}$  | -0.00<br>18 25 7<br>-37 3 0<br>276.28<br>276.28                                   | -37.00<br>18 42 24<br>80 3 36<br>280.6<br>280.6 | 80.00<br>18 36 12<br>-5 31 48<br>279.05                                             | 2.24<br>5 2 $245.0405.040$                                                       |
| N OF<br>DBABILITY<br>V           | $b^{\mathrm{II}}$ (2b)                                                               | 16°42<br>1°31                                                                                          | 18.04<br>2.08                                                                         | 2.77<br>-7.85                                                           | 29.97<br>5.95                                                                    | 356.89<br>                                                                        | 112.85<br>27.84                                 | 26.41<br>1.02                                                                       | 36.05<br>5.09                                                                    |
| LOCATIO<br>MAXIMUM PRC<br>DENSIT | $ \begin{array}{c} \alpha & (1950) \\ \delta & (1950) \\ \delta & (2a) \end{array} $ | 18 <sup>h</sup> 13 <sup>m</sup> 2 <sup>s</sup><br>- 14° 3′ 0″<br>273.26<br>- 14.05                     | $\begin{array}{rrrr} 18 & 13 & 26 \\ -12 & 15 & 36 \\ 273.36 \\ -17 & 76 \end{array}$ | $-30\ 22\ 12\ 275.04$                                                   | -30.5/<br>18 22 19<br>0 3 36<br>275.58<br>2606                                   | $\begin{array}{c} 18 & 22 & 53 \\ -37 & 8 & 24 \\ 275.72 \\ -37 & 14 \end{array}$ | 277.10<br>18 28 24<br>81 0 0<br>277.10<br>81 00 | $\begin{array}{c} 18 \\ 18 \\ -5 \\ 278.30 \\ -5 \\ 278.30 \\ -5 \\ 38 \end{array}$ | $\begin{array}{c} 18 & 36 & 29 \\ 5 & 2 & 24 \\ 279.12 \\ 5.04 \end{array}$      |
|                                  | Source Name<br>(1)                                                                   | 2U 1813 – 14                                                                                           | 2U 1813–12                                                                            | <b>2</b> U 1820-30                                                      | 2U 1822+00                                                                       | 2U 1822–37                                                                        | 2U 1828+81                                      | 2U 1833–05                                                                          | 2U 1836+05                                                                       |

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

| Ċ           |
|-------------|
| -           |
| m           |
| ~           |
| $( \land )$ |
| •           |
| •           |
| $\infty$    |
| 5           |
| -           |
| •           |
| •           |
| •           |
| Ь           |
| ៍           |
| 24          |
| RЦ          |
| $\sim$      |
|             |
| σ           |
| -           |

