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ABSTRACT 

Numerical calculations of the periods, eigenfunctions, and stability integrals in the quasi-adiabatic 
limit have been carried out for the lowest radial pulsation modes of homogeneous, pre-white-dwarf 
stellar models. Detailed numerical results are given, and the effects of neutrino emission, differences in 
stellar mass, and structural changes accompanying the evolution are discussed. 

I. INTRODUCTION 

This paper is the first in a series dealing with the pulsational properties of stellar 
models in the final phases of evolution immediately prior to becoming white dwarfs. In 
subsequent papers of this series we shall investigate the contributions of various non- 
adiabatic processes to energization of the pulsations. In the present work we have studied 
the systematic variation with stellar mass and evolution of the properties of the lowest 
adiabatic, radial pulsation modes of stellar models selected from the evolutionary 
sequences computed by Savedoff, Van Horn, and Vila (1969, hereafter denoted by SV2). 

The need for a comprehensive investigation of the pulsational properties of stars in 
the immediate pre-white-dwarf evolutionary phases has become increasingly apparent 
in recent years. Theoretical studies dealing with stars between the main sequence and 
the white dwarfs (implying radial pulsation periods ranging from several hours to some 
tens of seconds, respectively) have become increasingly important. Perhaps even more 
significant are the recent discoveries of ultrashort-period oscillations in the degenerate 
stars HZ 29 (P = 1051.12 s [Ostriker and Hesser 1968, and references therein]), HL 
Tau-76 (P = 747 s [Landolt 1968; Warner and Nather 1970]), and R548 (P = 212.86, 
273 s [Lasker and Hesser 1971]), and in Nova DQ Herculis (P = 71.060 s [Walker 1961]). 
In addition, evidence of some quasi-periodic activities in the degenerate star 044—32 
(P = 600, 822, 1638 s [Lasker and Hesser 1969]) and in the X-ray source Seo X-l 
(P « 170 s [Gribbin, Feldman, and Plageman 1970]) has been reported. These findings 
dramatically emphasize the pressing need to understand the pulsational attributes of 
stars in very late stages of evolution. 

Previous work on the pulsations of highly evolved stars has dealt mainly with zero- 
temperature uwhite dwarfs.” Thus, Sauvenier-Goffin (1949) and Schatzman (1961) have 
computed the pulsation periods of the zero-temperature models of Chandrasekhar 
(1939), and Ledoux and Sauvenier-Goffin (1950) have studied the stability of “warm” 
white-dwarf models. More recently, Meitzer and Thorne (1966) have studied the pulsa- 
tions of white dwarfs composed of “cold, catalyzed matter” (Harrison et al. 1965), and 
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182 H. VAN HORN, M. RICHARDSON, AND C. HANSEN 

Faulkner and Gribbin (1968) and Skilling (1968) have computed the periods of Hamada 
and Salpeters (1961) cold white-dwarf models constructed with Salpeterfs (1961) 
Coulomb-corrected equation of state. The effects of rapid rotation have been investi- 
gated by Ostriker and Tassoul (1969), and the corrections due to finite but low tempera- 
tures have been studied by Baglin (1967). 

More closely related to our present work are the calculations of pulsation periods, 
eigenfunctions, and stability integrals for hot, partially degenerate stars that have 
recently been carried out by Rose and his collaborators (Rose 1967, 1968; Harper and 
Rose 1970). These investigations have dealt with the final phases of evolution of hy- 
drogen- and helium-shell-burning stars just prior to the extinguishment of the nuclear 
energy sources. However, only a few models of mass 0.75 MQ have been published, so 
that systematic variations of the pulsation properties with evolution and with stellar 
mass can be discussed only in a schematic fashion, if at all. 

In the present work the pulsation periods, eigenfunctions, and stability integrals of 
the lowest few adiabatic radial pulsation modes have been computed for a substantial 
number of the models described by SV2. A brief description of the models is given in 
§ II, together with a discussion of the effects upon our present results of the approxima- 
tions used in the model construction. In § III the theoretical bases of our calculations 
are briefly reviewed. Our results for the periods and eigenfunctions and for the stability 
integrals are tabulated and discussed in § IV. We have analyzed a sufficient number of 
models to enable us to carry out a coarse but comprehensive study of thé systematic 
effects of neutrino emission, evolutionary state, and variations in stellar mass upon the 
pulsational properties of these models. As a result we are able to discuss in some detail 
the characteristics of the pulsations of at least some kinds of stars on the left-hand side 
of the H-R diagram. (Shell-burning will of course modify these results to some extent, 
and we explicitly exclude discussion of such cases*) These conclusions plus a brief sum- 
mary of our results are given in § V. 

II. THE MODELS 

The models we have analyzed in this study were selected from the evolutionary se- 
quences of 1.0,0.631, and 0.398 MQ pure iron stars discussed by SV2 (see also Vila 1965). 
In this work two parallel sequences of models were constructed for each choice of stellar 
mass—one sequence without neutrino emission processes and one which included ap- 
proximate expressions for the rates of energy loss due to the pair-annihilation, photo-, 
and plasma-neutrino mechanisms. Structural details were given for selected models 
from each of these sequences. The location of the models in the H-R diagram is shown 
in Figure 1 (the model numbers are those of SV2; a suffix “N” indicates a “neutrino” 
model). Subsequent to the publication of that paper the 1 M© sequences were recom- 
puted by using the self-consistent surface condition discussed in that work. The 
new sequences were identical with the original ones, except at luminosities in excess 
of 104*3 Lq in the “neutrino” sequence. In these extremely luminous models the radiation 
pressure gradient is comparable to the surface gravity, and the condition of hydrostatic 
equilibrium becomes increasingly difficult to satisfy. Models selected from these new 
evolutionary sequences for the present study were chosen so that the central pressures 
and temperatures were as close as possible to those of the models tabulated by SV2. For 
the sake of completeness, however, we have also summarized the properties of the new 
models in Tables 1 and 2 below, in the format of SV2. Model numbers in the new se- 
quence are denoted by primes throughout. 

The equation of state used in the construction of these sequences contained contribu- 
tions from the iron nuclei, treated as a perfect gas, from the radiation field, and from the 
semirelativistic, partially degenerate, noninteracting electron gas. The actual expressions 
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Fig. 1.—Hertzsprung-Russell diagram showing evolutionary paths of the pre-white-dwarf models 
without neutrino losses {dashed curves) and with neutrino losses {full curves). Lines of constant funda- 
mental mode period are shown as heavy solid lines, with the period in seconds indicated. 