TABLE 1—Continued UHURU CATALOG OF X-RAY SOURCES

|                                                                                                                                                                                                                                  | CATION OF<br>JM PROBABILITY<br>DENSITY                                                        | ERR<br>1                                   | OR REGION FO                                                                         | or 90 Percent<br>3                                                               | Confidence                                                                      | Area                        | INTENSIT<br>Average   | Max.           | COMMEN'<br>GENERAL ]                              | IS AND<br>REMARKS<br>Dravious |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------|-----------------------|----------------|---------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                  | ΞΞ                                                                                            | ő<br>a)                                    | δ<br>(3b)                                                                            | δ<br>δ<br>(3c)                                                                   | δ<br>(3d)                                                                       | (square<br>degrees)<br>(3e) | or<br>Maximum<br>(4a) | Obs. (<br>(4b) | Counterparts<br>(5a)                              | X-Ray<br>(5b)                 |
| 18 <sup>h</sup> 43 <sup>m</sup> 26 <sup>s</sup> 97;88 19 <sup>h</sup> 18<br>67°30' 0" 25°68 65° 4<br>280.86 289.66<br>67 60                                                                                                      | 19 <sup>h</sup> 18<br>65°4<br>289.65                                                          | <sup>m</sup> 29 <sup>s</sup><br>, 48″<br>2 | 18 <sup>b</sup> 44 <sup>m</sup> 34 <sup>s</sup><br>67°44' 24"<br>281.14<br>67 74     | 18 <sup>h</sup> 41 <sup>m</sup> 31 <sup>s</sup><br>67°19' 12"<br>280.38<br>67 33 | 19 <sup>h</sup> 16 <sup>m</sup> 14 <sup>s</sup><br>64°39′36″<br>289.06<br>64 66 | 2.100                       | <b>4.2</b> ± 0.6      | 0 0            | Cluster:<br>IV Zw 1844.<br>Cluster:<br>TV 7 1856. | 0+6613?<br>≥±6616?            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | 18 50<br>76 36<br>282.55<br>-76.6                                                             | 12<br>0                                    | $\begin{array}{c} 18 \ 46 \ 31 \\ -77 \ 0 \ 0 \\ -77.0 \\ -77.0 \end{array}$         | $\begin{array}{c} 18 \ 47 \ 31 \\ -77 \ 36 \ 0 \\ 281.88 \\ -77 \ 6 \end{array}$ | $\begin{array}{c} 18 51 \\ -77 12 \\ 282.80 \\ -77 2 \\ -77 2 \\ \end{array}$   | 0.150                       | <b>3.0 ± 0.5</b>      |                |                                                   |                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $\begin{array}{c} 18 56 \\ 3 49 \\ 284.00 \\ 3 87 \\ 3 87 \end{array}$                        | 00                                         | 18 54 48<br>3 49 12<br>283.70<br>3 82                                                | 19 7 36<br>2 2 24<br>286.90<br>2 04                                              | 19 10 24<br>2 2 24<br>287.60<br>2 04                                            | 0.890                       | 42                    | 7              |                                                   |                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $\begin{array}{c} 19 & 8 & 31 \\ 0 & 30 & 36 \\ 287.13 \\ 0 & 51 \end{array}$                 |                                            | 19 7 55<br>0 33 0<br>286.98<br>0 55                                                  | 19 7 50<br>0 30 0<br>286.96<br>0 50                                              | 19 8 19<br>0 28 12<br>287.08<br>0 47                                            | 0.007                       | 200                   | 4              | Aql<br>Aql                                        | XR-1 (1)<br>1 (3)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $\begin{array}{c} 19 & 18 & 19 \\ -5 & 15 & 0 \\ 289.58 \\ -5 & 25 \\ -5 & 25 \\ \end{array}$ |                                            | $\begin{array}{c} 19 & 6 \\ -4 & 48 & 0 \\ 286.63 \\ -4 & 80 \\ -4 & 80 \end{array}$ | $19 \ 6 \ 19 \ -5 \ 0 \ 0 \ 286.58 \ -5 \ 0 \ 0$                                 | $\begin{array}{c} 19 \\ 19 \\ -5 \\ 289.53 \\ 289.53 \\ 5.45 \end{array}$       | 0.610                       | 19 ± 2                |                |                                                   |                               |
| 19         26         34         76.14         19         28         48           43         44         24         12.33         44         9         0           291.64         23         232.2         241.5         0        | 19 28 48<br>14 9 0<br>292.2<br>44 15                                                          |                                            | 19 25 36<br>43 41 24<br>291.4<br>43 60                                               | 19 24 24<br>43 18 0<br>291.1<br>43 30                                            | 19 30 48<br>43 42 0<br>292.7                                                    | 0.390                       | $8.0 \pm 0.7$         |                |                                                   |                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | 20 1 36<br>59 26 24<br>300.4<br>69 44                                                         |                                            | 1952 0<br>-672136<br>-6736<br>-6736                                                  | 194736<br>-673936<br>296.9<br>-6766                                              | 19 57 36<br>- 69 44 24<br>299.4<br>- 69 74                                      | 1.100                       | $3.6 \pm 0.5$         |                |                                                   |                               |
| 19         54         53         68.45         19         56         0           31         52         48         1.68         31         48         0           298.72         298.72         31.88         31.80         31.80 | 19 56 0<br>31 48 0<br>299.00<br>31.80                                                         |                                            | $\begin{array}{c} 19 & 53 & 31 \\ 32 & 4 & 48 \\ 298.38 \\ 32.08 \end{array}$        | 19 53 19<br>31 57 36<br>298.33<br>31.96                                          | 19 55 48<br>31 41 24<br>298.95<br>31.69                                         | 0.072                       | 75                    | 2              |                                                   |                               |