TABLE 1 

Properties of 1 Models Without Neutrino Loss+ 

No. Age log pc log Tc log Pc 1ft log pd log Td log Pd Mr/M rd/R log L/L@ log Tg R/Rg (years) c 

la' 4.776 +5 4.718 8.531 20.891 -0.69 
2' 9.743 +5 5.240 8.685 21.581 40.06 

3-4' 4.869 +6 7.113 9.089 24.095 4.91 
5' 1.270 4-7 7.770 8.864 24.980 17.8 
6* 2.884 4-7 7.938 8.497 25.204 49.3 

  2.309 
  2.308 
5.136 8.633 21.439 0.952 0.581 2.317 
4.736 8.386 20.783 0.998 0.839 1.558 
4.242 8.070 19.969 1.000 0.931 0.539 

7' 9.374'4-7 7.947 7.966 25.217 2.3 4-2 3.548 7.622 18.825 1.000 0.975 -0.892 
8' 8.250 +8 7.948 7.152 25.217 1.5 +3 2.516 6.924 17.096 1.000 0.995 -3.033 
9' 4.245 49 7.948 6.702 25.217 4.3 4-3  4.205 

4.805 1.18 -1 
4.897 7.70 -2 
5.224 1.73 -2 
5.191 8.38 -3 
4.987 6.63 -3 
4.645 6.17 -3 
4.116 6.00 -3 
3.824 5.99 -3 

In all tables we use the notation 1.0 4-n = 1.0 x 10 

TABLE 2 
Properties of 1 Models With Neutrino Loss 

Age 
No. (years) logpc logT, XogPc logppk logTpk logPpk y>pk ^ M

rj pk/M rpk/R l°gVL
e WL/Lg l°gTe 

2N' 3.0334-5 4.906 8.497 21.054 -0.02 4.80+3   2.70 
3N' 738* 6.088 8.638 22.585 +3.83 9.86+4 5.438 8.680 21.807 40.68 1.41+5 .310 .106 4.57 
4N' 3104* 7.339 8.502 24.369 26.2 4.58+5 5.809 8.925 22.42640.531.59+7 .767 .129 6.46 

J.279 25.083 1.1+2 2.49+4 5.337 8.876 21.894 -0.57 6.50+6 .976 .350 5.41 
5.204 25.161 1.3+2 4.69+3 5.388 8.794 21.855 -0.04 1.15+6 .987 .521 4.58 
5.086 25.205 1.8+2 2.30+2 5.566 8.582 21.891 +1.72 2.54+4 .991 .746 2.95 

8N' 5.076+5 7.946 7.968 25.215 2.3+2 7.73+0 5.431 8.260 21.561 +3.64 2.19+2 .996 .853 1.30 
9N' 3.553+7 7.948 7.587 25.217 5.6+2 2.55-4  1.85 

ION' 1.216+8 7.948 7.435 25.217 7.9+2 1.50-5   3.18 
UN' 3.23149 7.948 6.706 25.217 4.2+3   

5N' 3633* 7.849 
6N* 4380* 7.906 
7N' 3.641+5 7.939 

2.487 4.833 1.27-1 
3.040 5.048 8.92-2 
3.721 5.338 5.16-2 
4.151 5.680 1.75-2 
3.722 5.671 1.11-2 
1.930 5.315 7.28-3 
0.379 4.954 6.45-3 

-1.934 4.389 6.06-3 
-2.300 4.298 6.03-3 
-4.194 3.826 5.99-3 

* +3.500 x 10 years 
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used for the latter contribution, however, were piecewise continuous analytic formulae 
given explicitly by Vila (1965), which were chosen to give an accuracy of 5 percent or 
better in the thermodynamic functions. The adiabatic exponent Fi = d In P/d In p|s, 
which is needed throughout the pulsation calculations, is therefore given only very rough- 
ly by this equation of state, and for this reason the much more accurate values provided 
by interpolation in PaczyñskFs (1970) tables of derivatives of the thermodynamic func- 
tions were used in our final calculations of the eigenfunctions and stability integrals. 
For the purpose of discussing the systematic variations of the pulsations periods, how- 
ever, the original equation of state is still usable: by direct comparison of the two sets 
of results, the periods are found to be given to percent accuracy, which is adequate 
for this initial survey. 

III. THEORETICAL BACKGROUND 

a) Adiabatic Pulsations 

The general theory of small-amplitude radial pulpations and of the stability of 
spherically symmetric stars, in the linear approximation, has been discussed extensively 
by Ledoux and Walraven (1958) and more recently by Cox and Giuli (1968), whose 
notation we have adopted throughout this paper. Fqr adiabatic pulsations the equation 
of motion for the relative pulsation amplitude, 

becomes 

- - ¿4 O*- S) - ¿ I[<3r' -4)* - ■ (1) 

where p, p are the pressure and density of the unperturbed model. Together with the 
boundary conditions, 

n n 1 f>2*3 /.m /o\ _,° at ,_0; ___[_-(3r,-4)J at r-R (2) 

(where M, R are the stellar mass and radius, respectively), this equation constitutes the 
eigenvalue problem from which the eigenperiods Pk = ^ir/ak and eigenfunctions £& 
of the adiabatic, radial pulsation modes can be determined for a given quasi-static 
stellar model. 

Two different methods were used to solve this eigenvalue problem. The first was the 
variational technique, discussed by Bardeen, Thorne, and Meitzer (1966), for obtaining 
approximations to the eigenfrequencies <Jk of the lowest few modes. This method is 
based upon the fact that the eigenfrequencies are minima of the functional 

22 = \ fu'ZurHMr ; J = f\u\VdMr, (3) 
J M M 

where Mr is the mass interior to radius r, the integrals are taken over the entire star, 
and u(f) is a function that satisfies the boundary conditions (2). Since the £& satisfy the 
orthogonality condition 

fh'tirHMr = Jk^ki ; Jk = f\h\WdMr, (4) 
M M 

it follows that 22 = <Tk2 when u = £*> 
As our trial functions for the variational procedure we used the set of five basis 

functions {un: w = 0, . . . , 4} obtained from an initial set {rn: w = 0, . . . , 4} or 
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No. 1, 1972 RADIAL PULSATIONS 185 

{r2n: w — 0, . . . , 4} by means of the Gram-Schmidt orthogonalization procedure. With 
this orthonormal basis set the eigenvalues of the finite-dimensional problem, 

I fun^u^dMr - 22 = 0 , 
I M M I 

are then upper bounds for the eigenfrequencies of the lowest five modes. In practice we 
also solved the eigenvalue problems for the lower-dimensional subspaces of our five- 
dimensional function space in order to assess the rate of convergence and the accuracy 
of the resulting approximations for A three-dimensional function space was generally 
adequate to give an accuracy of a few percent in the fundamental-mode period. The 
five-dimensional space is in principle capable of yielding better than ^0.1 percent ac- 
curacy; however, the accuracy of the present results is limited to ^5 percent by the 
“noise” in the numerical values of Pi derived from Vila’s (1965) equation of state. 

The second, and independent, method used to solve the problem was by direct 
integration of the two first-order differential equations in pressure and radial variations 
(plus boundary conditions) which are implicit in equation (1). The computational tech- 
nique was embodied in a general purpose computer code given to us by N. Baker, which 
solves systems of first-order differential equations (with or without eigenvalues) by 
means of a multidimensional Newton-Raphson relaxation method. The exponent Ti 
in these calculations was derived from Paczyñski’s (1970) tables. This was necessary 
because the pressure and radial eigenfunctions calculated were used as input for the 
stability analysis (to be described below) which demands accurate thermodynamic de- 
rivatives. The results of this method compare well (^5 percent error at worst) to the 
results of the method first described, and any errors can generally be ascribed to differ- 
ences in Ti. 

All the models considered were stable in the dynamic sense; i.e., a2 was positive in all 
cases. This is to be expected since the equation of state used restricted Ti to be every- 
where equal to or greater than 4/3. 

b) Stability Analysis 

The stability or instability of a star to radial pulsations is determined by the sign of 
the imaginary part k (the reciprocal damping or growth time) of the complex pulsation 
frequency co=+<r + i/c(/c>0 implies stability). The calculation of k necessarily re- 
quires the treatment of the nonadiabatic terms in the equation of motion. If these terms 
are small (as is always the case in our calculations), the conventional quasi-adiabatic 
analysis gives (see, e.g., Cox and Giuli 1968) 

(s) 

where J is defined in equation (4), e is the net rate of energy generation (nuclear minus 
neutrino), and the 5-variation refers only to spatial changes, computed using the (real) 
adiabatic pulsation eigenfunction. Since Cr is evidently proportional to the luminosity L 
(and hence k œ fe“1, where fe is the Kelvin time) the quantity we tabulate is the ratio 
Cr/L. 

The integrations indicated in equation (5) were carried out in our calculations only 
to that point (the “transition zone”) in the envelope of the model where nonadiabatic 
effects begin to become important for stability. This is acceptable here because the mass 
above the transition zone comprises a negligible fraction of the total stellar mass in 
these hot objects and thus contributes little to the integral (see chap. 27 of Cox and 
Giuli 1968). 

In the analysis leading up to equation (5) the implicit assumption has been made 
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that the zero-order rate of entropy change, Tds/dt = € — dLr/dMr, is negligible. While 
this is emphatically not the case in the models we have studied, we shall defer discussion 
of this problem to the second paper of this series (Van Horn, Cox, and Hansen 1971). 
Preliminary indications are that while the additional contributions to the stability 
integral due to “thermal imbalance” (i.e., to the fact that € — dLr/dMr ^ 0) are small 
for the nondegenerate models, they may compensate for an appreciable fraction of the 
damping in cases of extreme degeneracy. 

IV. NUMERICAL RESULTS 

The results of our numerical calculations are summarized in Tables 3-10 and in 
Figures 1-7. For the unperturbed models we have listed the luminosity L, the mean 
density (p),1 the degree of central condensation as measured by the ratio pc/(p) of central 
to mean density, and the e-folding time (d In TJdt)~1 for the central temperature. The 
pulsation properties tabulated include the period Po of the fundamental mode, the 
ratio Pi/Po of the first-harmonic to the fundamental-mode periods, and the dimension- 
less pulsation “constant” Q* = P0(G(p))1/2 all derived from our variational computa- 
tions. In those cases for which we have also obtained the exact eigenfunctions and eigen- 
values the differences in the values of P0 calculated by the two methods are in all cases 
less than 5 percent and in most cases less than 3 percent; these differences arise from 
“noise” in the equation of state used in the variational calculations. For selected models 
we have also tabulated the exact fundamental-mode eigenfunctions £r ^ ôr/V and 

= bp/p at the center (0) and the surface (P), the damping integrals Cr/L, and the 
imaginary part k of the complex pulsation frequency. In all cases we take £r = 1 at 
the stellar surface. 

a) Comparison with Previous Work 

In Table 9 and Figure 2 we have compared our results with those obtained previously 
by other investigators. The fundamental-mode periods and the period ratios of the 

Fig. 2.—Radial eigenfunctions £r versus fractional radius r/R for extremely degenerate and extremely 
nondegenerate models. Full curves, models from this paper. Note that Sauvenier-Goffin’s eigenfunction 
is normalized to unity at r = 0. 

1 Note added in proof.—In the tables and figures (p) is denoted by p. 
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TABLE 3 

Pulsation Properties of 1 Mg Models With Neutrino Loss 

No. log L/L0 log p pc/p (din T^dt)"1 PQ(sec) P^Pq Q* fp^0^ tp^R^ cjl, ^(yra) 
years 

2N' 
3N' 
4N' 
5N' 
6N' 
7N* 
8N' 
9N' 

ION' 
UN' 

2.487 
3.040 
3.721 
4.151 
3.722 
1.930 
0.379 

-1.934 
-2.300 
-4.194 

3.9 +5 152. 
4.1+4 88.5 

4.012 2123. -1.0 +3 38.3 
5.422 267.3 -2.6 +3 8.16 

77.63 -6.3 +3 4.68 
23.82 -6.4 +4 4.47 
16.79 -5.5 +5 4.41 

6.802 14.00 -3. +7 4.40 
6.808 13.80 -1. +8 4.40 
6.817 13.52 -1. 49 4.40 

2.833 118.3 
3.274 651.6 

6.016 
6.562 
6.721 

.75 1.02 

.70 

.70 
.99 

1.00 6.29 -4 -2.69 -3 -14.2 -77. .60 
.65 1.08     
.73 1.23 .214 
.39 2.20   
.35 2.61   
.34 2.86 .993 
.34 2.88   
.34 2.91 .995 