| U               |
|-----------------|
| -               |
| œ               |
| $\sim$          |
| •               |
| •               |
| œ               |
|                 |
| μ               |
| •               |
| •               |
| •               |
| Ь               |
| Q,              |
| $\triangleleft$ |
| $\sim$          |
| $\sim$          |
| σ               |
|                 |

TABLE 1-Continued UHURU CATALOG OF X-RAY SOURCES

|        | LOCATION                                                              | N OF                                       |                                                                     |                                                                                    |                                                                                    |                                                                                                        |                                     | INTENSI                          | K                             |                                                                       |                                                       |
|--------|-----------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|-------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|
|        | Maximum Pro<br>Densit                                                 | DBABILITY<br>Y -                           | ERR                                                                 | KOR REGION FOR                                                                     | R 90 PERCENT C                                                                     | ONFIDENCE                                                                                              |                                     |                                  | Max.                          | COMMEN<br>GENERAL ]                                                   | rs and<br>Remarks                                     |
| NAME ( | α (1950)<br>δ (1950)<br>(2a)                                          | $b^{\mathrm{III}}_{b^{\mathrm{III}}}$ (2b) | 1<br>α<br>(3a)                                                      | 2<br>δ<br>(3b)                                                                     | 3<br>β<br>(3c)                                                                     | $\alpha^{\alpha}$                                                                                      | Area<br>(square<br>degrees)<br>(3e) | Average<br>or<br>Maximum<br>(4a) | Obs./<br>Min.<br>Obs.<br>(4b) | Counterparts<br>(5a)                                                  | Previous<br>X-Ray<br>(5b)                             |
| +35    | 19 <sup>h</sup> 56m22 <sup>s</sup><br>35° 3′ 36″<br>299.092<br>35.060 | 71°32<br>3°08                              | 19 <sup>h</sup> 56m30 <sup>s</sup><br>35°3′58″<br>299.124<br>35.066 | 19 <sup>h</sup> 56 <sup>m</sup> 19 <sup>s</sup><br>35° 5′ 10″<br>299.078<br>35.086 | 19 <sup>h</sup> 56 <sup>m</sup> 15 <sup>s</sup><br>35° 3' 14″<br>299.064<br>35.054 | 19 <sup>h</sup> 56 <sup>m</sup> 26 <sup>s</sup><br>35°2′2″<br>299.109<br>35.034                        | 0.001                               | 1175                             | Ś                             | Intensity ca<br>X2 in 1<br>Coincides with<br>weak vari-<br>able radio | n vary by<br>second<br>Cyg X-1<br>(1, 2)<br>Cyg 1 (3) |
| + 40   | 19 57 12<br>40 36 0<br>299.30                                         | 76.14<br>5.85                              | 19 59 19<br>40 32 24<br>299.83                                      | 19 55 34<br>40 58 48<br>298.89                                                     | 19 54 55<br>40 42 0<br>298.73                                                      | 19 58 31<br>40 13 12<br>299.63                                                                         | 0.270                               | 5.1 ± 1.4                        |                               | Cyg A                                                                 |                                                       |