-.884 

-4.10 

-4.11 

-10.1 -49. 4.8 +2 

-5.09 -38. 5.7 49 

-5.05 -12. 3.3 +12 

TABLE 4 

Pulsation Properties of 1 M0 Models Without Neutrino Loss 

). log L/L0 log p pc/p (din Tc/dt)”1 P0(sec) Pj/Pq Q* £r^ ?p^0) Cr/L ^(yrs.) 
years 

la* 2.309 2.935 60.67 
2' 2.308 3.490 56.23 
3' 2.314 4.483 48.64 
4' 2.317 5.437 47.42 
5' 1.558 6.379 24.60 
6' 0.539 6.685 17.91 
7' -0.892 6.778 14.76 -5. +7 
8' -3.033 6.814 13.61 -3. +8 
9' -4.205 6.817 13.52 

1.2+6 
1.5+6 
4.0+6 

■1.2 +8 
■ 1.1 +7 
■1.4 +7 

■8. +8 

142. 
78.1 
26.9 
10.3 
4.92 
4.45 
4.41 
4.40 
4.40 

,74 1.08 5.24 -2 -.244 
,72 1.12   
.67 1.21   
.60 1.39 .306 
.44 1.97   
.36 2.53   
.34 2.79 .986 
.34 2.90   
,34 2.91 .995 

-1.32 

■4.07 

■4.11 

-12.9 -60. 4.5 +2 

-8.91 -27. 5.6 +4 

■ 5.15 -11. 1.7+9 

■5.05 -12. 3.3 +12 

TABLE 5 

Pulsation Properties of 0.631 M0 Models With Neutrino Loss 

No. log L/L0 log p pc/p (din T^dt)“1 P0(sec) P-j/Pq Q* tr^ £p(°) £p(
R) Cr/L /l"1(yrs.) 

years 

IN 
iNa 
2Na 
3N 
3Na 
4N 
6N 
6Na 
7N 
9N 
10N 
11N 

1.226 
1.273 
1.327 
1.602 
2.246 
2.434 
2.037 
1.578 
0.725 

■1.970 
■2.780 
■4.228 

1.574 77.63 
1.988 70.15 

4. +5 
3.0 +6 

4.0 +6 2.825 70.31 
3.182 135.2 -3.0 +6 
3.773 277.3 -1.1 +5 
4.337 184.5 -1.2 +5 
4.994 63.97 -2.3 +5 
5.276 37.67 -4.9 +5 
5.570 21.14 -1.9 +6 
5.900 10.42 -3. +7 
5.927 9.795 -3. +8 
5.945 9.397 -1.5 49 

612 
382 
152 
96.9 
46.1 
24.6 
13.0 
11.2 
10.0 
9.66 
9.66 
9.66 

.72 

.72 

.71 

.71 

.67 

.71 

.97 2.11 -2 -.102 

.97  
1.02  

.98  

.92  

.94 5.01 -3 

-14.6 -69 4.0 +2 

.76 1.06 5.24 -2 

.66 1.25   

.52 1.58   

.39 2.22 .798 

.39 2.29   

.39 2.34 .824 

-2.25 -2 
-. 232 

-3.50 

-3.61 

■15.2 -73. 3.5 +1 
■13.2 -59. 1.3 +3 

■6.09 -94. 8.9 +8 

-5.1 •21. 7.6 +11 
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TABLE 6 

Pulsation Properties of 0.631 Models Without Neutrino Loss 

No. log L/L0 log p pc/p (din T^dt)"1 P0(sec) Px/P2 Q* ?r(0) fp(0) íp^ Cr/L lt“1(yrs.) 
years 

1.226 
1.271 
1.267 
1.253 
1.261 
1.001 
0.378 
-0.910 
-1.857 
-2.494 
-3.678 

1.574 77.63 
1.985 70.15 
2.309 62.23 
3.332 53.21 
3.833 48.87 
4.649 33.88 

4. +5 
3. +6 

+6 
7.2 +6 
1.8 +7 

-1.4 +8 
5.474 20.94 -4.5 +7 
5.819 12.42 -8.1 +7 
5.894 10.57 -1.4 +8 
5.918 10.00 -3. +8 
5.942 9.462 -7. +8 

610 
383 
271 
90.0 
50.6 
22.7 
11.6 
9.74 
9.66 
9.66 
9.66 

,72 
72 
71 1.00 

.97 2.11 -2 -.102 

.97  
-14.6 -64. 4.0 +2 

,68 1.08   
,65 1.08   
,65 1.24 .233 
,51 1.63   
,41 2.04   

2.21 .793 
2.27   
2.33 .821 

■1.06 

■3.48 

-3.60 

-10.1 -31. 2.4 +5 

■ 6.12 -18. 3.6 +9 

-5.91 -20. 2.3 +11 

TABLE 7 
Pulsation Properties of 0.398 M Models With Neutrino Loss 

>. log L/Lq log p pc/p (din Tc/dt) 1 P0(sec) Q* tr^ !p^ Cr/L #t_1(yrs. 

IN 
INa 
INb 
2Na 
3N 
4N 
5N 
6N 
8N 
9N 
10N 
11N 

0.105 
0.154 
0.143 
0.189 
0.347 
0.647 
0.544 
0.121 
-0.391 
-2.117 
-3.057 
-4.132 

1.101 72.95 1.5 +5 1036 
1.671 64.42 1.8+7 540 
2.070 57.41 2.1 +7 348 
2.808 61.38 2.6 +7 152 
3.168 79.25 -3.2 +7 100 
3.924 84.53 -3.0 +6 40.8 
4.224 57.28 -4.5 +6 29.9 
4.617 29.79 -1.1 +7 21.0 
4.866 18.84 -4.1 +7 18.2 
5.220 9.120 -1.0 +8 16.8 
5.286 7.834 -3. +8 16.7 
5.322 7.244 -2. 16.7 

.72 .93 1.99 -2 -9.81 -2 -14.9 -65. 1.7 +3 
.72 .95     
.71 .97    
.68 1.00     
.72 .99     
.71 .97 2.28 -2 -.108 -14.4 -62. 4.8 +3 
.74 1.00     
.71 1.10 .150 -.700 -11.4 -42. 3.4 +5 
.63 1.28     
.46 1.77 .665 -3.09 -6.91 -64. 5.3 +8 
.44 1.90     
.44 1.98 .742 -3.45 -6.33 -24. 1.8 +11 

TABLE 8 

Pulsation Properties of 0.398 M0 Models Without Neutrino Loss 

No. log L/L log p p /p (din T /dt)"1 P (sec) P /P Q* 
years 

!r<°> ip<°> ^,<R> C/L K.-1(yrs. ) 

0.105 
0.154 
0.142 
0.135 
0.154 
0.017 

-0.167 
-0.799 
-2.105 
-3.923 

1.101 72.95 
1.671 64.42 
2.070 57.02 
2.643 53.33 

1.5 +5 
1.8 +7 
2.2 +7 
2.9 +7 
3.7 +7 3.081 54.33 

4.008 37.41 -2.6 +8 
4.407 28.05 -1.5 +8 
4.899 15.81 -1.7 +8 
5.214 9.226 -3.6 +8 
5.316 7.345 -1.2 49 

1036 
536 
346 
185 
115 
42.4 
27.6 
18.8 
16.8 
16.8 

.72 

.72 

.72 

.70 

.69 

.69 

.68 

.58 

.46 

.44 

.93 

.95 

.97 
1.00 
1.03 
1.11 
1.14 
1.37 
1.76 
1.97 

1.99 -2 -9.81 -2 -14.9 -65. 1.7 +3 

.122 

.661 

.739 

-.574 

■3.07 
■3.43 

■11.) 

-6.91 
-6.35 

-41. 2.3 +5 

■20. 
•23. 

1.6 49 
1.1 +11 
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TABLE 9 
Comparisons With Previous Calculations 

A. White Dwarf Models 
This paper Schatzman (1961) Meitzer & Thorne (1966) Harper & Rose (1970) 

log P, M/M. No. log L/L, P0 Pl/P0 P2/Pl Pl/P0 P2/Pl Pl/P0 P2/Pl Pl/P0 P2/Pl 

7.948 
6.918 
6.182 

1.0 9' -4.205 4.3 +3 
0.631 11N -4.228 1. +3 
0.398 11N -4.132 320 

4.40 0.34 0.66 
9.66 0.39 0.68 
16.7 0.44 0.68 

4.56 
9.08 
17.0 

9.65* .19* .65 
8.84 .40 .67 
16.2 .43 .66 

4.62 .34 
9.43 .41 
18.5 .43 

. 66 

.67 

.67 

* Affected by differences in equation of state: see text. 

C. Intermediate Models 

B. Non-Degenerate Models 

M/Mq No. P„/p Pl/P0 

1.0 
0.631 
0.398 

la' -0.69 
IN -1.80 
IN -1.94 

60.67 1.08 0.74 
77.63 0.97 0.72 
72.95 0.93 0.72 

3 polytrope ** 54.2 0.99 0.738 

** Schwarzschild (1941) 

M/M0 log p No. Pq tC1(yrs.) 

2.935 la' 142 -12.9 4.5 +2 
1.0 4.483 3' 26.9   

5.437 4' 10.3 -8.91 5.6 +4 
2.31 3C+ 276 -22 3. -1 

0.75 4.35 3B+ 33 -12 7. +3 
4.85 3D+ 18 -13 7. +4 
1.574 1 610 -14.6 4.0 +2 

0.631 2.309 --- 271   
4.649 4 22.7 -10.1 2.4 +5 

+ He shell-burning models by Rose (1967) 

TABLE 10 

First Harmonic Properties of 0.398 M Models With Neutrino Loss 

V0) VR) Pp*» 

4N -8.75-3 +4.15-2 
6N -2.28 -2 +.107 
9N -.116 +.537 
11N -.248 +1.15 

-22.3 
-19.3 

0.67, 
0.60, 

-16.5 0.68c 

0.587 

0.50- 

0.55, 

-156 83 
-153 210 
-117 6.5 +3 
-137 2.1 +7 
-318 3.7 49 

lowest few radial pulsation modes of a number of white-dwarf models are listed in 
section A of the table. In addition to our results for the most strongly degenerate pure 
iron models computed by SV2, we have also tabulated the results of Schatzman (1961) 
and of Harper and Rose (1970) for Chandrasekhar’s (1939) zero-temperature models 
and the results obtained by Meitzer and Thorne (1966) for models consisting of “cold 
catalyzed matter” (CCM). In order to make a direct comparison among these calcula- 
tions, we have scaled the densities and periods obtained by Schatzman and by Harper 
and Rose to the values appropriate for a mean molecular weight per electron pe = 
A/Z — 56/26 = 2.15 and have then interpolated in the corresponding tables to obtain 
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the results at the same central densities as the SV2 models. In the case of Meitzer and 
Thorne’s calculations, we have interpolated directly in log pc to obtain the results at- 
tributed to them. This provides no difficulties in the lower-mass stars, since CCM is 
identical with iron at low densities. For the more massive stars, however, electron cap- 
tures at the correspondingly higher densities increase the value of pe significantly above 
2.15, so that the pulsation properties of these models are no longer comparable with 
our results. 

It is illuminating also to undertake a comparison of the eigenfunctions for degenerate 
stars. In Figure 2 we exhibit the result of our calculation for the radial eigenfunction 
£r of the 1 Mq, no-neutrino model 9', together with the result obtained by Sauvenier- 
Goffin (1949) for a zero-temperature model of Sirius B (M « 1 M0). Although the 
eigenfunctions agree to within the combined inaccuracies of our calculation plus that of 
Sauvenier-Goffin’s variational technique, it would be interesting to know whether or not 
the curious dip appearing in Sauvenier-Goffin’s £r is real. In our calculations using the 
Paczyñski equation of state (shown here) it does not appear. In earlier calculations using 
the piecewise continuous equation of state due to Vila (1965) we had found the form of 
£r to be strikingly similar to that obtained by Sauvenier-Goffin; but “noise” in the values 
of Fi obtained from this equation of state make these results highly suspect. An analo- 
gous, but less pronounced, structure also appears in the models with pc « 107 g cm“3 

studied by Meitzer and Thorne; however, in their calculations, differences between the 
equation of state of CCM and that of normal white-dwarf matter begin to.be important 
in just this density range, and this may account for the differences between their results 
and ours. Evidently the form of the radial eigenfunction depends rather sensitively upon 
the equation of state, and within the accuracy of our present results we cannot deter- 
mine whether or not £r actually should exhibit a minimum between the center and the 
surface. 