| + 59   | 40.60<br>20 6 53<br>59 49 12<br>301.72<br>50 05                       | 93.70<br>14.42                             | 40.54<br>19 32 48<br>65 30 0<br>293.2<br>25 5                       | 40.50<br>19 20 48<br>65 30 0<br>290.2<br>65 5                                      | 20 3 12<br>59 12 0<br>300.8<br>50 2                                                | $\begin{array}{c} \begin{array}{c} 40.22 \\ 20 & 11 & 12 \\ 60 & 6 & 0 \\ 302.8 \\ 60 & 1 \end{array}$ | 8.400                               | $8.8 \pm 1.9$                    |                               | Cluster:<br>I Zw 1951.5<br>NGC 6825?                                  | + 6148?                                               |
| + 62   | 20.12 5<br>20.12 5<br>62.39 36<br>303.02                              | 96.56<br>15.32                             | 20 20 48<br>61 36 0<br>305.2                                        | 19 54 24<br>65 42 0<br>298.6                                                       | 19 51 12<br>65 24 0<br>297.8                                                       | 20 17 36<br>61 18 0<br>304.4                                                                           | 2.300                               | <b>7.7 ± 0.7</b>                 |                               |                                                                       |                                                       |
| +40    | 02.00<br>20 30 29<br>40 47 24<br>307.62                               | 0.72                                       | 01.0<br>20 30 28<br>40 49 34<br>307.618<br>40 876                   | 20.70<br>20 30 17<br>40 48 18<br>307.573<br>40 805                                 | 20 30 24<br>20 30 24<br>40 45 36<br>307.602<br>40 760                              | 20 30 40<br>20 30 40<br>40 45 36<br>307.665<br>40 760                                                  | 0.003                               | 133                              | 2.5                           | 00                                                                    | /g X-3 (1, 2)<br>/g 3 (3)                             |
| + 75   | 20 41 55<br>75 25 12<br>310.48                                        | 109.36<br>19.86                            | 20 31 36<br>77 6 0<br>307.9                                         | 20 28 48<br>76 42 0<br>307.2                                                       | 20 50 0<br>73 54 0<br>312.5                                                        | 20 54 0<br>74 24 0<br>313.5                                                                            | 1.200                               | 3.4 ± 0.7                        |                               |                                                                       |                                                       |
| + 81   | 21 28 48<br>21 28 48<br>81 36 0<br>322.20<br>81.60                    | 116.07<br>21.84                            | 22 44 0<br>22 44 0<br>82 42 0<br>341.0<br>82.7                      | 21 48 0<br>82 24 0<br>327.0<br>82.4                                                | 21 0 0<br>81 24 0<br>315.0<br>81.4                                                 | 20 28 0<br>20 28 0<br>307.0<br>79.8                                                                    | 1.200                               | $1.5 \pm 0.3$                    |                               | Cluster:<br>IV Zw 2227.<br>Cluster:<br>IV Zw 2147.                    | 0+8225?<br>0+8155?                                    |