In section B of Table 9 we have tabulated some of the properties of our least de- 
generate models, together with the corresponding results obtained by Schwarzschild 
(1941) for a polytrope of index n = 3. The radial eigenfunction for the 1 MQ, no- 
neutrino model la' is also plotted—in Figure 2—along with Schwarzschild’s results for 
£r. On the scale of this figure the two are indistinguishable. Since these early models are 
quite nondegenerate even at the center (as indicated by the fact that the degeneracy 
parameter at the center is < 0), and since both the opacity and the rate of gravita- 
tional energy generation are relatively slowly varying throughout these models (see 
SV2), one would a priori expect the standard model to provide quite a good approxima- 
tion for the run of temperature and density in these stars. It is thus perhaps not sur- 
prising that the pulsational properties also should be well approximated by those of 
the standard model. 

Finally, in section C of the table we have compared some calculations by Rose (1967) 
for shell-burning stars near the peak of a “thermal pulse” with some of our intermediate 
models having similar masses and mean densities. Rose’s models also resemble ours in 
the additional sense that radiative losses and nuclear burnings do not balance, although 
in some of his models the rate of nuclear energy production far exceeds the optical 
luminosity of the star. It is noteworthy that in spite of the rather extreme physical 
differences between the two sets of models, not only are the pulsation periods similar 
for similar mean densities, but even the eigenfunctions ^ and the radiative damping 
times k“1 ( = Rose’s —2/Il) are also comparable. (Note that we are comparing only the 
radiative damping integrals and not the complete stability integrals; Rose’s model 3B 
is in fact pulsationally unstable due to the nuclear driving.) The exception in this com- 
parison is with Rose’s model 3C, for which he obtains a much shorter damping time 
than we would have expected on the basis of our calculations. The explanation of this 
difference lies in the extremely rapid decline of the eigenfunction toward the interior 
of the star; Rose obtains £r = 3.1 X lO"5 at Mr/M = 0.949, while even at the centers 
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of our models £r has only fallen to ^(2-5) X 10"2. The rapid drop in £r is apparently 
due to the fact that this particular model has a distended envelope, and this acts strongly 
to decrease £r

(0). Because of the fact that the pulsational properties of a star do depend 
upon pc/(p) (see below), and because pc/(p) has a much wider possible range of variation 
in heterogeneous stars (such as shell-burning stars), it is clear that our calculations will 
not accurately represent all of the pulsation properties of stars below the main sequence. 
Nevertheless, the fact that our results approximate the eigenfunctions and damping 
integrals of more complex models as well as they do may make them useful in other 
studies of the pulsation properties of stars in these late evolutionary phases. 

b) Fundamental-Mode Periods 

The large decrease in the period of the fundamental mode during evolution of a star 
to the white-dwarf stage, which is apparent in Tables 3-8, is a result of the enormous 
increase in the mean density. This effect is embodied in the well-known relation P0 ^ 
(6:(p))“1/2, which follows simply from a dimensional analysis of the eigenvalue equa- 
tion (3). The dimensionless pulsation “constant” Q*, defined by2 

Q* ^ Po(G(p))w , (6) 

is thus almost constant throughout the evolution of the star. This expected near- 
constancy is borne out by our calculations (Tables 3-8). There is, however, a systematic 
variation of Q* during the evolution, as shown in Figure 3, which is evidently connected 
with the systematic structural readjustments of the star as it contracts to higher 
densities and becomes increasingly degenerate. 

A qualitative understanding of the effects upon Q* of these changes in the stellar 
structure can be obtained from the work of Ledoux and Pekeris (1941). These investi- 
gators showed that a better approximation for the fundamental-mode eigenfrequency 
than that given simply by the dimensional analysis is 

<ro2 « (3<ri> - 4)(-n//), (7) 
where 

= _ f GMrdMr ^ j = frHMr ( (g) 
o r o 

and the average value of Pi is defined by 

R R 
{Yj^fYtfdv/fpdV. (9) 

0 7 0 

From the definition (6) the approximate value of Q* can thus be found for any given 
density distribution. 

To investigate the effects of variations in pc/(p) upon Q* we have taken a particularly 
simple distribution, 

P(r) = p41 - {r/R)“\, (10) 

for which the degree of central condensation is given by 

A- — - (H) <p) a 

2 Note that our dimensionless quantity Q* is related to the conventional pulsation constant, Q = 
Pc((p)/(Pe))m, by the factor Q/Q* = (G(Pe)-^ = 0^0379. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

2A
pJ

. 
. .

17
2 

. .
18

1V
 

192 H. VAN HORN, M. RICHARDSON, AND C. HANSEN Vol. 172 

Fig. 3.—Variation with stellar mass and mean density of the dimensionless pulsation constant Q* 
defined by eq. (6) for both neutrino (full curves) and no-neutrino (dashed curves) models. Note 0* < 1 
for some of the 1 Mq neutrino models. 

The pulsation constant then becomes 

(n*\i z 5W(p)) +1 
“ (IV - 4/3 11 W<„» - 5 • 

This simple model indicates that Q* becomes independent of pc/(p) when pc/(p) becomes 
large (for this model, variations are less than 10 percent when pc/(p) > 7); while for 
“small” pc/(p), Q* increases as pc/(p) decreases. These results reflect the fact that, as 
the degree of central concentration is decreased, the mass is distributed more evenly, 
with more of the mass at larger fractional radii; hence I/MR2 is decreased and |0|/ 
(GM2/R) is decreased, resulting in the observed increase in Q*. 

The approximate independence of Q* and pc/(p) in the limit of pc/(p) large provides 
the explanation for the difference in behavior of Q* versus (p), shown in Figure 3, for the 
models with and without neutrino emission. For given (p), pc/(p) is appreciably larger 
in the neutrino models because of the rapid core contraction; consequently, Q* remains 
almost constant to larger values of (p) than for the no-neutrino models. The same effect 
explains the interesting result, depicted graphically in Figure 1, that neutrino emission 
has no appreciable influence upon the location in the H-R diagram of the constant- 
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period lines for these early phases of evolution; with Q* fixed, constant period implies 
constant (p) and thus, for a given mass,3 constant radius. 

The increase in Q* as the stars evolve into degenerate white dwarfs, as exhibited in 
Tables 3-8 and Figure 3, can also be understood on the basis of equation (12). As the 
density of such a star increases, the degenerate electrons become relativistic, so that (Pi) 
decreases from the value 5/3 appropriate to a nonrelativistic gas toward the value 4/3 
which holds for the extreme-relativistic case, and Q* is increased appreciably. This vari- 
ation in (Pi) dominates in the more massive stars, and provides the explanation for the 
increase of Q* with stellar mass in our most strongly degenerate models. The same result 
was of course already implicit in the work of Schatzman (1961), who found for white 
dwarfs of juc = 2 that Q* increased from a value of 1.91 at 0.220 M0 to a value of 5.06 
at 1.375 M0- 

c) Fundamental-Mode Eigenfunctions 

The eigenfunctions £r = àr/r and %p = bp/p for the fundamental mode of pulsation 
are shown in Figure 4 for a selection of our models both with and without neutrino 
losses. In all cases we find that £r decreases monotonically inward; i.e., there are no rela- 
tive minima as in Sauvenier-Goffin’s (1949) variational eigenfunction (Fig. 2). 

The changes in the eigenfunctions during evolution can be qualitatively understood 
on the basis of the variations of Q* discussed above and are apparently governed mainly 
by the surface boundary condition, equation (2). This relation fixes the e-folding dis- 
tance Hr of £r at the stellar surface. In terms of Q*, equation (2) can be rewritten as 

Br Pi(Q*)2 

r 37t - (3Pi - my ' 

As the star becomes increasingly degenerate (and ultimately relativistically degenerate) 
Q* increases, and £r consequently decreases inward more slowly. Thus for nondegenerate 
models, where Q* « 1 and Pi « 5/3, we expect Hr/R « 0.2, in qualitative agreement 
with our numerical results shown in Figure 4. For the degenerate stars Hr/R must be 
estimated separately for the different stellar masses. In the 0.398 MQ models (Pi) « 
5/3, and this, together with the relatively small value of pc/(p), leads to correspondingly 
small Q* ( = 1.98 from our numerical calculations), giving Hr/R ~ 1.2; £r thus decreases 
inward quite slowly, remaining large even in the deep interior of the star. For the 1.0 MQ 

stars (Pi) approaches 4/3, which leads to larger pc/(p) ( = 13.52 from the numerical 
models) and, from equation (12), to (Q*)2 (Pi — 4/3) « 1.5, giving Hr/R ^ 2.3. The 
pulsation amplitude thus decreases inward even less rapidly for the more massive stars, 
which explains the result, shown by our numerical work, that £r

(0) increases with the 
total stellar mass for these degenerate configurations. 

d) Harmonic Pulsations 

The results of our variational calculations for the ratio P\/Pq of first-harmonic to 
fundamental-mode periods are listed in Tables 3-8 and are also shown graphically in 
Figure 5 as functions of the mean densities of the stars. We have also computed the exact 
eigenfunctions and damping integrals for the first-harmonic mode, but only for a few 
models from the 0.398 MQ neutrino-emission sequence. These results are summarized 
in Table 10, and the radial eigenfunctions £r for these models are depicted in Figure 6. 
In addition, we have variational estimates for periods of a few higher modes, but the 

3 The effect upon the P = constant lines of differences in the stellar mass is also effectively negligible, 
as can be seen by the following homology argument: For (p) = constant, R a Mllz, and the temperature 
T « GMuH/kR oc Mi,z. The temperature gradient equation with a generalized Kramers’s law opacity, 
K = Kopn7^* then gives L <*: Jif(9+2*)/3. From Stefan’s law L œ R2Te

4 M2liTe* ^ L2^9+28)Te^ we thus 
obtain d log Te/d log L = f[l — 2/(9 + 25)]. For Kramers’s law, s = 3.5, giving a fractional differ- 
ence from the slope of the lines R — constant of —2/(9 + 2s) = —0.125; numerical differentiation in 
Figure 1 yields —0.1. 
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Fig. 5.—Variation with mean density and stellar mass of the ratio Pi/Pq of first-harmonic to funda- 
mental-mode pulsation periods. Both neutrino models {full curves) and no-neutrino models {dashed 
curves) are shown. The arrow marked « = 3 indicates the value for a polytrope of index « = 3. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 
r/R 

Fig. 6.—The first-harmonic, radial pulsation eigenfunction £r for the 0.398 Mq neutrino model 
sequence. 
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accuracy of these results is considerably less than for the lower modes. Of these results 
we quote only the ratio of periods of the first and second modes; our numerical calcula- 
tions give 

P2/P1 « 0.70 ± 0.03 , (14) 

with no significant evidence for systematic variations with either neutrino emission or 
stellar mass. 

The general trend of P\/Pq toward smaller values with increasing (p), as shown in 
Figure 5, is to be expected if our results are to be consistent with the results for an w = 3 
polytrope (Pi/Po = 0.738 [Schwarzschild 1941; Hurley, Roberts, and Wright 1966]) in 
the limiting case of extreme nondegeneracy, and with the variational results for a white 
dwarf with a mass ^1 MQ (Pi/Po = 0.610 [Sauvenier-Goifin 1949]) in the opposite 
extreme. The difference between the results for the models with and without neutrino 
emission, however, requires further discussion of the factors that affect the overtone 
pulsation frequencies. This can be accomplished most directly by rewriting equation (3) 
for the eigenfrequency of the wth harmonic. An integration by parts, with Fi as- 
sumed constant, gives 

9 /T J £m2PrA fFlÿ 1 i /2TÏ a\ GMrl 
-tt It *?+<3r‘“4) ~J - 

(15) 

where Jm is given by equation (4), and Hm = ^m/(d^m/dr). Since p increases rapidly in- 
ward, while £mV4 decreases inward, the normalized weight function ^m2pr^/Jm is very 
sharply peaked at some point r = rm in the outer envelope of the star. We may therefore 
approximate equation (15) by the bracketed terms, evaluated at r = rm. Now we expect 
R — rm = where a is of order unity. Since we also have, for a radiative 
envelope with a generalized Kramers’s opacity law, K = K0p

nT~8, the relation 

p kT n \ GM N 

we thus find for the period ratio 

Pm _ O'™-!2 _ #m(l + €m-l) _ 3Fi ~ 4 4 + W + S E.m 

¿Vi2 “ ^ + ej ; 6m “ Tx a(w + 1) Æ • 

(16) 

(17) 

This equation contains the explanation for the systematic behavior of the Pi/Po 
ratio shown in Figure 5. Since the eigenfunction of the first overtone must of necessity 
decrease inward more rapidly than that of the fundamental, we have H\ < R, for 
the nondegenerate models, so that Pi/P0^ (Hi/Ho)112 < 1. Furthermore, since Ho 
increases more rapidly than H\ as the stars become degenerate (see Figs. 4 and 6), we 
also expect Pi/Po to be smaller for the white-dwarf models than for the nondegenerate 
stars, as the numerical results show. 