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

| U           |
|-------------|
| -           |
| m           |
| ~           |
| ( )         |
| •           |
| •           |
| œ           |
| $\sim$      |
| Ч           |
| •           |
| •           |
| •           |
| Б           |
| ñ.          |
| 2           |
| 14          |
| $( \land )$ |
| L-          |
| 5           |
| L-          |
|             |

TABLE 1—Continued UHURU CATALOG OF X-RAY SOURCES

|                     | LOCATIO                                        | N OF<br><b>JBABILITY</b> | Ë                                              | ROR REGION FC                      | DR 90 PERCENT                                   | CONFIDENCE          |                  | INTENSI             | LY COMME                            | NTS AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------|------------------------------------------------|--------------------------|------------------------------------------------|------------------------------------|-------------------------------------------------|---------------------|------------------|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | DENSI                                          | LY .                     | -                                              | ſ                                  | 2                                               | K                   | A 400            | Average             | Dbs / UENERAL                       | KEMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | α (1950)                                       | 117<br>117               | - 80                                           | 184                                | n 8 a                                           | t 84                | (square          | Or<br>Or<br>Mavimum | Min.<br>Dhe Counternorte            | Previous<br>V Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SOURCE INAME<br>(1) | (1920)<br>(2a)                                 | <i>0</i><br>(2b)         | 。<br>(3a)                                      | (3b)                               | 。<br>(3c)                                       | (3d)                | ucgrccs)<br>(3e) | (4a)                | (4b) (5a)                           | (5b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2U 2130+47          | 21 <sup>h</sup> 30 <sup>m</sup> 5 <sup>s</sup> | 91°62                    | 21 <sup>h</sup> 32 <sup>m</sup> 0 <sup>s</sup> | 21 <sup>h</sup> 28m58 <sup>s</sup> | 21 <sup>h</sup> 30 <sup>m</sup> 24 <sup>s</sup> | 21h31m17s           | 0.039            | $11.8 \pm 0.7$      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 47°2′24″                                       | -3.11                    | 47° 1′ 12″                                     | 47°14′24″                          | 47°4′48″                                        | 46°52′12″           |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 322.52                                         |                          | 323.00                                         | 322.24                             | 322.60                                          | 322.82              |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 1 1 1 1 1 1      | 47.04<br>21 24 24                              | 65 11                    | 41.02                                          | 47.24<br>21 16 48                  | 41.08<br>21 16 18                               | 40.8/               | 15,000           | 3 2 + 0 7           | Clusters?                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 2134 T 11        | 11 0 0 11                                      | - 29.24                  | 12 18 0                                        | 12 18 0                            | 936 0                                           | 9 36 0              | 000.01           |                     | · 61716710                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 323.64                                         |                          | 324.7                                          | 319.2                              | 319.2                                           | 324.7               |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 11.0                                           |                          | 12.3                                           | 12.3                               | 9.6                                             | 9.6                 |                  | +001                |                                     | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2U 2142+38          | 21 42 36                                       | 87.32                    | 21 42 45<br>38 6 20                            | 21 42 42<br>38 / 55                | 21 42 28<br>38 3 70                             | 21 42 30<br>38 4 55 | 0.001            | 420*                | I.4 Blue Star $(C_{VA} X_2)$        | $\begin{array}{c} \text{Cyg } \mathbf{X} - \mathbf{Z} \\ \text{of } \mathbf{X} - \mathbf{Z} \\ \mathbf{X} - \mathbf$ |
| 307                 | 30 J 4                                         | 70.11                    | 375 686                                        | 325 676                            | 325,616                                         | 375 675             |                  |                     | $\alpha = 21^{h}42^{n}$             | 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3                   | 38.084                                         |                          | 38.108                                         | 38.082                             | 38.058                                          | 38.082              |                  |                     | $\delta = \overline{38^{\circ}5'2}$ | 6,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2U 2208+54          | 22 8 34                                        | 101.01                   | 22 9 26                                        | 22 7 17                            | 22 7 29                                         | 22 9 58             | 0.110            | $5.1 \pm 1.0$       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 54 28 48                                       | -1.14                    | 54 43 48                                       | 54 34 12                           | 54 15 0                                         | 54 25 12            |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 332.14                                         |                          | 332.36                                         | 331.82                             | 331.87                                          | 332.49              |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 211 2221 ± 58       | 24.48<br>23 21 5                               | 111 72                   | 23 21 31                                       | 23 21 19                           | 23 20 36                                        | 23 20 48            | 0.008            | 53.4 + 1.0          | Cas A                               | Cas A (1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | 58 30 36                                       | -2.16                    | 58 31 12                                       | 58 34 48                           | 58 30 36                                        | 58 27 0             |                  | 1                   |                                     | Cas A (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | 350.27                                         |                          | 350.38                                         | 350.33                             | 350.15                                          | 350.20              |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 58.51                                          |                          | 58.52                                          | 58.58                              | 58.51                                           | 58.45               |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2U 2346-32          | 23 46 34                                       | 10.41                    | 23 59 2                                        | 23 44 24                           | 23 44 24                                        | 23 59 2             | 4.900            | $4.6 \pm 0.6$       | NGC 7793?                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -32 1 12                                       | - 75.69                  | -31 9 0                                        | -31 9 0                            | -32 43 48                                       | -32 43 48           |                  |                     | NGC 7755?                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 356.64                                         |                          | 359.76                                         | 356.10                             | 356.10                                          | 359.76              |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -32.02                                         | 1 10                     |                                                | 01.10-                             | - 52.13                                         | - 32.13             | 1 000            | $j \rightarrow 1$   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 2308-24          | 25 00 45<br>- 79 4 48                          | - 78 81                  |                                                | - 27 54 0                          | - 28 18 0                                       |                     | 1.000            | C.O - 7.7           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 359.68                                         |                          | 0.05                                           | 355.20                             | 355.10                                          | 359.93              |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | - 29.08                                        |                          | -29.0                                          | -27.9                              | -28.3                                           | - 29.4              |                  |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