The systematic differences in behavior of the Pi/Po ratio between the neutrino and 
no-neutrino models can also be understood on the basis of equation (17). The copious 
neutrino emission in the latter models causes rapid contraction of the central core of the 
star, resulting in much larger pc/(p) for a given (p) than in the no-neutrino models. By 
equation (12) and (13), however, this results in smaller values of Q*, and therefore of 
Hm, for a star of given mean density; consequently, Pi/Po remains large to much larger 
values of (p) than in the no-neutrino stars. 

This same sort of reasoning also shows why the ratio P2/P1 shows no appreciable 
systematic variation; the radial eigenfunctions of both the first and second overtones 
decrease so rapidly inward in all of the models (this is shown explicitly in Fig. 6 for the 
first-harmonic eigenfunctions) that the HmS show little change as the stars become 
degenerate. 
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e) Stability Integrals 

Our results for the stability integrals defined by equation (5) are listed in Tables 3-8 
for the fundamental mode and in Table 10 for the first overtone of the 0.398 MQ neutrino 
model. In addition, we have plotted in Figure 7 the running integral 

1 dK 
K o dMr 

dMr 

for the fundamental mode of each of the stellar models. 
There are several interesting features of these curves. We first note that strong pulsa- 

tional damping occurs in the stellar envelopes for r/R greater than, say, 0.7. This effect, 
which is typical of hot stars, is sufficient to guarantee stability for all models. For those 
models with neutrinos, the stability is further enhanced by the damping properties of 
the neutrino losses; i.e., the neutrino loss rates increase upon compression of the medium 
which tends to damp the pulsation. 

A curious feature is exhibited by the highly evolved models without neutrino losses. 
In these cases the running integral of k is either negative in the core of the model or 
shows a decrease from previously positive values as Mr increases. This indication of 
driving, due solely to radiative processes, is the result of the peculiar behavior of r3 = 
(d In T/d In p)ad + 1 in degenerate matter. At the center of the model, where the 
electron gas is strongly relativistically degenerate, r3 is controlled by the ions and tends 
to be only slightly smaller than 5/3 (see, for example, the discussion in Hansen and 
Wheeler 1969). At somewhat larger values of Mr, however, the electron degeneracy is 
enough smaller so that the electron gas begins to affect T3. Since the electrons are still 
relativistic in this region, P3 thus decreases toward 4/3. When finally the region is 
reached where nonrelativistic, partial degeneracy occurs, T3 again increases to a value 
near 5/3. In these dense models where the radial variation is nearly homologous, thus 
implying near homology also for the pressure variation, the effect of this dip in T3 is to 
change the sign of the radial derivative of the temperature variation. Together with the 
small temperature gradient due to efficient electron conduction, this has the important 
effect of causing luminosity variations to change sign in the vicinity of the dip in T3. 
The result is a transition from damping to driving or the converse, depending on the 
direction of the change in T3. An interesting speculation is whether conditions could be 
found such that this effect could override both neutrino and envelope damping and re- 
sult in instability. 

Finally, it should be noted that, although the analysis leading to equation (5) for 
the damping integrals is adequate in most circumstances, there are clearly cases in which 
the present discussion is not entirely satisfactory. In the most degenerate models we 
have studied, the timescale of evolution of the star as measured by the e-folding time 
for the central temperature is shorter than the damping time /T1 of the pulsations. The 
problem of determining the rate of growth or decay of the pulsations thus cannot be 
separated from the evolution of the star—in contrast to the normal situation in the study 
of pulsational instability. The effect of this coupling is difficult to estimate in advance, 
and it seems probable that only detailed numerical calculations can provide an answer. 

v. SUMMARY 

We have carried out a quantitative study of the pulsation properties of homogeneous 
stars, with no nuclear energy sources, which are in their final phases of evolution toward 
the white-dwarf stage. In particular, we have obtained numerical values for the quanti- 
ties Q*, Pi/Po, Pz/Pu £r, and k (or Cr) for several stages during the evolution. As 
the stars contract and become increasingly degenerate, the periods rapidly become short- 
er [since Q* = Po(G{p))m « constant], ranging from Po^ 10 minutes for the least 
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degenerate models we considered to 10 s for the white-dwarf configurations. Be- 
cause of the extreme insensitivity of Q* to changes in pc/(p) in the early models, the 
constant-P0 lines in the H-R diagram are almost completely unaffected by the neutrino 
processes. In a degenerate model, however, all of the model parameters are sensitive to 
changes in the internal structure of the star, and we have discussed this at some length 
in order to clarify the relation between changes in the structure of the unperturbed model 
and changes in at least some of the pulsational properties. In the limiting cases our 
results agree quite well (within our limits of error) with the results of previous calcu- 
lations. 

We have presented rather extensive numerical information about the pulsational 
properties of these homogeneous, pre-white-dwarf models, as well as detailed graphs of 
the eigenfunctions and stability integrals, since—to the best of our knowledge—such 
information has not previously been available for stars in these intermediate phases of 
evolution. It is our hope that these results may be of use in helping to understand the 
recently discovered ultrashort-period variable stars and that they may also provide a 
useful foundation for future work on the properties of stars below the main sequence. 

We are grateful to Professors J. P. Cox and M. P. Savedoff for many helpful discus- 
sions. This work has been supported in part by the National Science Foundation under 
grants GP-13695 and GP-24944 through the University of Rochester and GP-12455 
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Computing Center of the University of Rochester, which is in part supported by Na- 
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