# R. GIACCONI ET AL.

detector. In these cases the location of the maximum probability density will not be in the center of the error box. In figure 5 an illustrative example of the location and error-box determination is shown.

# V. THE CATALOG

The 68 sets of data analyzed for the catalog result in sky coverage as indicated in figure 6. This figure (which is in galactic coordinates) shows the path of the center of the scan for each spin-axis orientation. We estimate about 50 percent coverage at galactic latitudes greater than 20° and essentially complete coverage along the galactic plane. This catalog lists 125 X-ray sources giving locations with 90 percent error boxes; intensity from 2 to 6 keV; and some comments on peculiar properties, previous X-ray observations, and possible identifications. The X-ray sky as seen by *Uhuru* is shown in galactic coordinates in figure 7. The X-ray sources are denoted by asterisks.

In table 1 the sources making up the catalog are listed with the following information.

a) The source designation is given as the right ascension and declination of the location of the maximum of the joint probability distribution truncated to minutes of right ascension and degrees of declination. The error-box corners at the 90 percent confidence level as described above, together with the area of this region, are also listed, as is the location of the maximum of the joint probability distribution. This location and the error-box corners are given in celestial coordinates, and the location is also given in galactic coordinates.



FIG. 5.—An example of the iso-probability density contours for a source are shown. The lines of position used to generate these contours are also shown with widths of  $\pm 1 \sigma$ . Integration of the joint probability density distribution to 90 percent confidence results in the error region shown by the heavy contour. This region is a quadrilateral approximation to the calculated error region which is the light contour. Cross, most probable location.

304



306



FIG. 7.—The X-ray sky as seen by *Uhuru*. Asterisks indicate X-ray source locations. The map is an equal-area projection in galactic coordinates.

b) For each source, an intensity is listed which is the counting rate measured with Uhuru from 2 to 6 keV corrected for elevation in the collimator field of view. For sources which are not observed to vary, the intensity given is the weighted average of the individual sightings, and for variable sources we list the maximum observed intensity and the range of observed variations. In the case of nonvarying sources, the uncertainty in intensity which is given is only the value derived from the individual uncertainties in each sighting as determined from the minimum  $\chi^2$  fit of the collimator response to the data. These uncertainties therefore approximately reflect the statistical significance of the sources. In addition to statistical uncertainties, the source intensities given in this catalog are subject to systematic uncertainties due to the elevation corrections which depend on source location. Thus, sources which are located with poor precision will be subject to large systematic uncertainties in intensity. Unless otherwise indicated by an asterisk, the intensities are corrected for elevation using the most probable source location. For those sources which have optical or radio counterparts, the intensities have been corrected for the known location of the accepted counterpart.

The intensities given in this catalog are observed counting rates from 2 to 6 keV. To facilitate comparison of intensities with other observations, these counting rates can be converted to counts  $cm^{-2}s^{-1}$  by knowing the effective area of the *Uhuru* detectors. Measurements of this area were made by using available facilities prior to the *Uhuru* launch. However, due to the difficulty in obtaining a uniform, collimated beam of X-rays sufficiently broad to cover the detectors, a direct measurement of the effective area was not made. Therefore, the conversion of counts  $s^{-1}$  to counts  $cm^{-2}s^{-1}$  using an effective area of 840 cm<sup>2</sup> will be subject to a systematic uncertainty which we estimate to be  $\pm 10$  percent. As a further aid in using the *Uhuru* intensity data we have calculated a typical conversion factor for transforming from counts  $s^{-1}$  (2–6 keV) to ergs  $cm^{-2}s^{-1}$  (2–10 keV). Such a transformation depends on the particular spectrum of the source under consideration; however, for sources which have power-law or exponential type spectral shapes and are neither cut off at low energies nor exceptionally steep or flat, the conversion factor has only a weak

# TABLE 2

#### A. CATALOGS AND LISTS OF INTERESTING OBJECTS

- 1. Abell, G. O. "Distribution of Rich Clusters of Galaxies" (Ap. J. Suppl., 31, 1958 May). 2. Arp, H. Atlas of Peculiar Galaxies (California Institute of Technology, Pasadena, 1966).

- Bennett, A. S. 1962, Mem. R.A.S., 68, 163.
   Burbidge, G. R., and Burbidge, E. M. "Redshifts of Quasi-stellar Objects and Related Extragalactic Systems" (Nature, 222, 735, 1969).
   Downes, D. "New Radio Results on Supernova Remnants" (Ap. J., 76, 1971, pp. 305-376).
- 6. Milne, D. K. "Nonthermal Galactic Radio Sources" (Australian J. Phys., 23, 1970, pp. 425-444).
- 7. Vaucouleurs, G. de, and Vaucouleurs, A. de. Reference Catalog of Bright Galaxies (Univ. of Texas Press, Austin, 1964).
- 8. Zwicky, F., Herzog, E., and Wild, P. Galaxies and Clusters of Galaxies, Vol. 1 (California Institute of Technology, Pasadena, 1960). 9. Zwicky, F., and Herzog, E. Galaxies and Clusters of Galaxies, Vol. 2 (California Institute of
- Technology, Pasadena, 1963).
- 10. Zwicky, F., and Herzog, E. Galaxies and Clusters of Galaxies, Vol. 3 (California Institute of Technology, Pasadena, 1966).
- 11. Zwicky, F., and Herzog, E. Galaxies and Clusters of Galaxies, Vol. 4 (California Institute of
- Technology, Pasadena, 1968).
  12. Zwicky, F., Karpowicz, M., and Kowal, C. T. Galaxies and Clusters of Galaxies, Vol. 5 (California Institute of Technology, Pasadena, 1965).
- 13. Zwicky, F., and Kowal, C. T. Galaxies and Clusters of Galaxies, Vol. 6 (California Institute of Technology, Pasadena, 1968).

#### **B.** References for Table 1

- 1. Oda, M., and Matsuoka, M. 1970, Progress in Elementary Particle and Cosmic Ray Physics, 10, 305.
- 2. Kellogg, E. 1970, "A Catalog of Soft X-ray Sources" (American Science and Engineering, ASE-2536). 3. Seward, F. 1970, "An Illustrated Catalog of Cosmic X-ray Sources" (LRL Report UDID-
- 15622).
- Fritz, G., Davidson, A., Meekins, J., and Friedman, H. 1971, Ap. J. (Letters), 164, L81.
   Giacconi, R., Gursky, H., Kellogg, E., Schreier, E., and Tananbaum, H. 1971, Ap. J. (Letters), 167, L67.
- Lewin, W., McClintock, J., Ryckman, S., and Smith, W. 1971, Ap. J., 166, 169.
   Leong, C., Kellogg, E., Gursky, H., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 170, L67.
- 8. Gursky, H., Kellogg, E., Murray, S., Leong, C., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 167, L81.
- 9. Schreier, E., Gursky, H., Kellogg, E., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 170, L21
- 10. Gursky, H., Kellogg, E., Leong, C., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 165, L43.
- 11. Kellogg, E., Gursky, H., Leong, C., Schreier, E., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 165, L49.
- 12. Bradt, H., Burnett, B., Mayer, W., Rappaport, S., and Schnopper, H. 1971, Nature, 229, 96.
- Kellogg, E., Gursky, H., Murray, S., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 169, L99.
- 14. Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tananbaum, H., and Giacconi, R. 1972, Ap. J. (Letters), 172, L79.
- 15. Lewin, W. H. G., Ricker, G. R., and McClintock, J. E. 1971, Ap. J. (Letters), 169, L17. 16. Tananbaum, H., Gursky, H., Kellogg, E. and Giacconi, R. 1971, Ap. J., 168, 125.
- 17. Murray, S., Kellogg, E., Gursky, H., Tananbaum, H., and Giacconi, R. 1972 (to be published in Ap. J.).

dependence on the particular spectrum. For such sources, a value of  $1.7 \times$  $10^{-11}$  ergs cm<sup>-2</sup> s<sup>-1</sup> per count per second is useful. We expect no more than a  $\pm$  30 percent systematic uncertainty in this value due to the spectral shape and an additional  $\pm 10$  percent systematic uncertainty which is due to uncertainties in effective area. Future editions of the Uhuru catalog will contain more detailed spectral information which will eliminate the 30 percent uncertainty in converting counting rates to energy flux. The uncertainty in the effective area of the X-ray detectors may be reduced by the comparison of *Uhuru* data with other observations of nonvariable X-ray sources for which absolute intensities are measured with high precision.

The comments given for the sources consist of general comments which point out peculiar X-ray properties of a source such as spectrum or timescales of variability. There is also a "Counterparts" comment which is the result of searching several catalogs of objects such as bright galaxies or radio sources (the catalogs which were searched are listed in table 2). Counterparts followed by a question mark (?) are possible identifications. We have also searched some of the previous X-ray literature, and under the "Previous X-Ray" comment we list possible previous X-ray sources which may correspond to the *Uhuru* sources. Again, comments followed by question marks indicate possible correspondence. The search through X-ray literature was not intended to be complete but rather to aid in correlating the *Uhuru* results with past observations. The number enclosed in parentheses following the comments refer to the list of references in table 2.

We would like to thank R. Meravi, R. Cleaveland, C. Shih, and G. Martin for their assistance in computer programming and data processing. We also appreciate the efforts of B. Shatz and Drs. T. Matilsky and A. Solinger in compiling the catalog results and researching literature for counterparts and previous X-ray reports. We are indebted to the Goddard Space Flight Center for allowing us to use their computing facilities.

We would also like to acknowledge the contributions of Dr. W. Liller of the Harvard College Observatory with whom we have had several discussions regarding possible identifications for sources in this catalog.

This work was supported by the National Aeronautics and Space Administration under contract NAS5-11422.

### REFERENCES

Giacconi, R., Gursky, H., Kellogg, E., Leong, C., Murray, S., Schreier, E., and Tananbaum, H. 1971a, Catalog of X-Ray Sources Observed by the Uhuru Satellite (ASE-2792, August 4).

Giacconi, R., Gursky, H., Kellogg, E., Murray, S., Schreier, E., and Tananbaum, H. 1971b, *The Uhuru Catalog of X-Ray Sources* (ASE-2855, November 29). Giacconi, R., Kellogg, E., Gorenstein, P., Gursky, H., and Tananbaum, H. 1971c, *Ap. J. (Letters)*,

Giacconi, R., Kellogg, E., Gorenstein, P., Gursky, H., and Tananbaum, H. 1971c, Ap. J. (Letters), 165, L27.

Leong, C., Kellogg, E., Gursky, H., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 170, L67.

308